
Playing Repeated Stackelberg Games with Unknown
Opponents

Janusz Marecki
IBM T.J.Watson Research

P.O. Box 218
Yorktown Heights, NY 10598
marecki@us.ibm.com

Gerry Tesauro
IBM T.J.Watson Research

P.O. Box 218
Yorktown Heights, NY 10598
gtesauro@us.ibm.com

Richard Segal
IBM T.J.Watson Research

P.O. Box 218
Yorktown Heights, NY 10598

rsegal@us.ibm.com

ABSTRACT
In Stackelberg games, a “leader” player first chooses a mixed
strategy to commit to, then a “follower” player responds
based on the observed leader strategy. Notable strides have
been made in scaling up the algorithms for such games, but
the problem of finding optimal leader strategies spanning
multiple rounds of the game, with a Bayesian prior over un-
known follower preferences, has been left unaddressed. To-
wards remedying this shortcoming we propose a first-of-a-
kind tractable method to compute an optimal plan of leader
actions in a repeated game against an unknown follower, as-
suming that the follower plays myopic best-response in every
round. Our approach combines Monte Carlo Tree Search,
dealing with leader exploration/exploitation tradeoffs, with
a novel technique for the identification and pruning of dom-
inated leader strategies. The method provably finds asymp-
totically optimal solutions and scales up to real world secu-
rity games spanning double-digit number of rounds.

Categories and Subject Descriptors
G [3]: Probabilistic algorithms (including Monte Carlo)

General Terms
Algorithms

Keywords
Stackelberg Games, Monte-Carlo Tree Search

1. INTRODUCTION
Recent years have seen a rise in interest in applying game

theoretic models to real world security domains, ranging
from allocation of security checkpoints at Los Angeles Inter-
national Airport [13] to the analysis and detection of com-
puter network intrusions [1, 10]. As these security domains
impose non-simultaneous player actions, they are naturally
modeled as Stackelberg games [4] wherein one player (re-
ferred to as the leader) commits to a mixed strategy of
its choice, while the second player (referred to as the fol-
lower) responds based on the observed leader strategy. This
type of approach has received a lot of attention, resulting

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in new methods for the scale-up of the proposed algorithms
to games with large number of follower types [12] or large
leader strategy spaces [6].

In arriving at the optimal leader strategies for such games,
of critical importance is the leader’s ability to profile the
follower [14]. In essence, determining the preferences of the
follower actions is a necessary step in predicting the fol-
lower best responses to leader actions, which in turn are
necessary for finding the optimal leader strategy. If these
follower preferences cannot be determined exactly, one can
consider Stackelberg formulations with distributional uncer-
tainty over the follower payoffs [14]. However, the best
leader strategies in such games are often conservative [7] and
prior work only considered the case of single-round games.
The repeated-game Stackelberg scenario, wherein the leader
can exploit extra information in the form of the follower re-
sponses, was not studied. A notable advance for repeated
games was recently reported in [9], wherein the authors de-
velop an elegant method for choosing leader strategies to un-
cover the follower preferences in as few rounds as possible.
To our knowledge, however, no attempts have been made to
exploit the revealed information about follower preferences
to optimize total leader payoff over the rounds of the game.

This paper remedies these shortcomings by providing a
first-of-a-kind method to balance the exploration of the fol-
lower payoff structure versus the exploitation of this knowl-
edge to optimize on-the-fly the expected cumulative reward-
to-go of the leader. By coupling Monte-Carlo Tree Search
sampling to estimate the utility of leader mixed strategies
with preemptive pruning of dominated leader strategies, we
show how to effectively handle a broad class of repeated
Stackelberg games often employed to model real world do-
mains. We first provide a brief formal description of the
decision problems at hand and recall the Bayesian Stack-
elberg game model. We then develop our algorithm and a
separate method for pruning of dominated leader strategies.
We finally provide an empirical evaluation of our method
and discuss our results in the context of related work.

2. PROBLEM STATEMENT

2.1 Bayesian Stackelberg Games
A Bayesian Stackelberg game assumes a leader agent of

a single type and a follower agent of type drawn from a
set Θ. The set of pure strategies of the leader is Al =
{al1 , ..., alM } and the set of pure strategies of the follower
is Af = {af1 , ..., afN }. Game payoffs are described in terms
of the player utility functions: Leader’s utility function is

ul : Al × Af → R while the follower utility function uf :
Θ × Al × Af → R is unique for each type θ ∈ Θ of the
follower. The leader acts first by committing to a mixed
strategy σ ∈ Σ where σ(al) is the probability of the leader
executing its pure strategy al ∈ Al. (Mixed strategies allow
for higher expected payoffs of the leader as shown in [12].)
For a given leader strategy σ and a follower of type θ ∈ Θ,
the follower’s best response B(θ, σ) ∈ Af to σ is a pure
strategy B(θ, σ) ∈ Af that satisfies:

B(θ, σ) = arg max
af∈Af

X
al∈Al

σ(al)uf (θ, al, af). (1)

Given the follower type θ ∈ Θ, the expected utility of the
leader strategy σ is therefore given by:

U(θ, σ) =
X
al∈Al

σ(al)ul(al, B(θ, σ)). (2)

Given a probability distribution P (θ) over the follower types,
the expected utility of the leader strategy σ over all the
follower types is hence:

U(σ) =
X
θ∈Θ

P (θ)
X
al∈Al

σ(al)ul(al, B(θ, σ)). (3)

Solving a single-round Bayesian Stackelberg game involves
finding σ∗ = arg maxσ∈Σ U(σ).

An example Stackelberg game is depicted in Figure 1.
Here, the leader agent (the security force) first commits
to a mixed strategy. The follower agent (the adversary)
of just a single type then observes the leader strategy and
responds optimally to it, with a pure strategy, to maximize
its own payoff. For example, the leader mixed strategy to
“Patrol Terminal #1” (abbr. “PT1”) with probability 0.5
and “Patrol Terminal #2” with probability 0.5 provokes the
follower response “Attack Terminal #1” (abbr. “AT1”), be-
cause it provides the follower with the expected utility of
0.5 · (−2) + 0.5 · (2) = 0 which is greater than the ex-
pected utility of 0.5 · (2) + 0.5 · (−4) = −1 if the follower
were to “Attack Terminal #2”. One can calculate that the
best leader mixed strategy for the Stackelberg game in Fig-
ure 1 is a pair [PT1=60%, PT2=40%] which (assuming
that the follower breaks ties in the leader’s favor) provokes
the follower response AT1 thus providing the leader with
the expected utility of EU([PT1 = 60%, PT2 = 40%]) =
0.6 ∗ 6 + 0.4 ∗ 3 = 4.8. (Note, how this mixed strategy is su-
perior to the leader pure strategies [PT1=100%, PT2=0%]
and [PT1= 0%, PT2=100%] which illustrates the benefits
of randomized strategies in security domains.)

Figure 1: Single round Stackelberg game

2.2 Repeated Game Formulation
We adopt the model of repeated Bayesian Stackelberg

games [9] which assumes that nature draws a follower of type
θ ∈ Θ at the start of the game, and then the leader plays H

rounds of a Stackelberg game against a follower with fixed
type θ. The formulation also posits that the follower plays a
myopic (non-strategic) best-response strategy to the leader
strategy observed in each round. (We defer to future work
the more general case where the follower may also behave
strategically, and may utilize a distribution over unknown
leader preferences.) As such, the leader may never know the
actual follower type θ that it is playing against, but it can
infer the parts of the opponent payoff structure by observ-
ing follower responses to various leader actions. Whereas
the objective in [9] was to minimize the number of rounds
needed to exactly identify the follower type θ, our objective
is to compute the best leader strategy in each round, given
P (θ) and history of play in prior rounds, to maximize total
leader payoff over H rounds of play.

To illustrate this concept refer to a two-round Stackelberg
game in Figure 2 where the follower payoffs are initially un-
known (uniformly distributed), represented by missing val-
ues in Table (a). Suppose the leader action in the first
round is [PT1=100%,PT2=0%]. If the follower responds
with action AT1 (refer to Table (b)), the leader receives a
first-round payoff of 6, and infers that u11 > u12. Con-
sequently, in the second round the leader will again play
[PT1=100%,PT2=0%], for it assuredly provokes the follower
response AT1 and hence provides the leader with another
payoff of 6, for a total two-round payoff of 12. (Note, that as
the leader strategy [PT1=100%,PT2=0%] will not provide
additional information about the follower payoffs, it will not
be chosen in the second round of the game by the algorithm
introduced in [9].) On the other hand, if the follower replies
in the first round to [PT1=100%,PT2=0%] by playing AT2
(refer to Table (c)), the leader receives first-round payoff
of -2, and infers that u11 < u12. In that case, the optimal
leader strategy in the second round is [PT1=0%,PT2=100%]
yielding an expected payoff of 0.5 · (3 + 1) = 2 in the second
round, for a two-round total of 0. We conclude that, after
initially playing [PT1=100%,PT2=0%], the leader has 50%
chance each of receiving total payoff of either 12 or 0, so
the leader’s expected total payoff is 6. Similarly, one can
derive that the expected total utility of the leader strategy
[PT1=0%,PT2=100%] in the first round of the game (refer
to Tables (d) and (e)) is EU([PT1=0%,PT2=100%])=4.5.

Unfortunately, finding the optimal leader strategy in the
first round of the game requires one to evaluate all the strate-
gies [PT1=x,PT2=1-x], 0 ≤ x ≤ 1, considering for each
strategy the unique knowledge of the opponent payoff struc-
ture gained by observing the follower responses to the said
strategies. As the derivation of the formulae for the the ex-
pected utilities of the leader actions for arbitrary repeated
Stackelberg games is an open research problem, we propose
to approach the problem using a customized version of the
Monte-Carlo Tree Search method, as shown next.

3. MCTS APPROACH

3.1 MCTS Overview
Monte-Carlo Tree Search (MCTS) methods provide new

tools for online planning in complex sequential decision prob-
lems that have generated considerable excitement in recent
years, due to breakthrough results in challenging domains
such as 19 × 19 Go [5] and General Game Playing [3]. The
key innovation of MCTS is to incorporate node evaluations
within traditional tree search techniques that are based on

3

Adversary
AT1 AT2

1

6 -2
PT1

Security

PT2

[PT1=0%,PT2=100%]
leader action

3

Adversary
AT1 AT2

1

6 -2
PT1

Security

PT2 3

Adversary
AT1 AT2

1

6 -2
PT1

Security

PT2
u21 u22

u21 > u22 u21 < u22
EU([PT1=100%,PT2= 0%]) = 2
EU([PT1= 0%,PT2=100%]) = 3

EU([PT1=0%,PT2=100%]) = 0.5*(3 + 1) + 0.5*3 + 0.5*2 = 4.5

EU([PT1=100%,PT2= 0%]) = 2
EU([PT1= 0%,PT2=100%]) = 1

EU([PT1= x%,PT2=100-x%]) = x*2+(1-x)*3 EU([PT1= x%,PT2=100-x%]) = x*2+(1-x)*1

AT1 AT2
50% 50%

3

Adversary
AT1 AT2

1

6 -2
PT1

Security

PT2 3

Adversary
AT1 AT2

1

6 -2
PT1

Security

PT2

u11 u12 u11 u12

u11 > u12 u11 < u12
EU([PT1=100%,PT2= 0%]) = 6
EU([PT1= 0%,PT2=100%]) = 2

EU([PT1=100%,PT2= 0%]) = -2
EU([PT1= 0%,PT2=100%]) = 2

EU([PT1= x%,PT2=100-x%]) = x*6+(1-x)*2 EU([PT1= x%,PT2= 100-x%]) = x*(-2)+(1-x)*2

[PT1=100%,PT2=0%]
AT1 AT2
50% 50%

leader action

EU([PT1=100%,PT2=0%]) = 0.5*(6 - 2) + 0.5*6 + 0.5*2 = 6

u21 u22

[PT1=x%,PT2=100-x%]
leader action?

a

b c

d e

Figure 2: Two-round Stackelberg game, with uni-
formly distributed follower payoffs. First round of
play shown in (a). If the leader plays 100% PT1,
the follower may reply either AT1, leading to (b),
or AT2, leading to (c). If the leader plays 100%
PT2, follower may reply either AT1, leading to (d),
or AT2, leading to (e).

stochastic simulations (i.e., “rollouts” or “playouts”), while
also using bandit-sampling algorithms to focus the bulk of
simulations on the most promising branches of the tree search.
This combination appears to have overcome traditional ex-
ponential scaling limits to established planning techniques
in a number of large-scale domains. MCTS is also an any-
time algorithm and simple parallelization schemes have been
found to scale effectively to hundreds of cores [16].

Standard implementations of MCTS maintain and incre-
mentally grow a collection of nodes, usually organized in a
tree structure, representing possible states that could be en-
countered in the given domain. The nodes maintain counts
nsa of the number of simulated trials in which action a was
selected in state s, as well as mean reward statistics r̄sa ob-
tained in those trials. A simulation trial begins at the root
node, representing the current state, and steps of the trial
descend the tree using a tree-search policy that is based on
sampling algorithms for multi-armed bandits that embody

a tradeoff between exploiting actions with high mean re-
ward, and exploring actions with low sample counts. When
the trial reaches the frontier of the tree, it may continue
performing simulation steps by switching to a “playout pol-
icy,” which commonly select actions using a combination of
heuristics. When the trial terminates, sample counts and
mean reward values are updated in all tree nodes that par-
ticipated in the trial. At the end of all simulations, the
reward-maximizing top-level action from the root of the tree
is selected and performed in the real domain.

Our implementation of MCTS makes use of the UCT al-
gorithm [8], which employs a tree-search policy based on a
variant of the UCB1 bandit-sampling algorithm [2]. The
policy computes an upper confidence bound Bsa for each
possible action a in a given state s according to: Bsa =
r̄sa + c

p
lnNs/nsa, where Ns =

P
a′ nsa′ is the total num-

ber of trials of all actions in the given state, and c is a tun-
able constant controlling the tradeoff between exploration
and exploitation. With an appropriate choice of the value
of c, UCT is guaranteed to converge to selecting the best
top-level action with probability 1.

3.2 MCTS in Repeated Stackelberg Games
We now present our MCTS-based method for planning

leader actions in repeated Stackelberg games with unknown
opponents. A key feature of our method builds upon the
assumption that the leader has a prior probability distribu-
tion over possible follower types (equivalently, over follower
utility functions). We leverage this by performing MCTS
trials in which each trial simulates the behavior of the fol-
lower using an independent draw from this distribution. As
different follower types transition down different branches of
the MCTS tree, this provides a simple and elegant means of
implicitly approximating the posterior distribution for any
given history in the tree, where the most accurate posteriors
are focused on the most critical paths for optimal planning.
This may enable faster approximately optimal planning than
established methods which require fully specified transition
models for all possible histories as input to the method.

A high-level depiction of the method is given in Figure 3.
The method performs a total of T simulated trials, each
with a randomly drawn follower, where a trial consists of H
rounds of play. In each round, the leader chooses a mixed
strategy σ ∈ Σ to be performed, that is, to play each pure
strategy al ∈ Al with probability σ(al). To obtain a finite
enumeration of leader mixed strategies, similarly to [11], we
discretize the σ(al) values into integer multiples of a dis-
cretization interval ε = 1/K, and represent the leader mixed
strategy components as σ(al) = kl · ε where {kl} is a set of
non-negative integers s.t.

P
kl = K. In the example in

Figure 3 the number of leader pure strategies is |Al| = 2
and K = 2 and the leader can choose to perform only one
of the following three mixed strategies: LA1 = [0.0, 1.0];
LA2 = [0.5, 0.5] or LA3 = [1.0, 0.0] as shown in Figure
3. Upon observing the leader mixed strategy, the follower
then plays a greedy pure-strategy response, that is, it selects
from among its pure strategies (FR1, FR2, FR3 in Figure 3)
the strategy achieving highest expected payoff given the ob-
served leader mixed strategy. Although such discretization
method can in theory lead to suboptimal solutions [11], the
underlying discretization error is rarely seen in practice [12],
especially for big values of K. An argument can also be made
that in real world Stackelberg games the leader can imple-

ment its mixed strategy (and the follower can observe it)
with only a limited precision [14].

Leader strategies in each round of each trial are selected
by MCTS using either the UCB1 tree-search policy for the
initial rounds within the tree, or a playout policy for the re-
maining rounds taking place outside the tree. Our playout
policy uses uniform random selection of leader mixed strate-
gies for each remaining round of the playout. We grow the
MCTS tree incrementally with each trial, starting from just
the root node at the first trial. Whenever a new leader
mixed strategy is tried from a given node, the set of all pos-
sible transition nodes (i.e. leader mixed strategy followed
by all possible follower responses) are added to the tree.

The basic idea of the abbreviated proof of convergence
of our algorithm is to map a repeated Bayesian Stackelberg
game to an equivalent Markov Decision Process. The MDP
states in such a mapping are the finite horizon histories of
pairs of (discretized) leader mixed strategies and their cor-
responding follower responses. The MDP actions represent
possible leader mixed strategies in a current state. The tran-
sition probability from state s = (h) to state s′ = (h|σaf)
given action σ ∈ Σ equals the probability of a follower re-
sponse af to σ which can be uniquely determined from P (θ)
and the observed history h. Finally, the corresponding MDP
reward is given in Equation 2 wherein B(θ, σ) from Equa-
tion 1 is known to be af . Following Lemma 1 in [17], the
expected payoff of a repeated Bayesian Stackelberg game
policy equals the expected payoff of the equivalent MDP pol-
icy and therefore the optimal repeated Bayesian Stackelberg
game policy and the optimal MDP policy are equivalent.
Since our method samples according to the UCT formula,
which is guaranteed to converge to the optimal MDP pol-
icy [8], therefore it also converges to the optimal repeated
Bayesian Stackelberg game policy.

Figure 3: MCTS algorithm overview

4. PRUNING OF THE DOMINATED LEADER
STRATEGIES

As it is shown in this section, in some cases, the leader’s
exploration of the complete reward structure of the follower
is unnecessary. In essence, in any round of the game, the
leader can identify the leader strategies—that have not yet
been employed by the leader—whose immediate expected
value for the leader is guaranteed not to exceed the expected
value of leader strategies employed by the leader in the ear-

lier rounds of the game. If the leader then just wants to
maximize the expected payoff of its next action, these not-
yet-employed strategies can safely be disregarded.

To formalize the concept of pruning of dominated leader
strategies assume that the leader is playing a repeated Stack-
elberg game with a follower of type θ ∈ Θ. Furthermore, de-
note by E(n) ⊂ Σ a set of leader mixed strategies that have
been employed by the leader in rounds 1, 2, ..., n of the game.
Notice, that the leader who aims to maximize its payoff in
the n+ 1st round of the game should consider to employ an
unused strategy σ ∈ Σ− E(n) only if:

U(θ, σ) > max
σ′∈E(n)

U(θ, σ′) (4)

Where U(θ, σ) is the upper bound on the expected utility
of the leader playing σ, established from the leader observa-
tions B(θ, σ′); σ′ ∈ E(n) as follows:

U(θ, σ) = max
af∈Af (σ)

U(σ, af). (5)

Where Af (σ) ⊂ Af is defined here as a set of follower actions

af that can still (given B(θ, σ′); σ′ ∈ E(n)) constitute the
follower best response to σ while U(σ, af) is the expected
utility of the leader mixed strategy σ if the follower responds
to it by executing action af . That is:

U(σ, af) =
X
al∈Al

σ(al)ul(al, af) (6)

Thus, in order to determine whether a not-yet-employed
strategy σ should be executed, one has to determine the
elements of a best response set Af (σ) given B(θ, σ′) for all

σ′ ∈ E(n). We now show how that can be accomplished.

4.1 Best Response Sets
To find the actions that can still constitute the best re-

sponse of the follower of type θ to a given leader strategy σ,
we first define the concept of Best Response Sets and Best
Response Anti-Sets and then prove an important property
of best response sets.

Definition 1. For each action af ∈ Af of the follower,
a best response set Σaf is a set of all the leader strategies
σ ∈ Σ for which it holds that B(θ, σ) = af .

Definition 2. For each action af ∈ Af of the follower, a
best response anti-set Σaf is a set of all the leader strategies
σ ∈ Σ for which it holds that B(θ, σ) 6= af .

Proposition 1. Each best response set Σaf is convex and
{Σaf }af∈Af is a finite covering of Σ.

Proof. By contradiction: If Σaf is not convex then there

must exist σ′, σ′′ ∈ Σaf such that B(θ, σ′) = B(θ, σ′′) = af
and σ = λσ′ + (1 − λ)σ′′; λ > 0 such that σ 6∈ Σaf . From
Equation (1) it then holds that:X

al∈Al

σ′(al)uf (al, af) >
X
al∈Al

σ′(al)uf (al, af)

X
al∈Al

σ′′(al)uf (al, af) >
X
al∈Al

σ′′(al)uf (al, af)

X
al∈Al

σ(al)uf (al, af) >
X
al∈Al

σ(al)uf (al, af).

Where af ∈ Af is not af . After adding these inequalities
and substituting σ := λσ′ + (1− λ)σ′′ we obtain:X

al∈Al

σ(al)uf (al, af) <
X
al∈Al

σ(al)uf (al, af)

Which contradicts the earlier inequality. Now, since for each
σ ∈ Σ there exists some af ∈ Af such that B(θ, σ) = af , we
have that {Σaf }af∈Af covers the entire set Σ and is therefore
a partitioning of Σ.

We first illustrate how to find the follower best responses
on an example and then provide a method that achieves
it in a general case. Specifically, we now illustrate that
(after a few rounds of the games) there may indeed exist
σ ∈ Σ such that Af (σ) 6= Af . Consider an example in
Figure 4 where the game has already been played for two
rounds. Let Al = {al1 , al2}, Af = {af1 , af2 , af3} and E(2) =
{σ′, σ′′} where σ′(al1) = 0.25;σ′(al2) = 0.75 and σ′′(al1) =
0.75;σ′′(al2) = 0.25. Furthermore, assume U(al1 , af1) =
0; U(al2 , af1) = 1; U(al1 , af2) = 1; U(al2 , af2) = 0 and
U(al1 , af3) = U(al2 , af3) = 0. The follower best responses
observed so far are B(θ, σ′) = af1 (solid black circle) and
B(θ, σ′′) = af2 (black circle with dashed perimeter).

Figure 4: Best response actions

Notice, how in this context it is not profitable for the
leader to employ a mixed strategy σ such that σ(al1) ∈
[0, σ′(al1))∪(σ′′(al1), 1]. In particular, for σ such that σ(al1) ∈
[0, σ′(al1)) (refer to Figure 4 point σ) it holds that B(θ, σ) 6=
af2 because otherwise (from Proposition (1)) the convex set
Σaf2

would contain the elements σ and σ′′—and hence also

contain the element σ′—which is not true as B(θ, σ′) =
af1 6= af2 . Consequently, we have Af (σ) = {af1 , af3} (no-
tice the points with question marks above σ in Figure 4)
which implies that U(θ, σ) = max{U(σ, af1), U(σ, af3)} <
max{0.25, 0} = 0.25 = max{U(σ′, af1), U(σ′′, af2)}. Hence,
while employing strategy σ would allow the leader to learn
B(θ, σ) (i.e., to disambiguate in Figure 4 the question marks
in points above σ), this knowledge would not translate into
the leader higher payoffs: The immediate expected reward
for the leader for employing strategies σ′, σ′′ is always greater
than the expected reward for employing σ such that σ(al1) ∈
[0, σ′(al1)) ∪ (σ′′(al1), 1].

The example in Figure 4 also illustrates how the leader has
to balance the benefits of exploration versus exploitation in
the current round of the game. Specifically, the leader has
a choice to either play one of the strategies σ′, σ′′ it had
employed in the past (σ′ if U(σ′, af1) > U(σ′′, af2) or σ′′

otherwise) or play some strategy σ′′′ such that σ′′′(al1) ∈
(σ′(al1), σ′′(al1)) = [0, 1] \ [0, σ′(al1)) \ (σ′′(al1), 1] that it
had not yet employed—and hence does not know what the

follower best response B(θ, σ′′′) for this strategy is. Notice,
that in this case, Af (σ′′′) = {af1 , af2 , af3} (illustrated in
Figure 4 by three points with question marks above σ′′′).
Now, if B(θ, σ′′′) = af3 were true, it would mean that
U(σ′′′, af3) < max{U(σ′, af1), U(σ′′, af2)}. In such case, the
leader would explore the follower payoff preference (by learn-
ing B(θ, σ′′′)) at a cost of loosing the potential immediate
payoff of U(σ′′′, af3)−max{U(σ′, af1), U(σ′′, af2)}.

Finally, the example also shows that although the im-
mediate expected utility for executing a not-yet-employed
strategy is smaller than the immediate expected utility for
executing a strategy employed in the past, in some cases
it might be profitable not to prune such not-yet-employed
strategy. For example, if the game in Figure 4 is going to
be played for at least two more rounds, the leader might
still have an incentive to play σ, because if it turns out that
B(θ, σ) = af3 then (from Proposition 1) B(θ, σ′′′) 6= af3
and consequently U(θ, σ′′′) > max{U(σ′, af1), U(σ′′, af2)}.
In essence, if the execution of a dominated strategy can pro-
vide information about the follower preferences that will be-
come critical in subsequent rounds of the game, one pruning
heuristic might be to not prune such dominated strategy.

4.1.1 The Pruning Algorithm
When an MCTS trial starts (at the root node), the leader

does not know how the follower is going to respond to any
of its mixed strategies σ ∈ Σ, for it does not know the type
θ ∈ Θ of the follower that it is playing with. That is, the
leader knows nothing about the sets Σaf and anti-sets Σaf ;
af ∈ Af . As the game enters subsequent rounds though, the
leader collects the information about the follower responses
to the leader strategies, assembles this information to infer
more about Σaf and Σaf ; af ∈ Af and then prunes the
provably dominated leader strategies that do not provide
critical information to be used in later rounds of the game.

The pruning algorithm runs orthogonally to MCTS and
can be applied to any MCTS node whose parent has already
been serviced by the pruning algorithm. Consider one such
MCTS node corresponding to a situation where the rounds
1, 2, ..., k − 1 of the game have already been played and let
Σ(k−1) ⊂ Σ denote the set of leader strategies that have not
yet been pruned (not to be confused with the set E(k−1)

of leader strategies employed in rounds 1, 2, ..., k − 1 of the
game). We have Σ(0) = Σ at the MCTS root node. Also,

let Σ
(k−1)
af ⊂ Σaf and Σ

(k−1)
af

⊂ Σaf be the partially un-
covered follower best response sets and anti-sets, inferred
by the leader from its observations of the follower responses
in rounds 1, 2, ..., k − 1 of the game. (Unless |Af | = 1, we

have Σ
(0)
af = ∅, Σ

(0)
af

= ∅; af ∈ Af at the MCTS root node.)

When the leader then plays σ ∈ Σ(k−1) in the k-th round of
the game and observes the follower best response b ∈ Af , it

constructs the sets Σ(k), Σ
(k)
af , Σ

(k)
af

; af ∈ Af as described in
Algorithm 1.

Algorithm 1 starts by cloning the non-pruned action set
(line 1) and best response sets (lines 2 and 3). Then, in line

4, Σ
(k)
b becomes the minimal convex hull that encompasses

itself and the leader strategy σ (computed e.g. using a lin-
ear program). At this point (lines 5 and 6), the algorithm
constructs the best response anti-sets, for each b′ ∈ Af . In

particular: σ′ 6∈ Σ
(k)

b′ is added to the anti-set Σ
(k)

b′ if there

exists a vector (σ′, σ′′) where σ′′ ∈ Σ
(k)

b′ that intersects some

Algorithm 1

Input: σ, b, Σ(k−1), Σ
(k−1)
af ; af ∈ Af

Output: Σ(k), Σ
(k)
af , af ∈ Af

1: Σ(k) ← Σ(k−1)

2: for all b′ ∈ Af do

3: Σ
(k)

b′ ← Σ
(k−1)

b′

4: Σ
(k)
b ←ConvexHull(Σ

(k)
b , σ)

5: for all b′ ∈ Af do

6: Σ
(k)

b′ ← {σ′ ∈ Σ \ Σ
(k)

b′ s.t. (λσ′ + (1− λ)σ′′) ∈ Σ
(k)
af

for some λ > 0; σ′′ ∈ Σ
(k)

b′ and af ∈ Af ; af 6= b′}
7: σ∗ ← arg max[σ′ ∈ Σ

(k)
b] {U(σ′, b)}

8: Σ(k) ← Σ(k) \ (Σ
(k)
b \ {σ

∗})
9: for all σ ∈ Σ(k) \ ∪af∈Af Σ

(k)
af and all b ∈ Af do

10: if σ ∈ ∩af∈Af\{b}Σ
(k)
fa

then
11: goto 4

set Σ
(k)
af ; af 6= b (else, Σ

(k)

b′ ∪ {σ
′} would not be convex,

thus violating Proposition 1). Next (lines 7 and 8), the al-

gorithm prunes from Σ(k) all the strategies that are strictly
dominated by σ∗, for which the leader already knowns the
best response b ∈ Af of the follower. (Notice that no further
information about the follower preferences can be gained by
pruning these actions.) Finally, the algorithm loops (line
9) over all the non-pruned leader strategies σ for which the
best response of the follower is still unknown; In particular
(line 10) if b ∈ Af is the only remaining plausible follower
response to σ, it automatically becomes the best follower
response to σ and the algorithm goes back to line 4 where
it considers the response b to the leader strategy σ as if it
was actually observed. The pruning algorithm terminates its
servicing of an MCTS node once no further actions can be
pruned from Σ(k). One can then identify the leader strate-
gies to be pruned from Equations (4, 5, 6).

5. EXPERIMENTS

5.1 Basic Checks
We first performed a series of experiments aimed at check-

ing the validity of MCTS generated policy. One of these
experiments (refer to Figure 5) is in the airport security do-
main of Figure 1. We set the discretization interval of leader
mixed strategies to 0.25, resulting in a total of 5 leader ac-
tions. We considered a 4 stage game and ran 1, 000, 000
MCTS trials assuming (a) a follower whose payoffs are sam-
pled from a uniform prior distribution and (b) a follower
whose payoffs are sampled from some distribution that re-
flects conflicting preferences of the leader and follower agents.
As can be seen in Figure 5, the resulting MCTS policies ap-
pear to conform to our intuitions. In particular, in the uni-
form prior distribution case, notice how the leader chooses to
play [PT1=50%,PT2=50%] in the third round of the game,
to effectively learn (and later take advantage of) the follower
best response to [PT1=50%,PT2=50%], having learned in
the earlier rounds of the game the follower responses to the
leader pure strategies. Also, in the zero-sum prior distribu-
tion case, notice that when the follower is identified to prefer
to AT1, the leader never chooses to play a pure strategy PT1
as this would result in Terminal 2 being left unguarded.

An illustration of typical rate-of-convergence behavior in

Figure 5: Policies generated by MCTS

our experiments is plotted in Figure 6. These experiments
used followers with uniform random utility functions over
4 pure strategies, horizon H = 6, and leader discretization
ε = 0.25. The number of leader pure strategies is varied over
{2, 3, 4}. We generally find clear convergence to the optimal
policy and value estimate, at least in all of our small-scale
studies. Note that the convergence time may not have a
simple dependence on number of leader strategies, as it may
also depend on specific details of the leader’s utility function.

Figure 6: Value of best top-level action node vs.
number of trials, illustrating typical MCTS conver-
gence behavior.

5.2 Scaling studies without pruning
We present two scaling studies that examine how far we

can push a “vanilla” version of MCTS with no built-in do-
main knowledge, and no capability of inference across nodes,
so that the only way to estimate the value of a tree node is
by explicit sampling. The first study focuses on scaling of
convergence time with horizon H. We would expect MCTS
convergence time to scale exponentially with H, possibly
with a large base if the branching factor is large. However,
certain aspects of the Bayesian Stackelberg domain could re-
sult in relatively mild scaling. First, it seems plausible that
the optimal policy would consist of “exploratory” actions for
the first few rounds, in order to determine the follower pref-
erences, followed by pure exploitation actions that maximize
immediate payoff in all remaining rounds. This means that
it could be relatively easy for MCTS to find the best action
at deep levels of the tree, as it would only need to find the
action with best immediate payoff. This is easy to determine

in our domain, since the payoffs are deterministic given the
leader and follower actions, and the follower type is likely to
be uniquely determined deep in the tree.

Results of scaling of mean convergence time with H, from
H = 2 to H = 16, are shown in Table 1. We define “conver-
gence time” as the number of trials needed to reach 99% of
asymptotic optimal value. We use uniform random follower
utility functions, and fix the following experiment param-
eters: leader strategies = 3, follower strategies = 4, and
discretization = 0.25.

Note that there are 15 possible leader mixed-strategy com-
binations, so the branching factor per round is nominally 60,
including the possible follower responses. However, we can
see much more favorable scaling in Table 1 than would be
implied by the nominal branching factor.

Horizon Trials to Converge CPU (sec)
2 15,300 13.40
4 26,100 23.53
6 42,200 38.48
8 77,500 72.60
10 132,000 127.92
12 221,000 227.79
14 340,000 515.22
16 512,000 1124.75

Table 1: Number of MCTS trials to converge and
CPU runtime as a function of horizon H.

Next, we examine scaling of convergence time in a fixed ex-
periment configuration (uniform random followers, 3 leader
and 4 follower strategies, and H = 6) where we vary the dis-
cretization interval ε. Here we expect that “vanilla” MCTS
could perform quite poorly, as the branching factor increases
exponentially in 1/ε, and MCTS has to explicitly sample
each option to acquire any information regarding its value.
Results shown in Table 2 indicate that the convergence time
in fact blows up rapidly once ε becomes small, and we were
unable to obtain convergence within one million trials for
ε = 1/16. The observed poor scaling with discretization pro-
vides ample motivation for using our pruning algorithm of
Section 4, whose results are reported below.

Discretization Trials to Converge CPU (sec)
0.5 21,100 18.22
0.25 42,200 38.48
0.125 177,000 193.56
0.0625 — —

Table 2: Mean convergence time (in thousands of
trials and CPU runtime) as a function of discretiza-
tion ε. The 0.0625 run failed to converge within one
million trials.

5.3 Results using leader strategy pruning
In our final set of experiments we switched on the prun-

ing of the dominated leader strategies to see how it improves
the performance of our algorithm. We chose the number of
leader and follower pure strategies to be M = 2 and N = 2
respectively and fixed the number of game rounds toH = 10.
Across the three experiments in Figure 7 we progressively

increased the discretization accuracy of the leader mixed
strategies, by decreasing the length of the discretization in-
terval from 25% to 12% and finally to 6%. For each setting
we then ran a sufficient number of MCTS trials to obtain
convergence, and plotted on the x-axis the current trial num-
ber and on the y-axis the expected utility of the currently
best leader strategy.

All three experiments in Figure 7 show that using our
pruning technique results in a clear reduction in the number
of trials needed to obtain convergence. As can be seen in
the first graph (ε = 1/4), with pruning switched on, the
algorithm converged to within 99% of its asymptotically
optimal value in less than 100, 000 trials as compared to
more than 200, 000 trials needed to accomplish the same
task with pruning switched off. The impact of pruning is
even more pronounced in the second graph (ε = 1/8): Here,
with pruning switched on, the algorithm managed to con-
verge to the asymptotically optimal solution after approxi-
mately 670, 000 trials. In contrast, convergence with pruning
switched off required more than 1.2 million trials, i.e., prun-
ing reduced the required number of trials by over 500, 000.
Finally, in the third graph in Figure 7, the increased ac-
curacy of the discretization of the leader mixed strategies
(ε = 1/16) resulted in a game tree with 250 nodes. The
algorithm with pruning converged in ∼ 4.2 million trials,
representing a savings of 1M trials compared to the 5.2 mil-
lion needed for convergence without pruning.

Of course, the number of trials needed for convergence is
not the only relevant performance metric in these experi-
ments, since the pruning technique entails greater compu-
tational overhead per trial. If the CPU cost of the prun-
ing calculations were to exceed the savings in number of
required trials, the pruning technique would not yield a net
win in terms of wall-clock run time. Fortunately, our imple-
mentation of pruning limits the CPU cost of pruning to at
most 50% of total simulation CPU time: we run pruning and
MCTS search on two independent threads, with the pruning
thread taking up to 50% of the cycles of a single CPU, and
the search thread taking the remaining cycles. To obtain
a fair comparison, the corresponding experiments without
pruning also utilized two threads, each performing indepen-
dent MCTS trials. As seen below in Table 3, the savings
in number of trials more than compensates for the greater
CPU overhead of the pruning technique. We observe a pro-
gressive increase in wall-clock time savings via pruning, from
25 seconds (157-132) at ε = 1/4, to 94 seconds (637-540) at
ε = 1/8, to 277 seconds (2903-2626) at ε = 1/16.

Discretization Pruning Time No-Pruning Time
0.25 132 157
0.125 540 637
0.0625 2626 2903

Table 3: Mean wall-clock time to converge, in sec-
onds, as a function of discretization ε, in pruning vs.
no-pruning experiments of Figure 7.

6. CONCLUSIONS
We presented the first-ever study of repeated Bayesian

Stackelberg games where the objective is to maximize the
leader’s cumulative expected payoff over the rounds of the
game. The optimal policies in such games must make intel-

Figure 7: Impact of pruning of dominated leader strategies on the efficiency of MCTS

ligent tradeoffs between actions that reveal information re-
garding the unknown follower preferences, and actions that
aim for high immediate payoff. We proposed an innovative
approach to solve for such optimal policies, based on Monte
Carlo Tree Search combined with an original method for
pruning dominated leader strategies.

Our results show ample promise that the approach will
be able to tackle numerous problems in real-world security
domains. The points of particular promise that we see are:
(1) MCTS trials based on sampling from the follower distri-
bution appears to offer a highly efficient means of approx-
imating follower posteriors over all possible history paths,
insofar as they contribute to the optimal policy. (2) MCTS
scaling is very manageable with respect to the number of
rounds to be played. (3) Our pruning method addresses a
major limitation of simple MCTS which scales poorly in the
case of fine-grained discretization of leader mixed strategies.

Our findings draw support from the recent work by Sil-
ver and Veness [17] which obtained excellent scaling results
in applying MCTS to solving large scale POMDPs. This
suggests to us that the advantages of MCTS that we found
in Bayesian Stackelberg Games may extend to more general
classes of imperfect information games.

One of our future research studies will focus on gener-
alizing the model to repeated Bayesian Stackelberg games
where the follower also behaves strategically. In this more
general case there might be scenarios where MCTS conver-
gence may be much more difficult than what we found in the
non-strategic case. This has been observed in recent work by
Ramanujan et al. [15] which identified soft traps. We believe
that such traps do not occur in our current formulation as
the leader always gains information about the follower pref-
erences. However, how to avoid such traps when facing a
strategic follower player is a worthy topic of investigation.

7. ACKNOWLEDGMENTS
This work was supported in part under the DARPA GALE

project, contract No. HR0011-08-C-0110.

8. REFERENCES
[1] T. Alpcan and T. Basar. A game theoretic approach to

decision and analysis in network intrusion detection.
In 42nd IEEE Conf. on Decision and Control, 2003.

[2] P. Auer, N. Cesa-Binachi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning, 47:235–256, 2002.

[3] H. Finnsson and Y. Björnsson. Simulation-based
approach to general game playing. In Proc. of
AAAI-2008, pages 259–264, 2008.

[4] D. Fudenberg and J. Tirole. Game Theory. MIT Press,
1991.

[5] S. Gelly et al. Modification of UCT with patterns in
Monte-Carlo Go. Technical Report 6062, INRIA, 2006.

[6] M. Jain et al. Security games with arbitrary schedules.
In AAAI, 2010.

[7] C. Kiekintveld, J. Marecki, and M. Tambe.
Approximation methods for infinite bayesian
stackelberg games: Modeling distributional payoff
uncertainty. In AAMAS, 2011.

[8] L. Kocsis and C. Szepesvari. Bandit based
Monte-Carlo planning. In 15th European Conf. on
Machine Learning, pages 282–293, 2006.

[9] J. Letchford, V. Conitzer, and K. Munagala. Learning
and approximating the optimal strategy to commit to.
In Symp. on the Algorithmic Decision Theory, 2009.

[10] K. Nguyen and T. Basar. Security games with
incomplete information. In IEEE Intl. Conf. on
Communications, 2009.

[11] P. Paruchuri et al. An efficient heuristic approach for
security against multiple adversaries. In AAMAS ,
2007.

[12] P. Paruchuri et al. Playing games with security: An
efficient exact algorithm for Bayesian Stackelberg
games. In AAMAS, 2008.

[13] J. Pita et al. Deployed ARMOR protection: The
application of a game-theoretic model for security at
the the LAX airport. In AAMAS Industry Track, 2008.

[14] J. Pita et al. Effective solutions for real-world
stackelberg games: When agents must deal with
human uncertainties. In AAMAS, 2009.

[15] R. Ramanujan, A. sabharwal, and B. Selman.
Understanding sampling style adversarial search
methods. In Proceedings of UAI-2010, 2010.

[16] R. Segal. On the scalability of parallel UCT. In
H. van den Herik et al., editors, Computers and
Games, volume 6515 of LNCS, pages 36–47. Springer
Berlin / Heidelberg, 2011.

[17] D. Silver and J. Veness. Monte-Carlo Planning in
Large POMDPs. In Advances in Neural Information
Processing Systems 22, 2010.

