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ABSTRACT
When a zero-sum game is played once, a risk-neutral player
will want to maximize his expected outcome in that single
play. However, if that single play instead only determines
how much one player must pay to the other, and the same
game must be played again, until either player runs out of
money, optimal play may differ. Optimal play may require
using different strategies depending on how much money has
been won or lost. Computing these strategies is rarely feasi-
ble, as the state space is often large. This can be addressed
by playing the same strategy in all situations, though this
will in general sacrifice optimality. Purely maximizing ex-
pectation for each round in this way can be arbitrarily bad.
We therefore propose a new solution concept that has guar-
anteed performance bounds, and we provide an efficient al-
gorithm for computing it. The solution concept is closely
related to the Aumann-Serrano index of riskiness, that is
used to evaluate different gambles against each other. The
primary difference is that instead of being offered fixed gam-
bles, the game is adversarial.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems

General Terms
Algorithms, Economics, Theory

Keywords
Game playing, Game theory

1. INTRODUCTION
Game theory has often been used to prescribe good be-

havior in strategic interactions, and to make predictions on
how participants will behave in interaction with one another.
This is traditionally done by isolating a particular interac-
tion of interest, and then modelling the interaction math-
ematically. The constructed model is then analyzed sepa-
rately from the rest of the system, and the resulting analysis
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is then translated back into the system where the interac-
tion fits in. For this approach to be successful, the right
objectives must be derived from the system surrounding the
interaction; otherwise the analysis will likely draw incorrect
conclusions. In this paper, we examine such a situation,
where a fixed finite zero-sum game is played repeatedly un-
der a budget. The overall goal for each player is to win all
the money the opponent has, and not run out of money in
the process. A simple approach to analyzing this repeated
game would be to analyze the zero-sum game as if it was
only played once, with the objective of winning the most
money in that single play. This, however, can lead to dis-
astrous results, as we shall see in Section 4. In this paper,
we show how one can analyze the underlying zero-sum game
with respect to a more suitable objective.

As a motivating example, let us look at what happens
when we offer a player the chance to double the payoffs of
a zero-sum game. Given any zero-sum game G with payoffs
in {−1, 1} and value v 6= 0. Amend G by giving Player 1
the option of doubling the outcome of the game, before the
game is played. If Player 1 does so, the outcomes will be in
{−2, 2} instead, but the rest of the game is unchanged. Any
risk neutral Player 1 would clearly double the game, if and
only if the value of the game is positive; the doubling does
not change optimal strategies, but it doubles the expected
value. What is perhaps more surprising is that the situation
is reversed if the game has to be repeated until one player is
broke; i.e., Player 1 would only double if the value was neg-
ative. To see this, first observe that two players playing the
undoubled game optimally for some total amount of money,
C, is simply a random walk on a line of length C. The walk
moves one step to the right with probability p = v/2 + 1/2,
and one step to the left with probability (1 − p). Starting
from point c1 (being the amount of money Player 1 has), the
probability of reaching the right-most point (where Player 1
has won all the money) before the left-most point is exactly

Pr[Player 1 wins undoubled] =
αc1 − 1

αC − 1
(1)

where α = 1−p
p

. Playing the doubled game is essentially the
same as playing the undoubled game for half as much money.
Assume for simplicity that C and c1 are both even. This
means that the probability of Player 1 winning by doubling
every game is

Pr[Player 1 wins doubled] =
αc1/2 − 1

αC/2 − 1
(2)

This probability is greater than that (1) if and only if α > 1,
which happens exactly when v < 0. Thus, Player 1 should



double the game, if and only if he has negative expectation
in the individual rounds of the game.

This example serves to show that if we attempt to derive
good strategies for the repeated game by trying to maximize
the expected outcome of the individual rounds, we will get
suboptimal results. In Section 4, we will show that this
suboptimality can be arbitrarily large.

1.1 Related research
In a recent paper, Miltersen and Sørensen [13] computed

near optimal strategies for a full scale two-player poker tour-
nament. The tournament format fits the description of a
game being played repeatedly for a budget, but their game
was different for each round; the variant of poker allowed for
an all-in, which depends on how much money each player
has. They concluded that simply maximizing the amount of
chips won in each round was slightly worse than maximizing
the probability of winning the tournament. In contrast, the
present paper shows that it can be much worse to maximize
the expected gain in each round. Furthermore, our results
are about general zero-sum games, and not poker specific.

The conceptual ancestor of the contribution of this paper
is the Aumann-Serrano index of riskiness [1], which is used
to compare different gambles against each other. The main
difference is that the Aumann-Serrano index of riskiness is
not in an adversarial setting. The Aumann-Serrano index of
riskiness of a stochastic variable X is defined as the unique γ
such that E[exp(−X/γ)] = 1. Expressed in these terms, our
contribution is to compute the strategy that has the most
favorable Aumann-Serrano index of riskiness on the outcome
of the game.

1.2 Structure of the paper
The rest of the paper is structured as follows. In Sec-

tion 2 we introduce the formal model of the games we are
discussing in this paper. In Section 3, we review existing
theory that provide exact optimal strategies for the games,
and discuss why this is not a feasible approach. In Section 4,
we show why maximizing expectation in each round can be
arbitrarily far from optimal. In Section 5, we describe the
main contribution of the paper in the form of a new solution
concept and an algorithm for computing it. In Section 6, we
derive a bound on the performance of the introduced solu-
tion concept. In Section 7, we apply the theory to the game
Kuhn poker with a budget. In Section 8, we provide a way
to estimate the parameter of the introduced solution con-
cept for games that are too large to repeatedly solve. In
Section 9, we discuss two natural extensions of the theory.
In Section 10 we compare the introduced solution concept
to existing concepts, and discuss future research.

2. MODEL
In this section, we will formalize the model we are using

in this paper. First we need some notation and terminology
from classic game theory. Details can be found in any intro-
ductory textbook on game theory. The underlying game to
be played is given as a finite zero-sum game:

Definition 1 (Finite zero-sum game).
A finite zero-sum game is given by m × n matrix A with
integer entries. It is played by Player 1 and Player 2 simul-
taneously choosing a row i and a column j respectively, after
which Player 2 pays Aij to Player 1.

The definition above has a non-standard assumption that
the outcome of the finite zero-sum games are integer. This
is only to make analysis easier, and everything in this paper
can be done with rational valued outcomes as well, as is
discussed in section 9.

The players can use mixed strategies, that are probability
distributions over rows and columns respectively. For zero-
sum games, there is a well defined value that each player can
guarantee himself, and the associated strategies that provide
this guarantee:

Definition 2 (Minimax value and strategies).
The minimax value of a finite zero-sum game given by the
matrix A ∈ Zm×n is:

val(A) = max
x∈∆m

min
y∈∆n

x>Ay = min
y∈∆n

max
x∈∆m

x>Ay

The minimax strategies for Player 1 are the maximizing x’s
in the expression above:

argmax
x∈∆m

min
y∈∆n

x>Ay

Likewise, the minimax strategies for Player 2 are

argmin
y∈∆n

max
x∈∆m

x>Ay

In the setting we are examining in this paper, the game
is played repeatedly between two players, each starting with
some amount of money, c1 and c2. The game progresses over
a number of rounds, each of which is a play of a finite zero-
sum game. After a round is played, money changes hands
according to the strategies (i, j) chosen by the two players,
and the game continues with c1 = c1 +Aij and c2 = c2−Aij ,
unless either player has run out of money. If that happens
the game ends, and the player who is out of money has lost
the game, and his opponent has won. Notice that the total
amount of money stays constant throughout the repeated
game. Denote this constant by C = c1 + c2. It is of course
not possible to win more money from the other player than
he has, so the last round might not have full payment off
all of Aij . Each player naturally wants to maximize the
probability of ending up with all the money, thereby winning
the whole game. As in [13], this is not necessarily the same
as maximizing the amount of money in each round. In the
next section, we will quantify exactly how bad this can be.

Before we can continue, we need to handle certain special
cases of games.

Definition 3 (Degenerate game).
We call a game degenerate, if either player has a strategy
that never loses any money against any strategy of the op-
ponent. We also call a game degenerate, if it has equilibria
with deterministic outcome 0.

If the first is the case, then one of the players doesn’t have
any chance of winning the game, if his opponent tries to
prevent it. This is not the same as the opponent always
being able to win, and as such, the objective of the game
is not necessarily clear; it depends on whether infinite play
is truly an acceptable outcome. We have chosen to sidestep
this complication, as it is caused by a degenerate input game.
For the same reason, we will assume that the game does not
have equilibria with deterministic outcome 0, as this also
opens the possibility of infinite play.



3. EVERETT’S RECURSIVE GAMES
In this section we will describe how to play the repeated

game optimally, and discuss why this is often infeasible. If
the total amount of money is known beforehand, the game
can be modelled and solved as a recursive game, introduced
by Everett [7]. These recursive games should not be confused
with the largely unrelated recursive games by Etessami and
Yannakakis [6]. Everett’s recursive games is a generalization
of concurrent reachability games [5] and of simple stochastic
games [3, 4]. A recursive game consists of a set of game
elements, each of which are finite zero-sum games, with the
added possibility of a outcome being a reference to another
game element. If a normal outcome is reached, the game
ends with the associated value as the zero-sum outcome.
If one of the special outcomes is reached, the play must
continue at the referenced game element. This opens up the
possibility of the game never ending, which we assign the
value 0.

This model fits the repeated game setting in the follow-
ing way. There will be a game element for every possible
division of money between the two players, and each game
element will be indexed by how much money Player 1 has.
The outcomes of each game element will be references to
the neighboring game elements, such that outcome Aij from
game element indexed c1 will be a reference to game element
indexed c1 +Aij .

Everett proved that these games can be played ε-optimally
using stationary strategies. A stationary strategy consists of
one strategy per game element, and it is played by always
using the strategy associated with the current game element.
This means that there is nothing to be gained for a player
by remembering what game elements have been visited prior
to playing a particular game element.

Everett showed that a critical value can be assigned to
each game element, similar to the minimax value of a fi-
nite zero-sum game, such that each player can guarantee an
expected outcome arbitrarily close to the assigned value, if
the play was started at that game element. The vector of
the critical values for all game elements is called the critical
vector.

If we assign value 0 to game element 0, and value 1 to
game element C, the critical value of a game element will be
exactly the probability that Player 1 can guarantee himself
of winning the repeated game.

In general, there is no easy way to check whether a given
vector is an upper bound to the critical vector of a given
recursive game. However, Everett gave a property that can
be checked in polynomial time that would hold for a subset
of the upper bounds and another property that would hold
for a subset of the lower bounds. Before we can formally
state the property, we need to define the value mapping:

Definition 4 (Value vector and value mapping).
Let G be a recursive game with n game elements. A value
vector ~v ∈ Rn for G is a vector with one value for each game
element of G. The value mapping M : Rn → Rn of G, map-
ping value vectors to value vectors, is the minimax evalua-
tion of each game element, where the non-terminal outcomes
have been replaced with the values given by the input vector.

The properties rely on the following relations among value

vectors:

~u � ~v ⇔
{
~ui > ~vi if ~vi > 0
~ui ≥ ~vi if ~vi ≤ 0

}
∀i

~u � ~v ⇔
{
~ui < ~vi if ~vi < 0
~ui ≤ ~vi if ~vi ≥ 0

}
∀i

Everett proved the following Theorem:

Theorem 5 (Everett, 1957).
If M(~v) � ~v, then v is a lower bound on the critical vector.
Furthermore, the stationary strategy for Player 1 obtained
by finding the optimal strategy in each game element, with
arcs to other game elements replaced by the corresponding
values in ~v, has guaranteed expected payoff at least ~vg for
play starting in g. If M(~v) � ~v, then ~v is an upper bound on
the critical vector.

In short, if the value mapping increases the value of each
entry of a value vector, then the new values is a lower bound
on the critical vector. It is this property we will use later in
the paper to give performance guarantees on the introduced
solution concept.

For general recursive games, the only known algorithm
for computing the exact critical vector is that of Hansen
et.al. [9]. This algorithm runs in time doubly exponential
in the size of the game, and outputs the values as algebraic
numbers in isolating interval representation. However, we
can approximate the critical vector efficiently using value
iteration. This approach does not work for general recursive
games, as shown by Everett, but as discussed below, it works
for our special case.

In this context, value iteration means repeatedly applying
the value mapping to a value vector, until it converges. An
easy way to detect convergence is to run two value iterations,
one starting from a trivial upper bound and the other start-
ing from a trivial lower bound. In our case, as the values are
probabilities, a vector of 0s would serve as a lower bound,
while a vector of 1s would work as an upper bound. Notice
that M(~v) is monotone in ~v, so if ~v is an upper (resp. lower)
bound to the critical vector, then so is M(~v). Thus, if the
two vectors are close after a number of iterations, then we
have a good approximation to the critical vector. Now we
only need to show that the two vectors will in fact get close.
Notice that the value iteration on the lower bound after T
steps corresponds exactly to the time limited game, where
Player 2 is declared the winner if the game doesn’t end nat-
urally before T steps. Similarly with Player 1 for the up-
per bound. Since the game is non-degenerate, both Players
have positive probability of winning money from any given
game element. Thus, the probability of the game not having
ended after T steps goes to 0 as T goes to infinity. For a
more thorough analysis of this type of algorithms, see [8].

While this approach gives a provably optimal strategy
for the repeated game, it might not be a feasible approach
for several reasons. First of all, the explicit modelling re-
quires one game element for every non-degenerate division
of money between the two players, which is C − 1 game
elements. This number might be prohibitively large from a
computational point of view, as more game elements requires
more work. It also has the problem that each player must
remember one strategy per game element, as the strategies
in general will be different. Finally, it might be that a player
does not know how much money his opponent has, in which
case the explicit modelling given above is not possible.



Definition 6 (Oblivious strategy).
A positional strategy is oblivious if it associates the same
strategy to all game elements.

Using an oblivious strategies, the player needs only re-
member a single strategy, but it will in general not be op-
timal in the recursive game. To the best of our knowledge,
there is no algorithm for computing the best oblivious strat-
egy for this setting.

4. FAILURE OF MINIMAX
In this section, we will prove why simply maximizing im-

mediate outcome of each round can be arbitrarily far from
optimal. We will do this by explicit construction of a finite
zero-sum game with a unique minimax strategy that wins
with probability zero, where the optimal strategy would win
with probability arbitrarily close to 1. Let n ≥ 4 be an even
number. Now construct A ∈ Z2n×n in the following way:

Aij =


−1 if i = j

0 if i 6= j ∧ i ≤ n
1 if i > n ∧ [(i+ j) mod n ≤ n/2− 1]
−1 otherwise

Both players have unique minimax strategies; Player 2
uniformly mixes over all n columns, while Player 1 uni-
formly mixes over the n first rows. The one-round game
thus has value −1/n. However, the row player would never
win the repeated game using this strategy, as the strategy
never wins any money. If the row player instead uniformly
mixed over the n last rows, he would win a coin with proba-
bility 1/2− 1/n, and lose a coin with probability 1/2 + 1/n.
Player 2’s minimax strategies are still a best response, even
in the repeated setting. The expected gain in each round is
lowered to −2/n, but the probability of winning something
is now just below 1/2 instead of 0. If the repeated game is
started from (c1 = k−1, c2 = 1), the probability of Player 1
winning with the second strategy will be almost 1 − 1/k,
while the first strategy will win with probability 0. Pick
n and k large enough, and the minimax strategies turn an
almost sure win into a certain loss.

5. RISKINESS OF A GAME
In this section we will describe the main contribution of

the paper. In short, we show how to find the right expo-
nential utility function for a given game, such that mini-
max strategies with respect to that utility function will have
good guaranteed bounds on the performance in the repeated
game. Utility functions are functions from outcomes to real
values, describing a player’s satisfaction with a particular
outcome. They are commonly used to explain how both the
seller and the buyer of insurance policies can be satisfied by
the transaction, even though the underlying transaction is
zero-sum. A risk-averse (concave utility function) insuree is
happy to pay an insurance premium that is more than the
expected loss, in exchange for less variance of the outcome.
Similarly, a risk-seeking gambler (convex utility function)
will buy lottery tickets, even though the expected outcome
is lower than the price of the ticket. For our purpose, the
players want to maximize the probability of winning the
tournament, which in general is not linear in the money
won in each round. We therefore want to find the right

function to serve as a proxy for the probability of winning
the tournament. Let us first define the exponentiation of a
game:

Definition 7 (Exponentiation of a game).
Given a zero-sum game A ∈ Zm×n and a positive constant
α, define Aα to be

Aαij =


α
Aij−1
lnα

, if α 6= 1

Aij , if α = 1

Notice that the entries of Aα are continuous in α . If
α = 1, then Aα = A, corresponding to the players being
completely risk neutral. If α > 1, the utility function is con-
vex for Player 1 and concave for Player 2, making Player 1
risk seeking, while Player 2 will be risk averse. The situation
is the opposite for α < 1. We are now looking for a suitable
α for the game at hand.

Proposition 8.
Given a non-degenerate zero-sum game A ∈ Zm×n, there
exists an α∗ such that val(Aα

∗
) = 0.

Proof sketch. Since all entries of Aα are continuous
functions of α, we know that val(Aα) is also continuous in
α. Since A is non-degenerate, Player 1 has a strategy that
guarantees at least some fixed strictly positive probability of
a positive outcome. As all positive entries of Aα approach
∞ as α → ∞, and all negative entries approach 0, we have
the val(Aαhi) > 0 for some sufficiently large αhi. Likewise,
Player 2 has a strategy that guarantees at least some fixed
strictly positive probability of a negative outcome. As all
positive entries of Aα approach 0 as α→ 0, and all negative
entries approach −∞, we have the val(Aαlo) < 0 for some
sufficiently small αlo. Combined with continuity of val(Aα)
in α, the intermediate value theorem gives us that there
exists some α∗ such that val(Aα

∗
) = 0.

Proposition 9.
Given a non-degenerate zero-sum game A ∈ Zm×n, there is
only one α∗ such that val(Aα

∗
) = 0.

Proof sketch. We need to prove that val(Aα
∗
) is strictly

monotone in α, from which the proposition follows. Given
α1 < α2, we must prove that val(Aα1) < val(Aα2). Notice
first that the payoff of all strategy combinations strictly in-
creases in α, unless they result in a deterministic outcome
of 0. Let x be the strategy for Player 1 that guarantees
val(Aα1) in Aα1 . Unless Player 2 has a response that guar-
antees a deterministic outcome of 0, the value of all responses
of Player 2 will be strictly higher in Aα2 than in Aα1 , and
Player 1 can thus use x to get a higher value in Aα2 than
in Aα1 , from which it follows that val(Aα1) < val(Aα2).
If val(Aα1) < 0, Player 2 has no desire to use such a 0-
strategy, but the payoff of all other strategies against x in
Aα2 is higher than in Aα1 . If val(Aα1) > 0, Player 2 does
not have a 0-strategy, and therefore val(Aα1) < val(Aα2 ).
The only case left is if val(Aα1) = 0. As the base game A
does not have equilibria with deterministic outcome 0, the
outcome of Aα1 cannot be deterministic outcome 0, there-
fore val(Aα2) > val(Aα1).

The assumption that A does not have equilibria with de-
terministic outcome 0 is crucial for the uniqueness of α∗.



Without this assumption, val(Aα) is only weakly monotone
in α. To properly handle such degenerate games with mul-
tiple such α∗, we need the following slightly more general
definition of the suitable value of α∗.

Definition 10 (Riskiness of a game).
Given a zero-sum game A ∈ Zm×n, the riskiness for Player 1
in A is the largest α∗ such that val(Aα

∗
) = 0.

If the game is non-degenerate, the is only one A∗ satisfying
the condition. If that is the case, we will simply call it the
riskiness of the game.

Definition 11 (risk-aware strategies).
Given a non-degenerate zero-sum game A ∈ Zm×n, the risk-
aware strategies of A are the minimax strategies of Aα

∗
,

where α∗ is the riskiness for Player 1 in A.

Even with just weak monotonicity, we can compute the
riskiness for Player 1 using the algorithm given in Algo-
rithm 1.

Algorithm 1 Computes risk-aware strategies

αhi ← 1
αlo ← 1
while val(Aαlo) > 0 do
αlo ← αlo/2

end while
while val(Aαhi) ≤ 0 do
αhi ← αhi ∗ 2

end while
while αhi − αlo > ε do
α← (αlo + αhi)/2
if val(Aα) > 0 then
αhi ← α

else
αlo ← α

end if
end while
return minimax strategies of Aαhi

6. PERFORMANCE GUARANTEE
In this section, we will show what performance guarantees

we get in the repeated game, if both players have a finite
budget. This is done by expressing value vectors that satisfy
Everett’s conditions, proving that they are true bounds on
the critical vector, and that the computed strategies have
the promised performance.

Theorem 12. Given a game A ∈ [−min;max]M×N with
riskiness α, using the risk-aware strategy will guarantee Player
1 a winning probability of:

αc1 − 1

αc1+c2+max−1 − 1

when the game is started from money division (c1, c2).

Proof. We need to prove that the values vector described
above satisfies Everett’s lower-bound condition. For all in-
ternal game elements, with indices in [min;C − max], we
can use the following argument. Given a fixed game ele-
ment indexed c1, the values assigned to the game elements
around it are:

. . .
αi−1 − 1

αC+max−1 − 1
,

αi − 1

αC+max−1 − 1
,

αi+1 − 1

αC+max−1 − 1
, . . .

C − 2 C − 1 C

Figure 1: Shifting the value vector to satisfy Ev-
erett’s condition for high indexed game element.

Optimal strategies are not changed by positive affine trans-
formations of the utility function. Notice that if we multiply
the neighborhood values by the positive constant

αC+max−1 − 1

αi lnα

and add the constant

α−i − 1

lnα

the neighborhood becomes

. . .
α−1 − 1

lnα
,
α0 − 1

lnα
,
α1 − 1

lnα
, . . .

which is exactly the exponentiated game with parameter α.
This exponentiated game has positive value for all α > α∗,
implying that the value mapping on the vector given in The-
orem 12 increases the value of game elements with indices
in [min;C −max].

The outlying game elements, where either player might
not have enough money to pay Aij , for some (i, j), we need
to argue differently. For game elements with indices in
[1;min − 1], some of the low values in the neighborhood
is rounded up to 0, compared to what the exponentiated
game looks like. But since we are increasing the value of
some game elements in the neighborhood, Everett’s condi-
tion will still hold, as the value mapping is monotone. The
situation is different for the indices [C −max+ 1;C − 1], as
they have neighborhoods extending beyond game element
C. If we were to fit the exponentiated utility function in
with valC = 1, we would have to round the value down of
the higher payoffs, thereby possibly violating Everett’s con-
dition. We therefore have to shift the value vector such that
the non-existing game elements indexed C + max − 1 gets
value 1, as shown in figure 1. Fitting the exponential func-
tion to the points (0, 0) and (C+max−1, 1), we get exactly
the expression in Theorem 12. By definition of the riskiness
of Player 1, we now have that Everett’s first condition is sat-
isfied for all α > α∗ for all game elements, and we therefore
have the limit as a lower bound.



We can also use the same expression to give an upper
bound on the performance, not just of these strategies, but
of any strategy; even non-oblivious.

Theorem 13. Given a non-degenerate game with matrix
A ∈ [−min;max]m×n with riskiness α, no strategy for Player 1
can guarantee more than

αc1+min−1 − 1

αC+min−1 − 1

in the repeated game starting from division (c1, c2).

Proof of Theorem 13. To prove this, we need a sim-
ple observation about the game from the opponents point
of view, namely that the riskiness is inverted for the other
player, i.e.,

risk(A) = risk(−A>)−1

Combining this with Theorem 12 we get a strategy for Player 2
that wins with probability

α−c2 − 1

α−C−min+1 − 1

when the game is started from division (c1, c2). Since at
most one player can win, Player 1 cannot guarantee a higher
probability of winning than 1 minus the guarantee Player 2
has.

Pr[Player 1 win] ≤ 1− α−c2 − 1

α−C−min+1 − 1

=
α−C−min+1 − α−c2
α−C−min+1 − 1

=
αc1+min−1 − 1

αC+min−1 − 1

We can use the upper bound to give a bound on how far
from optimal the risk-aware strategies are. Assume for sim-
plicity that min = max, i.e., that that most negative out-
come is minus the most positive outcome of the game. The
difference between the upper and lower bounds is greatest
at game element C-1 when α > 1, and at game element 1
when α < 1. Assume wlog the latter is the case:

Gap =
α1+min−1 − 1

αC+min−1 − 1
− α1 − 1

αC+max−1 − 1
=

αmin − α
αC+min−1 − 1

Notice that the gap is 0 when min = max = 1. That is, the
risk-aware strategies are optimal for games with outcomes in
{−1, 0, 1}. The gap in the general case approached α−αmin
for C →∞ for α < 0.

7. EXPERIMENTS
As an example of how well the risk-aware strategies per-

form, let us look at the game of Kuhn poker [12]. The game
is a heavily simplified version of poker, played between two
players. The rules are as follows. A deck of three cards
(King, Queen and Jack) is shuffled, and the two players re-
ceive one card each. Both players put one coin in the pot as
an ante. The players now use normal poker betting protocol
to decide whether to bet an additional coin, i.e., Player 1
can check or bet. If he bet, Player 2 can either call or fold.
If Player 1 checked, Player 2 can either check or bet. In case
Player 2 bets, Player 1 has to decide whether to call or fold.

If a player folds, he forfeits the hand and loses the ante he
paid in the beginning of the hand. If neither player folds,
the hidden cards are revealed, and the higher card wins the
ante and the bets (if any).

The game has a unique equilibrium:

• Player 1 bets with King, checks with Queen, and bets
(bluffs) with probability 1/3 with Jack. If Player 2
bets, Player 1 will call with probability 2/3 with Queen,
and always folds with Jack.

• If Player 1 checks, Player 2 uses same strategy as
Player 1 does for the first move. If Player 1 bets,
Player 2 calls with King, calls with probability 1/3
with Queen, and always folds with Jack.

The game has value −1/18, i.e., Player 1 is expected to
lose a little every round. Using the algorithm outlined earlier
in the paper, we compute the riskiness of the game to be
α ≈ 1.062. Solving the game exponentiated with this α, we
find that the optimal strategy has changed in the following
way:

• Player 1 increases the probability of bluffing with Jack
to 37.6%, but slightly lowers the probability of calling
with Queen to 64.6%.

• Player 2 lowers the probability of bluffing with Jack
to 29.5%, but increases the probability of calling with
Queens to 37.3%.

We can evaluate the two pairs of strategies against an
optimal counter strategy in the following way. If we fix the
strategy of one player to the strategy we want to evaluate,
the other player is left with a one-player game, which we can
easily solve as a Markov Decision Process; simply do value
iteration with only one player. The values of these counter
strategies are given in Figures 2, 3, and 4.

For larger values of C, the minimax performance gap grows
to around 20%, while the risk-aware performance gap falls
to less than 3%. This corresponds well with the theoreti-
cal bound on the performance gap of 5.5%, calculated using
the difference between the upper and lower bound in the
previous section.

8. ESTIMATING RISKINESS
Some games are so large that even solving them once re-

quires months of computation [10] and it is therefore practi-
cally impossible to solve it repeatedly in order to do binary
search and compute the riskiness of the game. It would
therefore be useful to estimate the riskiness of the game be-
forehand, and then only compute minimax strategies of the
exponentiated game once with the estimated riskiness. This
can be done by observing that two fixed strategies played
obliviously against each other results in a random walk on
line of possible divisions of money between the players, just
as in the introductory example. This process can be approxi-
mated by a Wiener process with drift, if we know just a little
about the typical play in the game. The following theorem
can be found in any textbook on stochastic processes:

Theorem 14. A Wiener process with parameter σ2 and
drift µ on a line of length C, starting at point i has proba-
bility of reaching the right endpoint before the left equal to

αi − 1

αC − 1
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Figure 2: Upper line is the value of Player 1’s best
response to Player 2’s minimax, lower line is value of
Player 2’s best response Player 1’s minimax, middle
line is the critical vector
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Figure 3: Upper line is the value of Player 1’s best
response to Player 2’s risk-aware strategy, lower line
is value of Player 2’s best response Player 1’s risk-
aware strategy, middle line is critical the vector
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Figure 4: Upper line is the difference between the
best response values against minimax. Lower line
is the difference between the best response values
against the risk-aware strategies.

where α = exp(−2µ
σ

)

Thus, if we know the typical outcome distribution of the
game, we can estimate the riskiness as α = exp(−2µ

σ
).

In 2007, the computer poker research group at the Uni-
versity of Alberta organized the First Man-Machine Poker
Competition [10, p.79], where two professional poker players
played against four different poker playing programs, collec-
tively called Polaris. Out of the four sessions, the humans
won two sessions, drew one, and lost one. The only program
they lost to was named“Mr. Orange”, and it was constructed
by solving the game with respect to a modified utility func-
tion. The utility function was as follows:

u(v) =

{
v if v ≤ 0

1.07 · v if v > 0

In other words, the program saw the game as if any win-
nings where 7% higher, while losses where left unmodified.
A side effect of this choice was that the game was no longer
a zero-sum game, since the 7% was not paid by the loser.
The resulting program was very aggressive; according to
Laak [10] (one of the human players), Mr. Orange “. . . was
like a crazed, cocaine-driven maniac with an ax”.

If we were to use the results of this paper to suggest an
alternative utility function, we could use empirical observa-
tions about the game to estimate the riskiness of the game.
Heads Up Limit Texas Hold’em has been observed [2] to
have a standard deviation of 6.856 sb/hand. Currently,
the best minimax algorithms produce poker playing pro-
grams that lose around 0.1 sb/hand against an optimal op-
ponent [11]. We can then use the discussion in the pre-
vious section to figure out what riskiness balances out the
0.1 sb/hand suboptimality. Using the formula, we get the
α = exp(−2 · (−0.1)/6.856) ≈ 1.03, and the resulting modi-
fied utility function becomes

u′(v) =
1.03v − 1

ln 1.03

Notice that u(v) and u′(v) are very close for typical values
v ∈ [−σ;σ]. While the setting for the Man-Machine match
was not exactly the same as our model, the similarity does
provide some hope to the applicability of the approach.

9. EXTENSIONS
The most natural extension is to remove the requirement

that outcomes must be integer. If we allow them to ratio-
nal numbers instead, we can still do the same analysis. The
explicit modelling of the game would require C/gcd game
elements, where gcd is the greatest common divisor of all
the outcomes of the game. This could be a very large num-
ber of game elements, but as our approach uses oblivious
strategies, we are not hindered by this. The easiest way to
prove performance guarantees for rational valued games is
by scaling all number of the game (outcomes and amount
of money) up with a constant, so that everything becomes
integers. To do this, we need to know how scaling affects
riskiness of a game.

Proposition 15. Multiplying all outcomes of a game A
by constant k results in the riskiness becoming the k’th root
of the previous riskiness:

risk(k ·A) = risk(A)1/k



Proof. The property follows directly by the fact that
exponentiating with the k’th root cancels out the scaling,
except for a constant scaling of the whole utility function,

and therefore val((k ·A)α
1/k

= k · val(Aα) = 0.

Using this property, we can scale to integers, get the per-
formance guarantee, and scale back to the original game.
Doing this, we get the lower bound on winning probability
for Player 1 to be

αc1 − 1

αC+max−gcd − 1

when the game starts from money division (c1, c2). In other
words, the only change is that the −1 we got from the over-
lap for high index game elements is replaced with an ex-
pression that only depends on the input game. Notice that
Algorithm 1 does not rely on the outcomes being integer, so
it can be used directly on games with fractional outcomes;
the scaling is only for the analysis.

Another interesting extension of the result is to the case
where only one of the players has a restricted budget, while
his opponent has infinite resources. The goal for the bud-
get constrained player is to build his fortune, while avoiding
going bankrupt in the process. Of course, for this to be in-
teresting, the budget constrained player must have positive
expectation; otherwise he will lose with probability 1. As-
sume wlog that it is Player 1 that is budget constrained,
and that the value of the underlying game is positive. This
implies that the game has low riskiness. We can now ob-
serve that in this case the performance guarantee given by
Theorem 12 for a fixed c1 converges to 1− αc1 for c2 →∞.
Thus, the risk-aware strategies apply to one-sided budgets
as well.

10. DISCUSSION AND FUTURE RESEARCH
An interesting observation on the riskiness estimate in sec-

tion 8 is that the riskiness is closely tied to the ratio of mean
over standard deviation. In portfolio management, this ratio
is commonly called the Sharpe ratio [14] (with risk free rate
0). In many idealized settings, it is exactly the Sharpe ratio
one wants to maximize. It does, however, have important
shortcomings. Primarily, it relies on the outcomes being nor-
mally distributed, which is not in general the case for the
scenarios we have examined in this paper. To the best of our
knowledge, there is no known algorithm for maximizing the
Sharpe ratio of a zero-sum game. However, we can observe
that our proposed solution concept outperforms Sharpe ra-
tio maximization on simple examples. To see why this is
the case, examine the doubling game from the introduction.
Both the doubled and the undoubled games have the same
Sharpe ratio, so a slight perturbation would make a Sharpe
ratio maximizer choose the wrong action. One can easily
construct games where the scaling is with a larger constant
to exacerbate the problem.

In this paper, we have only examined a single setup, where
two players where playing under a budget. The general idea
of deriving a utility function to use for solving a sub-problem
leads to many open problems. For instance, in the Man-
Machine poker tournament discussed in section 8, the true
objective was not to bankrupt the opponent (you cannot; he
has unlimited bankroll), but rather to have the most money
after a fixed number of rounds has been played. This again

leads to a non-linear utility function, but the exact function
to be used in unclear.
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