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ABSTRACT
Memory enables past experiences to be remembered and ac-
quired as useful knowledge to support decision making, espe-
cially when perception and computational resources are lim-
ited. This paper presents a neuropsychological-inspired dual
memory model for agents, consisting of an episodic memory
that records the agent’s experience in real time and a se-
mantic memory that captures factual knowledge through a
parallel consolidation process. In addition, the model incor-
porates a natural forgetting mechanism that prevents mem-
ory overloading by removing transient memory traces. Our
experimental study based on a real-time first-person-shooter
video game has indicated that the memory consolidation and
forgetting processes are not only able to extract valuable
knowledge and regulate the memory capacity, but they can
mutually improve the effectiveness of learning the knowl-
edge for the given task in hand. Interestingly, a moderate
level of forgetting may even improve the task performance
rather than disadvantaging it. We suggest that the interplay
between rapid memory formation, consolidation, and forget-
ting processes points to a practical and effective approach
for learning agents to acquire and maintain useful knowledge
from experiences in a scalable manner.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Algorithms, Design, Experimentation, Theory

Keywords
Memory, Forgetting, Adaptive Resonance Theory

1. INTRODUCTION
Memory plays a key role in reasoning and decision making

by providing past relevant episodes to improve learnt knowl-
edge [10]. An agent with very limited or partial observabil-
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ity can construct a complete picture about its task environ-
ment by remembering all relevant information from its mem-
ory. Some agent architectures have incorporated declarative
memory systems to support different aspects of the agent’s
performance. For example, [10] and [6] demonstrate the use
of episodic memory to improve task performance and sur-
vivability of agents in simulated environments. [2, 8, 1, 7]
also show how memory can improve the realism or human-
likeliness of virtual agents. Most of these architectures con-
sider declarative memory as a flexible information storage
that can perfectly store and accurately retrieve information.

Although episodic memory can provide useful information
about previous experiences at any moment of time, a signifi-
cant amount of computational resources may still be needed
to process specific items in memory to support reasoning and
decision making. As the tasks and the environment become
more complex, it is often impossible to make use of all the
stored information necessary to make the right decision. For
example, in a real-time environment, an agent may not have
enough time to search and recall all relevant information to
support its decision while it is performing some tasks. On
the other hand, the agent may need to obtain enough infor-
mation to acquire more compact, generalized, and efficient
knowledge structure through a particular learning algorithm
in order to make a timely and appropriate decision. Further-
more, most existing memory architectures for agents assume
that all stored information is always relevant and consistent
despite its limited capacity and possible erroneous inputs.
The limitation of memory to keep all relevant and useful in-
formation is an important practical issue for learning agents
but still seldom concerned.

According to neuropsychology, human memory systems
have been known to be as non-unitary and partitioned into
different types. Long-term declarative memory has been di-
vided into episodic memory enabling one to remember per-
sonal experiences in specific manner and semantic memory
that stores concepts, rules, and general facts [15]. It has
also been considered that a consolidation process gradually
transfers the specific items from episodic memory into gen-
eral facts and rules in semantic memory [15, 3]. Episodic
memory (particularly located in hippocampal area in the
brain) and semantic memory (distributed across neo-cortical
area in the brain) are anatomically separated but intercon-
nected. It is suggested that these complementary mem-
ory systems prevent interferences of new information to old
memories [9]. The consolidation between the two memory
systems also implies that some forgetting processes may reg-



ulate and shape the memorized items to optimize perfor-
mance as if the brain minds about the usefulness of memory
traces rather than fidelity [12, 17]. It may be the case that
perfect memory retrieval would burden the brain with too
much details at the expense of remembering useful informa-
tion.
In this paper, we propose a computational model of such

a dual memory system based on a composition of fusion
Adaptive Resonance Theory (ART) neural networks [14],
which inherently serve learning, categorization, and recall
operations. The dual memory model consists of an episodic
memory that records agent’s experience in real time and a
semantic memory that captures factual knowledge relevant
to the environment. The memory system is designed in such
a way that the agent can store, recall, and playback expe-
rienced episodes in a sequential manner beyond individual
momentary events. The availability of both the episodic and
semantic memory modules enables a resource-bounded agent
to focus on the situation and tasks in hand by capturing
the episodic experience on-the-fly into a temporary memory
store and deferring the resource-intensive learning of factual
knowledge to a later stage through a memory consolidation
process from episodic to semantic memory. In addition, the
use of episodic memory as a buffer allows an agent to select
and iterate through the relevant past cases as many times
as needed at a later time, based on the updated awareness
of the tasks and environment. This naturally leads to more
effective learning comparing with learning the knowledge in
an online manner while performing the task. To prevent
the episodic memory from overloading, we further present
a forgetting mechanism that associates each memory cate-
gory with a time-decaying memory strength and removing
unimportant traces or categories from the model.
The proposed dual-memory model has been evaluated us-

ing a real-time first-person-shooter video game called Unreal
Tournament to support a non-player-character (NPC) agent
to learn from experiences and improve performance. Sur-
prisingly, we find that the memory model not only improves
the task performance but in some cases, a moderate level
of forgetting even results in more effective learning. Further
examinations on the effects of forgetting show that select-
ing and pruning erroneous and outdated patterns promotes
more efficient and robust learning.
The rest of the paper is organized as follows. Section 2

reviews related works in modelling declarative memory for
autonomous agents and discusses some computational and
neuropsychological accounts of consolidation and forgetting
processes. The paper continues to describe the proposed
memory model in Section 3. The section also formulates and
analyses the characteristic of the memory model. Section 4
describes the implementation and the experiments of the
memory system as parts of the non-player character agent
in Unreal Tournament. The last section concludes the paper
with some future directions.

2. RELATED WORK
Various types of declarative memory have been devised in

recent years as parts of agent architectures. Most of them
are developed as unitary systems, serving mainly the func-
tionality of episodic memory to store linearly ordered traces
of experiences or log records. This kind of sequential records
has been demonstrated to optimize the agent’s task per-
formance [10] and improve the survivability of artificial life

beings in virtual environment [6]. In the sequential traces
model of episodic memory, specific mechanisms to search,
retrieve, and recall the appropriate memory items are nec-
essary to support performance. Each entry in episodic mem-
ory may also refer to other cognitive traits like procedural
knowledge (in SOAR) [10] or emotions [1] to enhance the
capability of memory operations and support complex be-
haviour.

To improve realism and interactivity, episodic memory en-
tries can be associated with temporal relationships. For ex-
ample, each entry can be associated with temporal weights
to produce the effect of recency [8, 7] or generating temporal
granurality [2]. This temporal association can emulate for-
getting in which some details of memory item are suppressed
according to time. However, these architectures still exclude
memory consolidation processes to transfer and reorganize
the contents of memory, nor consider the forgetting as ben-
eficial to the overall performance.

On the other hand, it has been known that information
memorized in the brain are subject to consolidation to make
more general experience-independent forms of knowledge [3].
Memory traces from past experiences are played back before
performing actions in similar or relevant contexts [11, 5].
Meanwhile, forgetting may take place removing or suppress-
ing less useful memory items [17]. This forgetting dynamics
of memory has been recognized as computationally benefi-
cial to reduce inconsistency and the complexity of reason-
ing by discarding irrelevant information [16]. In multiagent
systems, forgetting can also be useful for resolving conflicts
between agents [4].

Our work in this paper also explores the role of episodic
memory in agents. However, the main focus is to look at
the memory consolidation process to extract useful knowl-
edge and the discard of irrelevant information through for-
getting. Instead of just applying episodic memory as a uni-
tary flexible storage system, we make dual episodic-semantic
memory systems working together to acquire useful knowl-
edge through the interplay of consolidation and forgetting
processes.

Figure 1: The Episodic-Semantic Memory

3. THE DUAL MEMORY MODEL
The proposed memory model is considered as a part of

the reasoning system of an agent architecture (Figure 1). It
can be assumed that at each point in time, a snapshot of
an agent’s situation and perception can be encoded as an
individual event and held temporarily in working memory.
Episodic memory automatically stores and organizes the
events in a sequential order into cognitive units of episodes,
which are then periodically transferred to semantic memory.

In general, the memory system goes through different stages
of operation as follows:



• Events captured in working memory are continuously
stored in episodic memory.

• Periodically, traces in episodic memory are readout to
working memory triggering learning in semantic mem-
ory.

• Memory items in episodic and semantic memory can
any time be recalled based on certain memory cues
through a process of pattern completion or reconstruc-
tion.

• Rarely accessed items in episodic memory will be re-
moved (forgotten).

The remaining parts of this section first formulate the
notion of events and episodes before presenting the details
of the model and process as follows.

3.1 Events and Episodes
An event is a snapshot of perceived experience at one mo-

ment in time which can be defined as a collection or a tuple
of attributes.

Definition 1. An event ε is a tuple reflecting a moment of
experience such that ε = (v1,v2, ...,vk). Each attribute vi

is defined as a tuple such that vi = (vi1, v
i
2, .., v

i
l ) and vij is a

normalized real value vij ∈ [0, 1].

By normalizing the value of vij , an event can represent a
proposition with a binary truth at the extreme values (0 or
1) or a certain degree in between (fuzzy values). To recall a
stored event, an event cue can be expressed with the same
tuple structure. However, some elements of the cue may be
left unspecified and the recall operation would reconstruct
the target event. Figure 2(a) shows an example of an event
representation in the Unreal Tournament domain used in
our experiment (explained later in detail).

Figure 2: (a) Event Encoding; (b) Input (Output)
representation of RLBot NPC in the experiment

An episode, on the other hand, can be defined as a finite
list of events collected in a temporal order.

Definition 2. An episode E is a sequence of events such
that E = [εt0 , εt1 , ..., εtn ], where tj denotes the relative time
point wherein the event εtj occurs.

In contrast to the event structure, which always has the same
length of tuple, the length of the episode sequence may vary.

3.2 Building Blocks
The proposed memory model is based on fusion Adap-

tive Resonance Theory (ART) [14], which applies a myriad
of learning paradigms to recognize and learn an incoming
stream of input patterns across multiple channels in real
time. It employs a bi-directional process of categorization
and prediction to find the best matching category (reso-
nance). It also learns continuously by updating the weights
of neural connections at the end of each search cycle. ART
may also grow dynamically by allocating a new category if
no match can be found. This type of neural network is cho-
sen as the building block of our memory model as it enables
continuous formation of memory with adjustable vigilance
of categorization to control the growth of the network and
the level of generalization. Specifically, a fusion ART model
can be defined as follows:

Definition 3. Suppose F k
1 and F2 are the kth input (out-

put) field and the category field of fusion ART (Figure 3)
respectively for k = 1, .., n. Let xk denote the F k

1 activity
vector and wk

j denote the weight vector associating kth field

with jth node in F2. F
k
1 is associated with choice parameter

αk > 0, learning rate βk ∈ [0, 1], contribution parameter
γk ∈ [0, 1], and vigilance parameter ρk ∈ [0, 1].

Definition 4. Choice function Tj returns the activation
value of category j such that:

Tj =

n∑
k=1

γk |xk ∧wk
j |

αk + |wk
j |

(1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡

∑
i pi for

vectors p and q.

Definition 5. Template matching mk
j is the matching value

or similarity of category j with the input xk such that:

mk
j =

|xk ∧wk
j |

|xk| (2)

A category J of F2 field is in resonance condition if and only
if:

TJ = max
{
Tj : ∀k,mk

j ≥ ρk, for allF2 category j
}

(3)

Definition 6. Given the selected category J , Template learn-
ing modifies the weights associated with J such that:

w
k(new)
J = (1− βk)w

k(old)
J + βk(xk ∧w

k(old)
J ) (4)

The corresponding weight vector of the chosen F2 node J
can be readout into the input field F k

1 such that xk(new) =
wk

J .

Figure 3: Fusion ART Neural Network

If no existing F2 category can be found in resonance con-
dition with the current input, a new category is recruited
to represent the current input pattern. This implies that



the ART network can grow to accommodate the incoming
stream of different input patterns. The growth rate of the
categories depends on how much the incoming patterns dif-
fer from one another and is adjustable through adjusting
the vigilance parameters (ρk). Lower vigilance may tolerate
differences more than the higher one and hence lead to a
slower growth.

3.3 Episodic Memory
From Definition 1, it is clear that an event corresponds

directly to the input vector representation in the fusion ART
model. Specifically, an event εk is encoded into an input
vector xk to be learnt by fusion ART. On the other hand,
based onDefinition 2 an episode corresponds to the sequence
of selected categories (events) collected in a temporal order.
An episodic memory model can be built to store events and
episodes by combining two fusion ARTs: one for storing
events and the other for episodes. Figure 4 shows that events
are represented and processed by the ART network between
F k
1 and F2 fields. In this case, an event can be learnt and

retrieved by selecting a matching category in F2 and readout
the pattern back to F k

1 . In a word, each F2 category j
represents a single event.
To capture episodes, another layer of ART gets input from

categories selected in F2 from the other network. Let y =
(y0, y1, .., ym) denote the F2 activity vector. If J is the F2

category currently selected by the resonance search, then

yJ = 1 and y
(new)
j = y

(old)
j (1− τ) for all F2 category j ̸= J

and τ ∈ (0, 1).

Lemma 1. Consider the F2 activity vector y as described
above. If yJ = 1 for J is the currently selected category and

y
(new)
j = y

(old)
j (1 − τ) for all j ̸= J with τ ∈ (0, 1), then

y reflects the relative order of category selection in F2 such
that yjt > yjt−1 > yjt−2 > ..yjt−m for jt is the node selected
at relative time point t.

Proof. Given 0 < (1 − τ) < 1, it is clear that 1 > (1 −
τ) > (1−τ)2 > .. > (1−τ)m. Since yjt = 1 for any category

jt and from y
(new)
j = y

(old)
j (1 − τ) it follows that yjt−m =

(1−τ)m, consequently yjt > yjt−1 > yjt−2 > .. > yjt−m .

The list of events with their relative order expressed as y
vector becomes the input to the upper ART network (be-
tween F2 and F3 fields) to be learnt as an episode. Based on
the bi-directional activation and matching process in ART,
a category I representing an episode is selected in F3 such
that

Ti =
|y ∧wi|
|wi|

, mi =
|y ∧wi|

|y| , and

TI = max {Ti, mi ≥ ρ2, for allF3 node i} .

Parameters α, γ, and the field index k are omitted as the
upper network only has a single input field (F2). Given the

selected category I, learning takes place such that w
(new)
I =

(1− β2)w
(old)
J + β2(y ∧w

(old)
I ). ρ2 and β2 are the vigilance

and learning rate parameters respectively of the field F2.
If consecutive events are received in F k

1 , a pattern of their
sequence can be formed in F2 as vector y and can be used
as an input to select category I in F3. In this case, the
input patterns act as memory cues. To reproduce the origi-
nal sequence of events of the episode, two stages of readout

Figure 4: The Episodic Memory Model

operation are conducted by firstly reading out the sequen-
tial pattern of the episode into vector y and secondly an
F2 category J is selected such that TJ = max(yj : yj =
1 − yj , for allF2 category j) and readout to the correspond-
ing F k

1 before reset to zero or yJ = 0. The readout cycles
continue until y = 0.

3.4 Semantic Memory
Different from episodic memory, we view that the seman-

tic memory is not unitary, with different fusion ARTs rep-
resenting different structure of knowledge. In contrast to
episodic memory, each entry in semantic memory generalizes
similar inputs into the same category rather than as separate
entries. Each input field of a semantic memory represents
a property or an attribute of a concept. The generalization
can be achieved by lowering the vigilance parameter ρk so
that slightly different input patterns will still activate the
same category. The value of an attribute can be paired, as
described below, so that the ART learning can generalize
the value as a range of values.

Let Ik be the input vector for F k
1 , I

k
i ∈ [0, 1]. Ik is aug-

mented with Īk such that Īki = 1 − Iki . The activity vector
xk of F k

1 thus augments the input vector Ik with its com-
plement Īk which are learnt as a wk

j . Let (wk
ij , w

k
ij) be the

corresponding pair of wk
j . The value of the connection be-

comes less specified when wk
ij ̸= 1− wk

ij .

Lemma 2. For the pair (wk
ij , w

k
ij) of wk

j described above,

if wk
ij ̸= 1−wk

ij, any corresponding complemented input pair

(Ikij , I
k
ij) will have a maximum matching value or always in

resonance as long as wk
ij ≥ Ikij ≥ 1− wk

ij .

Proof. Let the pair (xk
ij , x

k
ij) ≡ (Ikij , I

k
ij). It is clear

that if xk
ij ≤ 1 − wk

ij then xk
ij ≤ wk

ij . Thus, (xk
ij , x

k
ij) ∧

(wk
ij , w

k
ij) = (xk

ij , x
k
ij) such that template matching mk

j =
|xk∧wk

j |
|xk| = |xk

|xk| = 1

It can be considered that a stored value is unspecified if the
values of the corresponding complementary pair (wk

ij , w
k
ij)

are equal.
Similar to episodic memory, the content of semantic mem-

ory can be retrieved by pattern completion based on memory
cues. Figure 5 illustrates various types of semantic memory.
A single fusion ART may consist of domain specific associa-
tive rules (e.g a set of association between a certain object
and its location in the environment, a set of rule associating
the effectiveness of a certain weapon and the distance to the
opponent) or generic causal relations associating a partic-
ular type of event to another that follows. These types of
semantic knowledge can be derived by exposing the played
back items from the episodic memory to the input of the
semantic memory using a lower vigilance parameter ρk and



a smaller learning rate βk such that similar instances may
gradually be clustered together regardless of their order.

Figure 5: Different types of Semantic Memory and
the Memory Consolidation Process

3.5 Memory Consolidation
Knowledge can be transferred from episodic memory by

playing back stored episodes or reading out category nodes
in F3 field to each corresponding input fields. The readout
events are then passed to the working memory, one at a
time, to be shared by other memory modules. Depending
on the kind of semantic structure and the domain problem,
different subsets of items in working memory are connected
to different input fields in semantic memory.

Definition 7. Let O be the vectors in F1 fields read out
from the selected category in episodic memory as a result of
the playback process. Function M : P → Θ maps the read
out vectors from episodic memory into the corresponding
input vectors of semantic memory, wherein P and Θ are
the vector space of the input fields of episodic memory and
semantic memory respectively.

During the episodic memory playback, x′ = M(O) be-
comes the input vector to learn in semantic memory. The
played back vectors can be the results of the top-down read-
out process or it can be the results of a retrieval operation
based on some memory cues. If x′ = M(ε), it can be said
that semantic memory works standalone by learning directly
from the received events ε bypassing episodic memory. A
standalone version of semantic memory is also presented in
this paper as one configuration to compare with the dual
memory model in our experiment (explained later).

3.6 Forgetting
Forgetting is a mechanism to free up memory space in

episodic memory by removing unnecessary items. Intuitively,
a memory item can be considered unnecessary or obsolete
if it is rarely accessed or recalled for long. The forgetting
mechanism in the proposed model is applied to episodic
memory for both the event layer (F2) and the episode layer
(F3).

Definition 8. Given a category j (representing either an
event or an episode) in a fusion ART structure, a memory
strength St

j reflects how often category j is selected such
that:

St
j =

{
St−1
j + (1− St−1

j )rs if j is selected at time t

St−1
j (1− δs) otherwise

(5)

where rs ∈ [0, 1] and δs ∈ [0, 1] are reinforcement and decay
rate parameters respectively. A category j with St

j < θs
will be removed or pruned from memory including all the
associated connections. If j is a new allocated category, it
is assigned with an initial strength Sinit

j .

4. CASE STUDY
The episodic-semantic memory system is implemented and

embedded into an autonomous non-player character (NPC)
in a first-person-shooter video game called Unreal Tourna-
ment (UT). Our objectives are to test if the proposed mem-
ory model can produce useful knowledge for the agent and
whether the forgetting process may sacrifice the agent’s per-
formance. The scenario of the game used in the experiment
is ”Deathmatch”. The objective of each agent is to kill as
many opponents as possible and to avoid being killed by oth-
ers. In the game, two (or more) NPCs are running around
and shooting each other. They can collect objects in the en-
vironment, like health or medical kit to increase its strength
and different types of weapon and ammunition for shooting.
The battle simulation in UT game is a suitable platform for
evaluating memory tasks. Besides complex spatial maps and
terrains, different objects and situations in the game may
have some intricate relationships that should be memorized
and remembered in non-trivial ways.

4.1 Weapon Learning Task
In the first experiment, we task the agent to learn the re-

lationship between the type of weapon and its effectiveness
to kill given the distance of the opponent agent. We com-
pare the performance of different agents with reinforcement
learning and the dual episodic-semantic memory.

4.1.1 The Baseline Agents for Comparison
All agents that we evaluate in the experiment play against

an NPC agent called AdvanceBot that behaves according to
hardcoded rules. There are four different hardcoded behav-
ior modes in AdvanceBot : (1) Running around behaviour,
in which the agent runs around exploring the environment
randomly; (2) Collecting items behavior, in which the agent
goes around and picks up collectible items; (3) Escaping
from the battle situation, in which the agent turns and runs
away from the opponent; (4) Engaging in battle, in which
the agent approaches its opponent and shoots to kill it. Ad-
vanceBot always chooses one of the four behaviors based on
a set of predefined rules.

Under the battle engagement behavior, the agent also al-
ways tries to select the best weapon available for shooting.
The weapon selection rules are based on some heuristics op-
timized for a certain environment map used in the game.

As a performance comparison, another agent (named RL-
Bot) is made to employ the same set of behaviors but its se-
lection is conducted dynamically based on a fusion ART neu-
ral network conducting reinforcement learning algorithm.
The state, action, and reward vectors in Figure 2(b) cor-
respond to the input fields in a fusion ART network of RL-
Bot. The behavior pattern in the state vector represents the
behavior (1 to 4) currently selected. The action vector indi-
cates the next behavior to be selected. Based on the state
field input and the reward cue (set to the maximum), the
network searches the best match category node and reads
out the output to the action field indicating the behavior
type to be selected. The network then receives feedbacks



in terms of the new state and reward (if any). The net-
work learns by updating the weighted connections according
to the feedback received and applying temporal difference
methods [13] to update the reward field if the immediate
reward is absent. The agent receives the reward signal (pos-
itive or negative) whenever it kills or is killed by another
agent. In contrast to AdvanceBot, RLBot chooses an avail-
able weapon randomly in the battle engagement behavior.
Another agent called RLBot++ is also used to employ the
same reinforcement learning model as RLBot but select the
weapon based on the optimized predefined rules just like in
AdvanceBot.

4.1.2 Episodic-Semantic Memory Based Agent
The proposed model is embedded in an agent with the

same architecture as RLBot, but with the episodic and se-
mantic memory modules running concurrently. The episodic
memory captures episodes based on the event information
in the working memory. An event from the UT game is
encoded as a vector shown in Figure 2(a). There are four
input fields in episodic memory for location, state, selected
behavior, and the reward received. In the experiment, the
vigilance of all input fields (ρe) and the F2 field (ρs) are
set to 1.0 and 0.9 respectively so that it tends to always
store distinct events and episodes in response to the incom-
ing events. At a certain period of time, the contents of the
episodic memory is played back by reading out the events
to the working memory. The reinstatement occurs in the
period between different battles wherein one agent has just
been killed and started to respawn in another place. The
semantic memory then acquires the knowledge by learning
from the recalled events. In the experiment, only one type of
semantic memory about weapon effectiveness is learnt given
the distance towards the enemy. Whenever the value of the
reward field in the event vector is large enough to be consid-
ered as a successful killing (0.5 is the threshold), the values
of weapon selected, opponent distance, and reward (or the
effectiveness to kill) fields are fed and learnt by the semantic
memory.
Figure 5 shows the fusion ART network of the semantic

memory for weapon effectiveness used in the experiment.
The network has three input fields: the Weapon field repre-
senting the identity of the weapon (F a

1 ); the Distance field
representing the distance between the agent and its oppo-
nent at the time of shooting (F b

1 ); and the Effectiveness field
representing the chance to kill the enemy (F c

1 ). In the ex-
periment, the vigilance of the Weapon (ρa), Distance (ρb),
and Effectiveness (ρc) fields are 1.0, 0.9, and 0.8 respectively.
The learning rate βa, βb, and βc are 1.0, 0.1, and 0.2 respec-
tively. The agent reasoning system can use the knowledge
in the semantic memory by providing the current distance
to the opponent while setting up the effectiveness to maxi-
mum (the greatest chance of killing) as memory cues. The
retrieved values support the agent to decide which weapon
to select during the battle. If the cue is not recognized, a
random weapon is selected.
As a comparison, we also implement an agent with a stan-

dalone version of semantic memory as mentioned in the pre-
vious section. The agent, called AssocBot, learn the weapon
selection knowledge by directly associating weapon and en-
emy distance from the incoming events without consolidat-
ing episodic memory or x′ = M(ε). This direct semantic
memory only learn the event whenever the NPC shot hits

Table 1: Sample Rules Learnt in Semantic Memory

IF distance is not so far [1800 2099]
THEN ASSAULT_RIFLE effectiveness 0.07

IF distance is very near [300 599]
THEN ASSAULT_RIFLE effectiveness 0.048

IF distance is extremely near [0 299]
THEN SHOCK_RIFLE effectiveness 0.946

IF distance is very near [300 599]
THEN ROCKET_LAUNCHER effectiveness 0.932

weapon range categorization: extremely near:0-299;
very near:300-599;near:600-899;medium near:900-1199;
not so near:1200-1499;midrange:1500-1799;not so far:1800-2099;
medium far:2100-2399;far:2400-2699;very far:2700-2999;
exremely far:3000 or more

the opponent.
Table 1 illustrates sample learnt rules of weapon effective-

ness translated into symbolic forms. Each rule corresponds
to a category node in F2 layer of the semantic memory. The
generalization employed using Fuzzy operators makes it pos-
sible to represent the rule with a range of values like the
rule antecedents shown above. Table 1 also shows the sym-
bolic categorization of the distance range for interpreting
the rules. The experiment also uses forgetting in episodic
memory with Sinit

j , threshold (θs), and reinforcement rate
(rs) set to 0.5, 0.0001, and 0.5 respectively. To evaluate the
effect of forgetting, different decay rates (δs) in the events
field F2 are used: 0 (no forgetting), 0.005, 0.01, and 0.02.

4.1.3 Results

Figure 6: Memory usage for events, episodes, and
transferred semantic knowledge with different for-
getting decay rate during the game play

Experiments are conducted by letting RLBot, RLBot++
and the memory-based RLBot (called MemBot) with differ-
ent forgetting decay rates (δs=0.005, δs=0.01, and δs=0.02)
to individually play against AdvanceBot. In addition, the di-
rect semantic-memory-based RLBot (AssocBot) is also put
to the test. For practical reason, MemBot without forget-
ting (δs=0) is excluded from performance comparison as the
program overloads the system memory soon after the game
starts causing the system to halt and the agent refrains from
playing. A single experiment run consists of 25 games or tri-
als, which is counted whenever the agent kills or is killed by
another agent.



Figure 6 shows the memory size taken up in the episodic
memory (in terms of the number of nodes in F2 and F3 of a
MemBot) and the number of nodes created in the semantic
memory with different δs in F2 sampled from a single run
against AdvanceBot. Without forgetting (δs = 0), the mem-
ory space is taken up rapidly into its limit after about three
trials. In contrast, the forgetting mechanism can make the
memory size converge and stabilize at certain points. Hence
the agent can always perform and learn continuously. It
is clearly shown that the larger the decay rate, the smaller
number of categories is produced in episodic memory. Inter-
estingly, a low semantic memory decay rate (e.g δs=0.005)
creates lesser categories comparing with those obtained with
higher rates (e.g δs=0.01 and δs=0.02).

Figure 7: Performance of RLBot, RLBot++, Mem-
Bot, AssocBot over 25 trials

Figure 7 plots the performance of RLBot, RLBot++,Mem-
Bot, AssocBot with different δs in terms of game score dif-
ferences against AdvanceBot averaged over four independent
runs. It shows that incorporating the proposed episodic
and semantic memory model improves the learning which
results in a much better performance than using the rein-
forcement learning alone (with random weapon selection).
This indicates that the semantic memory can learn useful
knowledge about weapon selection. It is also shown that
although AssocBot can learn and improve better than RL-
Bot, it is still marginally inferior than MemBot which ap-
plies consolidation but with the smallest forgetting decay
rate (δs = 0.005). It indicates that the consolidation can
be advantageous for a learning agent. The reason could be
that, with consolidation, the same categories might be acti-
vated or selected in semantic more than once as the result
of the playing back episodic memory. This reactivation of
certain categories shapes and reinforces knowledge in seman-
tic memory, whereas learning the semantic directly without
consolidation may produce over-generalization.
Surprisingly, the results also indicate that with a higher

forgetting rate (e.g δs=0.01 and δs=0.02), the performance
and learning efficiency of MemBot are better than those ob-
tained with the smaller one (δs=0.005) and can eventually
reach the performance using the optimized rules model. In
other words, forgetting less important things faster can make
learning better. One explanation of this beneficial effect of
forgetting is that events in the UT game related to weapon
use are noisy and full of inconsistencies. Thanks to forget-
ting, events that could impair the consolidated knowledge
are filtered out before being generalized in semantic mem-

ory. The semantic memory would thus end up with the
appropriate generalization and some specific but necessary
information.

4.2 Noisy Event Recognition Task
To validate our explanation about the significance of for-

getting in noisy and inconsistent environment, we conduct
another test to see how forgetting contributes to the retrieval
accuracy in a situation where some noise distribution is in-
troduced to the input events. The test is conducted off-line
based on the recorded events of selected UT game sessions.
The forgetting test is applied to episodic memory only.

4.2.1 Testing Configuration
The episodic memory model described above is made to

learn from different sets of events recorded from a UT game
session with the same event structure applied in the above
experiment. The original set of events consists of 77350
events and 1000 game sessions. We assume that, the mem-
ory learns a sequence of events as a single episode at the end
of each session. To simulate the noisy environment, differ-
ent sets of events are generated by introducing two different
rates of noises following a Gaussian distribution. Two sets
of events are used with 5% and 10% noise rates.

Episodic memory learns each noisy data set to generate
the representation of events and episodes in memory. The
evaluation is conducted to obtain the retrieval accuracy by
measuring the difference of the selected episodes with the
ones selected by episodic memory that has learnt the orig-
inal (without noise) data set. It should be noted that the
accuracy is not measured based on recall or reconstruction
of the original episodes but only based on the recognition of
the presented episodes.

The retrieval cues used in the evaluation are one-fifth por-
tions of the target episode taken from the original data set
(without noise). We compare the retrieval accuracy of both
episodic memory configurations that learn different data sets
with and without forgetting. The parameters of event level
forgetting used in the experiment are as follow: initial con-
fidence Sinit

j = 0.5, decay factor δs = 10−4, reinforcement
parameter rs = 0.5, and threshold θs = 0.1. For episode
level forgetting: the parameter values are initial confidence
Sinit
j = 0.5, decay factor δs = 0.008, reinforcement param-

eter rs = 0.5, and threshold θs = 0.1. The vigilance pa-
rameters ρ for events and episodes level are 0.5 and 0.95
respectively.

4.2.2 Results
Figure 8 clearly shows that, in a noisy condition, forget-

ting helps episodic memory to retrieve the correct episodes
despite some learnt events and episodes have been discarded
from memory. In both 5% and 10% level of noises, the per-
formance with forgetting is always superior to the configura-
tions without forgetting. The results support our hypothesis
that forgetting can contribute to the overall performance of
the agent when information perceived from the environment
are noisy and full of inconsistencies.

5. CONCLUSION
We have presented an explicit dual memory model for

agents by integrating two separate modules of episodic and
semantic memory. The stored contents of episodic memory
can be recalled to derive abstract knowledge and general



Figure 8: Accuracies in retrieval with and without
forgetting in noisy environment

facts, that in turn are transferred to more permanent forms
in semantic memory. The episodic and semantic memory
modules are realized with fusion ART (adaptive resonance
theory) neural networks as two independent but connected
networks operating in different paces of learning. In line
with theories and findings in neuropsychology, the asym-
metrical rate of learning with some periodical consolidation
between the two enables the acquisition of useful knowledge
without risking to loose prior entries. A forgetting mecha-
nism is also applied to regulate the size of memory by re-
moving insignificant entries.
Our experiments confirm that an explicit episodic-semantic

memory model can improve the agent learning and perfor-
mance by acquiring useful knowledge for the task at hand
through memory consolidation, relieving the agent from con-
tinuously reasoning and processing the information for learn-
ing. It is also demonstrated that the forgetting regulates
the memory size while the performance is still improving.
Moreover, the experiment shows faster forgetting can result
in better learning. This indicates that the forgetting can
successfully filter insignificant entries while maintaining the
useful ones. The findings can inspire the exploration of for-
getting as a useful feature of intelligent agents and machine
learning systems in general.
In the future, we shall extend our model to learn more use-

ful and general purpose semantic structures from episodic
memory. We shall also extend our study to look at how
episodic memory model may contribute directly to the per-
formance of the agent rather than just as a transient struc-
ture. The forgetting mechanism can also be extended by ap-
plying different variations of memory strength functions to
include task-related aspects like rewards, risks, or penalties.
This may reveal the potential of the dual episodic-semantic
model as effective memory systems that continuously and
mutually process, learn, and forget information.
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