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ABSTRACT
Interactive multiagent decision making often requires to pre-
dict actions of other agents by solving their behavioral mod-
els from the perspective of the modeling agent. Unfortu-
nately, the general space of models in the absence of con-
straining assumptions tends to be very large thereby making
multiagent decision making intractable. One approach that
can reduce the model space is to cluster behaviorally equiv-
alent models that exhibit identical policies over the whole
planning horizon. Currently, the state of the art on identify-
ing equivalence of behavioral models compares partial policy
trees instead of entire trees. In this paper, we further im-
prove the use of partial trees for the identification purpose
and develop an incremental comparison strategy in order
to efficiently ascertain the model equivalence. We investi-
gate the improved approach in a well-defined probabilistic
graphical model for sequential multiagent decision making
- interactive dynamic influence diagrams, and evaluate its
performance over multiple problem domains.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
decision making, agent modeling, behavioral equivalence

1. INTRODUCTION
Decision making in interactive multiagent settings becomes

complicated mainly due to unknown actions of other agents
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from the eyes of the modeling agent. A general solution is
to model other agents using a specific representation and
then solve the models to predict their actions. Unfortu-
nately, the model space ascribed to other agents is often
very large thereby making multiagent decision making in-
tractable. A line of research has exploited the concept of
behavioral equivalence (BE) to reduce the dimensionality of
the model space [2, 12, 13]. A pair of models are behav-
iorally equivalent if the models have identical solutions that
are normally represented as policy trees. We may consider to
group a set of BE models and choose a representative model
for each cluster. Clustering BE models to reduce the model
space will not compromise the solution optimality since it is
the prescriptive aspects of the models and not the descrip-
tive that matter to the modeling agent. Recently, a well-
defined probabilistic decision making framework - interac-
tive dynamic influence diagram (I-DID) [6] - has intensively
exploited BE models for achieving the solution scalability.

I-DIDs are probabilistic graphical models for sequential
decision making in uncertain multiagent settings. They gen-
eralize dynamic influence diagrams (DIDs) [14] to multia-
gent settings analogously to the way that interactive par-
tially observable Markov decision processes (I-POMDPs) [9]
generalize POMDPs. As we may expect, solving I-DIDs is
computationally very hard. This is because the state space
in I-DIDs includes the models of other agents in addition to
the traditional physical states. As the agents act, observe
and update beliefs, I-DIDs must track the evolution of the
models over time. The exponential growth in the number of
models over time also further contributes to the dimension-
ality of the state space. This is further complicated by the
nested nature of the state space.

Previous I-DID solutions, including both exact and ap-
proximate ones, mainly exploit the concept of BE to reduce
the dimensionality of the state space. For example, the pro-
posed technique in [5] updates only those models that lead
to behaviorally distinct models at the next time step. It
results in a minimal model space. A central component of
this technique is the way of identifying equivalence of behav-
ioral models ascribed to other agents. It firstly builds policy
trees for the associated models and then checks the equality
of every path in the entire trees. Since the size of the policy



tree increases exponentially as the horizon increases, the BE
identification method becomes computationally intractable
in the case of large horizons. Additionally, based on this
identification technique, the current I-DID solution does not
scale desirably to large horizons because it groups only ex-
act BE models thereby still resulting in a large model space.
One leading solution to further reduce the model space is to
cluster models that are approximately BE.

Recently, one efficient way of identifying approximately
BE between models is to compare their partial policy trees
instead of entire ones [19]. The depth of the partial trees
is determined by a given approximate measure of BE. This
defines an approximately BE that could group more models
together resulting in less numbers of BE classes. However,
the proposed method still requires an expansion of a full size
of the partial policy tree that has a symmetric structure with
a uniform length on all paths. This may lead to a strict con-
dition on approximating BE while the identification using
partial trees is not executed efficiently.

In this paper, we present an improved version of using par-
tial trees to identify approximately BE models. We make a
general definition on a partial policy tree that allows dif-
ferent lengths for its paths. The maximum path length is
calculated according to a predefined value on measuring the
approximation between two BE models. The measurement
value quantifies the allowed divergence between updated be-
liefs in the policy trees. To efficiently use partial policy trees
to determine approximately BE, we propose an incremen-
tal identification approach: we expand the trees only when
comparing the updated beliefs at the leaf nodes is not suf-
ficient to ascertain the model equivalence. The comparison
expects to be terminated before it reaches the maximum
length for all paths. By doing this we maintain a rather
small set of policy paths instead of all full paths in the par-
tial trees. Specifically, the incremental method is applicable
even when the maximum length can’t be computed in some
problem domains.

Furthermore, we may group more approximately BE mod-
els by comparing only a subset of policies in the partial trees.
As the comparison of the policy paths may terminate before
it reaches their maximum lengths, the error is introduced
on predicting the future policies. We bound the prediction
error due to the incomplete search of the partial trees on
determining approximately BE. Finally, we evaluate the em-
pirical performance of the proposed approach in the context
of multiple problem domains, and demonstrate its scalability
on solving I-DIDs of significantly large horizons.

2. BACKGROUND: INTERACTIVE DID AND
BEHAVIORAL EQUIVALENCE

We start with a brief review on interactive dynamic in-
fluence diagram (I-DID) and then describe its solutions that
are developed using the technique on clustering behaviorally
equivalent models. More details could be found in this line
of research [6, 5, 19].

2.1 Interactive Dynamic Influence Diagram
I-DIDs extend probabilistic graphical models - dynamic

influence diagrams (DIDs) [14] - to represent how agents
make a sequence of rational decisions while interacting with
other agents over time in an uncertain environment. A
regular DID models sequential decision making for a sin-

gle agent by linking a set of chance, decision and utility
nodes over multiple time steps. To consider multiagent in-
teraction, I-DIDs introduce a new type of node called the
model node (hexagonal node, Mj,l−1, in Fig. 1) that repre-
sent how another agent j acts simultaneously when the mod-
eling agent i reasons its own decisions at level l. The model
node contains a set of j’s candidate models at level l − 1
ascribed by i . A link from the chance node S to the model
node Mj,l−1 represents agent i’s beliefs over j’s models.
Specifically, it is a probability distribution in the conditional
probability table (CPT) of the chance node Mod[Mj ] (in
Fig. 2). Each model, mj,l−1, could be either a level l − 1
I-DID or a DID at level 0. Model solutions are the pre-
dicted behavior of j and are encoded into a chance node
Aj through a dashed link, called a policy link. Connecting
Aj with other nodes in an I-DID structures how agent j’s
actions are engaged in i’s decision making process.

Expanding an I-DID involves the update of the model
node over time as indicated in the model update link - a dot-
ted arrow from M t

j,l−1 to M t+1
j,l−1 in Fig. 1. As agent j acts

and receives observations over time, its models are updated
to reflect their changed beliefs. For each model mt

j,l−1 at
time t, its optimal solutions may include all decision options
and agent j may receive any of the possible observations.
Consequently, the set of updated models at time t + 1 will
have up to |Mt

j,l−1||Aj ||Ωj | models. Here, |Mt
j,l−1| is the

number of models at time step t, |Aj | and |Ωj | are the largest
spaces of actions and observations respectively. The models
differ in their initial beliefs updated using a configuration of
action and observation. The CPT of Mod[M t+1

j,l−1] specifies

the function, τ (bt
j,l−1, a

t
j , o

t+1
j , bt+1

j,l−1) which is 1 if the belief

bt
j,l−1 in the model mt

j,l−1 using the action at
j and observa-

tion ot+1
j updates to bt+1

j,l−1 in a model mt+1
j,l−1; otherwise it is

0. We may implement the model update link using standard
dependency links and chance nodes, as shown in Fig. 2, and
transform an I-DID into a regular DID. Consequently, any
DID technique can be exploited to solve an I-DID. Details
on algorithms for solving an I-DID are in [6].
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Figure 1: A generic two time-slice level l I-DID for agent

i. Notice the dotted model update link that denotes the

update of the models of j and of the distribution over

the models, over time.

2.2 Behavioral Equivalence and Its Identifica-
tion

As we may expect, the complexity of solving I-DIDs is
mainly due to the growing space of possible models ascribed
to other agents. It is computationally impossible if all mod-
els are considered in the model node. As the modeling agent
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ing standard dependency link and chance nodes e.g. two

models, m
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t,2
j,l−1, are updated into four mod-

els (shown in bold) at time t + 1.

cares only about the predicted behavior, not the descriptive
models, of the other agent, those models that have identi-
cal solutions need not be distinguished on solving I-DIDs.
In other words, models that are BE [12] – whose behav-
ioral predictions for the other agent are identical – could be
pruned and a single representative model considered. Based
on this strategy on reducing the model space, a set of algo-
rithms have been developed with the purpose of scaling up
solutions to I-DIDs over a large number of horizons [18, 5,
19]. All of the algorithms need to cope with the problem of
identifying BE between a pair of models.

In the I-DID context, the other agent j’s model, mj,l−1

is a level l − 1 I-DID or a DID if l equals to 1. Without
loss of generality, we represent model solutions of T hori-

zons as a policy tree, denoted by OPT (mj,l−1)
△
= πT

mj,l−1

where OPT (·) denotes the solution of the model that forms
the argument. Two models, mj,l−1 and m̂j,l−1, are BE if
and only if πT

mj,l−1
= πT

m̂j,l−1
. The BE identification re-

quires to maintain and compare the entire policy trees each
of which contains (|Ωj |)

T−1 possible paths. This is inefficient
on both computational time and memory. To resolve this in-
efficiency, Zeng et al. [19] recently propose one technique to
identify approximately BE by comparing depth-q (q ≤ T )
policies as well as updated beliefs, bq,k

mj,l−1
, at the leaf nodes

of the partial policy trees. Formally, let DKL[p||p′] denote
the KL divergence [11] between probability distributions, p
and p′. The technique defines an approximately BE for a
given measure ǫ (≥ 0).

Definition 1 ((ǫ, q)-BE). Two models of agent j, mj,l−1

and m̂j,l−1, are (ǫ,q)-BE, ǫ ≥ 0, q ≤ T , if their depth-q pol-
icy trees are identical, πq

mj,l−1
= π

q

m̂j,l−1
, and if q < T then

beliefs at the leaves of the two policy trees diverge by at most
ǫ: max

k=1...|Ωj |
q

DKL[bq,k
mj,l−1

||bq,k

m̂j,l−1
] ≤ ǫ.

More importantly, it is found that the depth q of the par-
tial tree can be determined given some ǫ. Eq. 1 shows the
way of computing q, where γF is a minimal mixing rate in
a stochastic transition and b0,k

mj,l−1
(b0,k

m̂j,l−1
)) initial beliefs

in j’s model mj,l−1 (m̂j,l−1). The computation is based on
the fact: the KL divergence between the distributions over
the same space contacts with the rate (1 − γF ) after one
transition [1]. In the I-DID context, γF is the minimum
probability mass on some state due to the transition, and
is computed by multiplying the state transition probability
and the likelihood of observation for j.

q = min







T, max{0, ⌊

ln ǫ

DKL(b
0,k
mj,l−1

||b
0,k
m̂j,l−1

)

ln(1−γF )
⌋}







(1)

Accordingly, the straightforward implementation for iden-
tifying (ǫ, q)-BE is to firstly build partial policy trees of
depth-q (line 2) and then check the equality between them (line
3). It is called as a plain algorithm for identifying (ǫ, q)-BE
of two models, ǫ-BE-P, as shown in Fig. 3.

ǫ-BE-P (Models, mj,l−1 and m̂j,l−1, Horizon T , and
parameters, γF and ǫ)

1. Compute q according to Eq. 1
2. Build depth-q partial trees: π

q
mj,l−1

and π
q

m̂j,l−1

3. If π
q
mj,l−1

= π
q
m̂j,l−1

4. Return True; Else, Return False

Figure 3: A plain algorithm, ǫ-BE-P, for approx-

imate BE identification by comparing the entire

depth-q trees.

3. INCREMENTAL BE IDENTIFICATION
As discussed above, identifying the behaviorally equiva-

lent models of the other agent j plays a central role in the I-
DID solutions. Using partial policy trees provides a promis-
ing direction to scale BE to large horizons since it groups
together more models that could be approximately BE and
simplifies the complexity of identifying BE by comparing
only a subset of the entire policy trees. A plain realization
of this strategy is to compare the partial policy trees that are
symmetric and are fully constructed using a uniform length
for all policy paths. We aim to further enhance the use of
partial policies to cluster more approximately BE models in
a more efficient way. We firstly define approximately BE
models using asymmetric policy trees and then propose an
incremental technique to identify the models.

3.1 Approximate BE
A q-length policy path is an action-observation sequence

describing what agent j acts and observes over q time steps.
It is denoted by, h

q
j = {at

j , o
t+1
j }q

t=1, where oT+1
j is null for

a T (q ≤ T − 1) horizon planning problem. If at
j ∈ Aj

and ot+1
j ∈ Ωj , where Aj and Ωj are agent j’s action and

observation sets respectively, then a depth-q policy tree is
a set of all q-length paths: π

q
j = Πq

1(Aj × Ωj) where o
q
j

is null. As we may notice, the tree is symmetric since all
paths have the same length q. For an asymmetric policy
tree, we need to enumerate the set of policy paths and some
paths may differ in the length. We index paths of the same
length by imposing an order on the observations in the pol-
icy tree. Formally, let π

qL,qU
j =< h

q1,1
j , · · · , h

qr ,k
j > be the

asymmetric policy tree of depth-(qL, qU ) where qL is the
minimum length, qL = Min(q1, · · · , qr), qU the maximum
one, qU = Max(q1, · · · , qr), and k an index number.

Notice that beliefs updated using an action-observation
sequence in a partially observable stochastic process is a
sufficient statistic for the history. Consequently, future poli-
cies are predicted only on the updated beliefs. If b

0,k

j,l−1 is



the initial belief in the model, mj,l−1, then let b
q,k

j,l−1 be the
new belief on updating it using the q-length policy path
h

q,k
j . The policies, ΠT

q+1(Aj × Ωj), succeeding to the path

h
q,k
j can be predicted using the belief b

q,k

j,l−1. Using the
partial trees and updated beliefs, we may re-write the full
policy tree as follows: πT

mj,l−1
= < π

qL,qU
mj,l−1 , B

qL,qU
mj,l−1 >=<

(hq1,1
j , bq1,1

mj,l−1
), · · · , (hqr ,k

j , bqr ,k
mj,l−1

) >, where B
qL,qU
mj,l−1 is the

set of updated beliefs. Consequently, comparing a small
number of policy paths and beliefs is sufficient to identify
BE. We modify Def. 1 to formulate an approximately BE,
called (ǫ, qL, qU )-BE, between models as follows.

Definition 2 ((ǫ, qL, qU )-BE). Two models of agent j,
mj,l−1 and m̂j,l−1, are (ǫ, qL, qU )-BE, ǫ ≥ 0, qU ≤ T , if their
depth-(qL, qU ) policy trees are identical, π

qL,qU
mj,l−1 = π

qL,qU

m̂j,l−1
,

and if qU < T then updated beliefs for the two policy trees
diverge by at most ǫ:

max
(q1,1),··· ,(qr ,k)

DKL[bqr ,k
mj,l−1

||bqr ,k

m̂j,l−1
] ≤ ǫ.

Intuitively, two models are (ǫ, qL, qU )-BE if they have iden-
tical solutions of depth-(qL, qU ) trees and the divergence
of pairs of the updated beliefs at the leaves of the depth-
(qL, qU ) tree is not larger than ǫ. Two (ǫ, qL, qU )-BE models
become exact BE as ǫ approaches zero. If the partial tree is
symmetric in the setting of qL = qU , (ǫ, qL, qU )-BE is equiv-
alent to the notion of approximately BE in Def. 1. Hence
(ǫ, qL, qU )-BE provides a general definition of approximately
BE using asymmetric partial trees. The remaining question
is how to compute values for the parameters, qL and qU ,
given some ǫ.

As mentioned in Sec. 2.2, the mixing rate is computed as
the minimal one for the transitions of all possible action-
observation pairs. Eq. 1 provides a principled way of deter-
mining the maximum length qU for all policy paths given the
amount of approximation ǫ. Meanwhile, we observe that the
divergence of updated beliefs using some paths may turn out
to be much less than ǫ before the paths are fully extended
into the length qU . This may occur due to the fact that the
KL divergence of belief distributions contracts monotoni-
cally over time [1]. The minimum length qL is the earliest
time when the belief divergence is known to be smaller than
ǫ. Its value is found during the BE identification.

3.2 Incremental Comparison
(ǫ, qL, qU )-BE provides a novel way to identify approxi-

mately BE and compares partial trees with an asymmetric
structure. This differs from (ǫ, q)-BE that needs to com-
pare a full size of partial trees. Due to the unknown value
for the minimum length, the size of asymmetric trees can’t
be decided given a single input of approximation measure
ǫ. However, we are able to bound the tree size using the
maximum path length, which avoids an arbitrary expansion
on the tree. For the purpose of identifying (ǫ, qL, qU )-BE,
we propose an incremental technique below.

We compare both partial trees and updated beliefs at the
leaves of the trees when we expand the policy tree at every
time step. We terminate the comparison once there is any
unmatched behavior in the paths; otherwise, we expand the
trees until the depth of the partial trees reaches the max-
imum value qU . In addition, we do not further expand a
partial tree at the end of a policy path if the path is identi-
cal and the divergence of updated beliefs is not larger than
ǫ. This is because the equivalence of future behavior can

be sufficiently determined without checking the unexpanded
partial trees. The qL value is the minimum length of all
paths when the comparison terminates. The procedure is an
incremental policy comparison for the (ǫ, qL, qU )-BE identi-
fication, called ǫ-BE-I. We illustrate the procedure using an
example in Fig. 4. The example is constructed in the T iger
problem domain - well studied in the POMDP literature.
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Figure 4: ǫ-BE-I, (a)-(c), and ǫ-BE-P, (d), for

(ǫ, qL, qU )-BE identification.

Example: We are checking whether two models of agent
j, m1 and m2, are (ǫ, qL, qU )-BE given the approximation
amount ǫ. Assuming that b0

1 and b0
2 are their initial beliefs

and the mixing rate γF is computed in the domain, we cal-
culate the qU value 1 in Eq. 1 that will serve as the upper
bound for iterating the comparison. Since DKL(b0

1||b
0
2) is

larger than ǫ, we need to build the root nodes for the policy
trees that are solutions of two models respectively. We then
update their initial beliefs into new ones given possible ob-
servations (GL and GR) because both trees have identical
actions L at time t=1 (Fig. 4(a)). We compute the diver-
gences of each pair of new beliefs given the same observa-
tion like DKL(b1,1

1 ||b1,1
2 ) and DKL(b1,2

1 ||b1,2
2 ). Suppose that

DKL(b1,1
1 ||b1,1

2 ) is still larger than ǫ while DKL(b1,2
1 ||b1,2

2 ) is
less than ǫ. We must expand the policy tree following the
path {L, GL}, but will not continue the expansion in the
other path {L, GR} at t=2 (Fig. 4(b)). We say that this
path is blocked (denoted by ×) and will not be considered
for a further expansion. The minimum path length qL is now
found and is equal to 1. We compare the policies following
the path {L, GL}, and update their beliefs if the policies are
equivalent at t=2. We repeat the same procedure at t=3
and so on until either the maximal depth qU is approached
or no policy paths can be further expanded (Fig. 4(c)). The
incremental procedure may generate a small size of the par-
tial policy trees for identifying the equivalence between m1

and m2. For the same identification purpose, the previous
algorithm, ǫ-BE-P, needs to construct and compare the par-
tial policy trees that expand all paths to the maximal length

1We may predefine the qU value if it can’t be computed in
Eq. 1



qU (Fig. 4(d)).
In addition, we observe that the depth value q can’t be

calculated in Eq. 1 if the mixing rate γF becomes zero. To
run the ǫ-BE-P algorithm, we need to specify the q value
even given the known approximation amount ǫ. This results
in a partial policy tree that is arbitrarily large. We need to
check the equality for all paths in the partial tree for the
identification purpose. On the other hand, the incremental
algorithm, ǫ-BE-I, employs ǫ as the threshold value to prune
the partial trees while it performs the path comparison and
expands the trees. The predefined depth qU acts as an up-
per bound value to terminate the identification process if it
is necessary. In summary, the incremental policy compari-
son algorithm becomes a universal approach for identifying
approximately BE models.

3.3 Algorithm
We present the incremental policy comparison algorithm

for identifying (ǫ, qL, qU )-BE between two models in Fig. 5.
As mentioned in the previous section, the algorithm ter-
minates the identification process when any of the follow-
ing conditions is met: (a) Initial beliefs diverge at most
ǫ and (ǫ, qL, qU )-BE of two models are immediately ascer-
tained (line 6); (b) Any unmatched policy is detected and
the models are not (ǫ, qL, qU )-BE (line 11); (c) (ǫ, qL, qU )-BE
is confirmed for two models when either no path can be fur-
ther expanded or the depth qU is approached (lines 12-14).
By doing this, we can avoid the expansion of entire depth-
qU trees while achieving the identification of (ǫ, qL, qU )-BE
between two models.

ǫ-BE-I (Models, mj,l−1 and m̂j,l−1, Horizon T , and
parameters, γF and ǫ)

1. Case γF ∈ (0, 1]: Compute qU according to Eq. 1
2. Case γF =0: Specify qU ≤ T
3. For t=1 to qU do

4. If DKL(bt−1,k
mj,l−1

||bt−1,k
m̂j,l−1

) ≤ ǫ

5. Case t >1: Block the path h
t,k
mj,l−1

(ht,k
m̂j,l−1

)

6. Case t=1: Return True and Break
7. else

8. If h
t,k
mj,l−1

= h
t,k
m̂j,l−1

9. Case t<T : Expand the t-length paths and

compute the updated belief b
t,k
mj,l−1

(bt,k
m̂j,l−1

) given

the path h
t,k
mj,l−1

(ht,k
m̂j,l−1

)

10. Case t=T : Return True
11. else Return False and Break

12. If All paths h
t,k
mj,l−1

(ht,k
m̂j,l−1

) are blocked

13. Return True
14. Return True

Figure 5: An incremental algorithm, ǫ-BE-I, for de-

termining the equivalence of two models given the

approximate amount ǫ.

ǫ-BE-I differs from ǫ-BE-P since it compares only a sub-
set of depth-qU trees. It blocks the path hqr ,k

mj,l−1
(hqr ,k

m̂j,l−1
)

for a further comparison when the divergence of beliefs,
DKL(bqr ,k

mj,l−1
||bqr ,k

m̂j,l−1
), is smaller than ǫ at time step qr. No-

tice that the partial trees succeeding to hqr ,k
mj,l−1

(hqr ,k

m̂j,l−1
)

may not be identical although the updated beliefs have a

small amount of divergence. Consequently, ǫ-BE-I may re-
sult in grouping more approximately BE than ǫ-BE-P.

4. COMPUTATIONAL SAVINGS AND ER-
ROR BOUND

Algorithms for determining (ǫ, qL, qU )-BE of a pair of mod-
els mainly perform the path comparison in policy trees. The
complexity is proportional to the number of comparisons re-
quired to approximately decide the equivalence. For the
ǫ-BE-P algorithm, we need to compare every path in partial
trees of depth-q. Since there are a maximum of |Ωj |

qU −1

leaf nodes in a depth-qU tree, the complexity of ǫ-BE-P is
O(|Mj,l−1|

2|Ωj |
qU ) where |Mj,l−1| is the number of can-

didate models. On the other hand, the ǫ-BE-I algorithm
prunes the paths while it traverses a depth-qU tree from
the root. This may result in an asymmetric partial tree
where the number of leaf nodes is N where N ≪ |Ωj |

qU −1.
Meanwhile the ǫ-BE-I algorithm needs to compare beliefs for
which the number is also bounded by N . Consequently, the
complexity of ǫ-BE-I becomes O(2|Mj,l−1|

2N). In addition,
ǫ-BE-I involves the belief calculation in the procedure that
costs little on propagating beliefs in solved models.

Both algorithms preclude storing entire policy trees that
contain (|Ωj |)

T−1 possible paths. For the ǫ-BE-P algorithm,
we maintain at most 2(|Ωj |)

qU−1 paths (qU ≤ T ) at each
time step when a pair of models are under the identification.
For the ǫ-BE-I algorithm, we need to store only 2N paths
each of which has the length bounded by qU . Hence ǫ-BE-I
achieves much better memory efficiency compared to ǫ-BE-
P.

We analyze the error in the value of j’s predicted behavior.
An error occurs when a behaviorally distinct model, mj,l−1,
is grouped with the model, m̂j,l−1, given an approximation
amount ǫ. Let mj,l−1 be the model associated with m̂j,l−1,
resulting in the worst error. Let αT and α̂T be the exact
entire policy trees obtained by solving the two models, re-
spectively. Then, the error is: ρ = |αT ·b0

mj,l−1
−αT ·b0

m̂j,l−1)|.

As ǫ-BE-I starts to prune the path at the length qL. The
error in the worst case becomes:

ρ = |αT−qL · b
qL
mj,l−1

− αT−qL · b
qL

m̂j,l−1
|

= |αT−qL · b
qL
mj,l−1

+ α̂T−qL · b
qL
mj,l−1

− α̂T−qL · b
qL
mj,l−1

−αT−qL · b
qL

m̂j,l−1
| (add zero)

≤ |αT−qL · b
qL
mj,l−1

+ α̂T−qL · b
qL

m̂j,l−1
− α̂T−qL · b

qL
mj,l−1

−αT−qL · b
qL
m̂j,l−1

| (α̂T−qL · b
qL
m̂j,l−1

≥ α̂T−qL · b
qL
mj,l−1

)

= |(αT−qL − α̂T−qL ) · (b
qL
mj,l−1

− b
qL
m̂j,l−1

)|

(Hölder’s ineq.)
≤ |αT−qL − α̂T−qL |∞ · |(b

qL
mj,l−1

− b
qL

m̂j,l−1
)|1

(Pinsker’s ineq.)
≤ |αT−qL − α̂T−qL |∞ · 2DKL(b

qL
mj,l−1

||b
qL

m̂j,l−1
)

≤ (Rmax
j − Rmin

j )(T − qL) · 2ǫ (by definition)

Here, Rmax
j and Rmin

j are the maximum and minimum
rewards of j, respectively. This error bound is not tight as
that of ǫ-BE-P which is (Rmax

j −Rmin
j )(T−qU )·2ǫ when qL <

qU . The gap is due to the utilization of ǫ on approximating
BE at different depths as previously mentioned. We expect
that the subtle difference has a limited impact on the I-DID
solutions by clustering approximately BE models.
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Figure 6: Performance profile obtained by solving level 1 I-DIDs for the different problem domains using ǫ-BE-I,

ǫ-BE-P and DMU. (a) Average rewards; (b) Efficiency comparison; and (c) Reduced model space.

5. EXPERIMENTAL RESULTS
We implemented ǫ-BE-I algorithm for determining (ǫ, qL, qU )-

BE of models and use it to group models into a class. We
then select one representative model for each class while
pruning others, similarly to using exact BE. We embed the
procedure into the algorithm for solving I-DIDs. We also
compare it with ǫ-BE-P algorithm (letting q=qU=qL) which
serves as a baseline on approximating (ǫ, qL, qU )-BE. In ad-
dition, we compare both algorithms with one exact BE ap-
proach, called discriminative model update (DMU), previ-
ously proposed to solve I-DIDs [5]. DMU approach clus-
ters BE models by comparing their entire policy trees and
updates only those models that will be behaviorally dis-
tinct from existing ones. We evaluate all of these three ap-
proaches (namely ǫ-BE-I, ǫ-BE-P and DMU) when they are
used to solve level 1 I-DIDs of increasing horizons over four
problem domains. Relevant information on domain dimen-
sions and minimal mixing rates are listed in Table 1. Note
that UAV5 - an extended version of the two-agent unmanned
aerial vehicle (UAV) problem [4, 19] - is the largest domain
so far used to evaluate the I-DIDs.

We formulate level 1 I-DIDs of increasing horizons for the
problems and solve them using the three approaches. We
show that the quality of the policies generated by ǫ-BE-I ap-
proaches that of ǫ-BE-P given the same approximation mea-
sure. Meanwhile, the solution quality generated by both ap-
proximate techniques converges to that of the exact DMU as

Domains γF |S| |Ai| |Aj | |Ωi| |Ωj |
Tiger [9] 0 2 3 3 6 3

UAV3 [4, 19] 0.2 25 5 5 4 5
Concert [19] 0.5 2 3 3 4 2

UAV5 0.2 81 5 5 4 5

Table 1: Domains used to evaluate algorithms for solv-

ing I-DIDs.

ǫ decreases (with the corresponding increase in qU ). We also
show that in most cases ǫ-BE-I is able to identify approxi-
mately BE models without constructing the partial trees of
a full size. This verifies the utility of using the incremental
technique for the BE identification purpose. In addition, we
demonstrate that ǫ-BE-I further reduces the model space
and performs better than ǫ-BE-P on the issue of solution
scalability.

In Fig. 6(a), we report the average rewards gathered by
simulating the I-DID solutions over 1,000 runs. Each run
of simulation is executed by randomly picking up the true
model of j according to i’s belief. We used a horizon of
10 for the Concert domain, 8 for the Tiger and 6 for the
UAV3. For a given number of initial models Mj,0, ǫ-BE-I
obtains similar average rewards in comparison to ǫ-BE-P. As
expected, their solutions improve and converge toward the
exact method DMU as ǫ reduces.
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Figure 7: Likelihood that ǫ-BE-I terminates at qL in the setting of (a) qU=5; (b) qU=6; and (c) qU=4.

Fig. 6(b) confirms our intuition on the favorable efficiency
of ǫ-BE-I technique. For a given allocated time, ǫ-BE-I ob-
tains larger rewards than other approaches including both
DMU and ǫ-BE-P. As we show in Fig. 6(c), the number of
models in a model node drops when ǫ-BE-I is employed to
prune the model space. This is because ǫ-BE-I clusters more
approximately BE models using a small set of policies.

In Fig. 7, we show the likelihood that ǫ-BE-I terminates
the comparison before reaching the maximum length, qU ,
of all paths in the partial policy trees. We compute this
likelihood as the percentage of occurrences for each qL value
under a given ǫ. The cases, qL < qU , are often observed
to terminate the policy comparison especially for a small ǫ
value (with the corresponding large qU value).

In Table 2, we show the running times of three techniques
for solving problems of increasing horizons. In obtaining
the run times for the approximations, we adjusted the cor-
responding parameters so that the quality of the solution by
each approach was similar to each other. ǫ-BE-I achieves
the reduced running times and improved scalability over all
domains. In particular, for the large UAV5 domain, we were
able to solve the I-DIDs for more than 8 time steps.

Level 1 T Time (s)
DMU ǫ-BE-I ǫ-BE-P

Concert 6 0.29 0.11 0.31
10 2.3 0.22 1.9
25 * 9.1 13.1

Tiger 6 0.34 0.16 0.21
8 1.3 0.21 0.37
20 * 2.49 3.1

UAV3 6 13.1 8.1 8.9
8 161 19 27
10 * 48 55
20 * 76 98
25 * 132 *

UAV5 4 19.3 7.9 9.8
6 * 16 31
8 * 60 *

Table 2: ǫ-BE-I scales better than other approaches.

Experiments were run on a Linux platform with Intel

Core2 2.4GHz with 4GB of memory.

6. RELATED WORK
I-DIDs [6] emerge as an important framework on modeling

multiagent decision making problems. Models for the similar
purpose include multiagent influence diagrams (MAIDs) [10],
and networks of influence diagrams (NIDs) [7, 8]. These for-
malisms structure the complex problem domains by decom-

posing the situation into chance and decision variables, and
the dependencies between the variables. MAIDs objectively
analyze the game, efficiently computing the Nash equilib-
rium profile by exploiting the independence structure. NIDs
extend MAIDs to include agents’ uncertainty over the game
being played and over models of the other agents. Both
MAIDs and NIDs provide an analysis of the game from an
external viewpoint, and adopt Nash equilibrium as the so-
lution concept. However, equilibrium is not unique – there
could be many joint solutions in equilibrium with no clear
way to choose between them – and incomplete – the solu-
tion does not prescribe a policy when the policy followed by
the other agent is not part of the equilibrium. Specifically,
MAIDs do not allow us to define a distribution over non-
equilibrium behaviors of other agents. Furthermore, their
applicability is limited to static single play games. Interac-
tions are more complex when they are extended over time,
where predictions about others’ future actions must be made
using models that change as the agents act and observe. I-
DIDs seek to address this gap by offering an intuitive way
to extend sequential decision making as formalized by DIDs
to multiagent settings.

As we mentioned before, the complexity of I-DIDs is mainly
due to the exponential growth in the candidate models over
time. Using the insight that models whose beliefs are spa-
tially close are likely to be behaviorally equivalent, Zeng
et al. [18] employed a k-means approach to cluster models
together and select K representative models in the model
node at each time step. This approach needs to expand all
models before clustering is applied, which consumes a large
amount of memory on storing the models. A recent ap-
proach [5] preemptively avoids expanding models that will
turn out to be behaviorally equivalent to others in the new
time step. By discriminating between model updates, the
approach generates a minimal set of models in each non-
initial model node. This line of work exploits the concept
of BE, introduced earlier [13, 12]. The developed method
quickly turns to be inefficient since it requires to maintain
and compare the entire policy trees for identifying BE mod-
els. In parallel, Zeng et al. [15] attempted to cluster models
using K most probable paths in the policy tree. However,
the proposed technique is facing an unsolved problem on
computing path probabilities. Similarly, the attempt using
subjectivly equivalent models to cluster models requires the
prediction on behavior of the modeling agent [3]. Another
efficient way to reduce the model space is achieved by clus-
tering models that are actionally equivalent [16]. Recently,



Zeng and Doshi [17] compare various I-DID solutions and
demonstrate their utilities in more problem domains.

7. DISCUSSION
I-DIDs provide a graphical formalism for modeling the

sequential decision making of an agent in an uncertain mul-
tiagent setting. The increased complexity of I-DIDs is pre-
dominantly due to the large space of candidate models and
its exponential growth over time. Previous solutions to I-
DIDs limit the model growth mainly by clustering BE mod-
els at each step. We presented an improved version of using
partial policies to identify BE models. We defined approxi-
mately BE based on a partial policy tree that has an asym-
metric structure and allows different lengths for its paths.
Our definition avoids building a full size of the partial trees
and clusters more models that are approximately BE. We
showed that our new approach gains much computational
savings and achieves better scalability over the state of the
art approach. As we note that our approach is developed
based on the contraction property of problem domains, we
may further refine the approach by exploiting the relevant
property.
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