
Learning and Reasoning about Norms
using Neural-Symbolic Systems

Guido Boella1, Silvano Colombo Tosatto1,2, Artur D’Avila Garcez3,

Valerio Genovese1,2, Alan Perotti1, and Leendert van der Torre2

1University of Turin, Italy. {guido, genovese, perotti}@di.unito.it

2CSC, University of Luxembourg. {silvano.colombotosatto, leon.vandertorre}@uni.lu

3City University London. aag@soi.city.ac.uk

ABSTRACT
In this paper we provide a neural-symbolic framework to
model, reason about and learn norms in multi-agent systems.
To this purpose, we define a fragment of Input/Output (I/O)
logic that can be embedded into a neural network. We ex-
tend d’Avila Garcez et al. Connectionist Inductive Learning
and Logic Programming System (CILP) to translate an I/O
logic theory into a Neural Network (NN) that can be trained
further with examples: we call this new system Normative-
CILP (N-CILP). We then present a new algorithm to han-
dle priorities between rules in order to cope with norma-
tive issues like Contrary to Duty (CTD), Priorities, Excep-
tions and Permissions. We illustrate the applicability of the
framework on a case study based on RoboCup rules: within
this working example, we compare the learning capacity of a
network built with N-CILP with a non symbolic neural net-
work, we explore how the initial knowledge impacts on the
overall performance, and we test the NN capacity of learn-
ing norms, generalizing new Contrary to Duty rules from
examples.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous

General Terms
Algorithms, Experimentation, Theory, Legal Aspects

Keywords
Knowledge representation, Single agent reasoning, Compu-
tational architectures for learning, Single agent learning

1. INTRODUCTION
In artificial social systems, norms are mechanisms to ef-

fectively deal with coordination in normative multi-agent

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),

4-8 June 2012, Valencia, Spain.

Copyright c� 2012, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

systems (MAS). An open problem in AI is how to equip
agents to deal effectively with norms that change over time
[3], either due to explicit changes made by legislators or due
to different interpretations of the law by judges and referees.

In this paper we combine Input/Output (I/O) logic [11]
with the neural-symbolic paradigm [7] in order to address
the following research question:

- How to define a formal framework for reasoning and learn-
ing about norms in a dynamic environment?

Input/Output (I/O) logic [11] is a symbolic formalism
used to represent and reason about norms. I/O logic pro-
vides some reasoning mechanisms to produce outputs from
the inputs, and each of them bears a specific set of features.

The neural-symbolic paradigm of [7] embeds symbolic logic
into neural networks. Neural-symbolic systems provide trans-
lation algorithms from symbolic logic to neural networks and
vice-versa. The resulting network is used for robust learn-
ing and computation, while the logic provides (i) background
knowledge to help learning (as the logic is translated into the
NN) and (ii) high-level explanations for the network models
(when the trained NN is translated into the logic).CILP is
an advanced neural-symbolic systems and it has been shown
an effective tool in exploiting symbolic background knowl-
edge (i.e. on incomplete domain theory) with learning from
examples.

We study how to represent I/O within the computational
model of neural networks (NNs). We choose I/O logic be-
cause it presents a strong similarity with NNs: both have a
separate specification of inputs and outputs. We exploit this
analogy to encode symbolic knowledge (expressed in terms
of I/O rules) into NNs, and then we use the NN to reason
and learn new norms in a dynamic environment.
Hence two Research sub-Questions are:

- How to represent I/O logic rules in neural networks?
- How to refine normative rules and learn new ones?

Below, we define the language used to express norms and
we present an extension of the“Connectionist Inductive Learn-
ing and Logic Programming” system (CILP) [7], called
Normative-CILP (N-CILP).

With the exception of game-theoretic approaches [17, 5,
18], few machine learning techniques have been applied to
tackle open problems like learning and/or revising new norms
in open and dynamic environments.

We show how to use NNs to cope with some of the un-
derpinnings of normative reasoning: permissions, contrary
to duties (CTD) and exceptions by using the concept of pri-
orities between the rules.

We also tested our tool on a case study based on the
RoboCup competition, representing a significant set of the
rules of the game from [13] in I/O logic and then studying
the capability of the tool in learning new norms and per-
forming reasoning. The results show that the I/O encoding
improves the capacity of the NN of learning norms.

The contribution of this work is in studying and combin-
ing symbolic and sub-symbolic representations to provide
a flexible and effective methodology for learning, normative
reasoning and specification in MAS. In this process, we have
also made a contribution to the area of neural-symbolic inte-
gration: by studying neural-symbolic systems from the point
of view of normative reasoning we have been able to propose
a new translation of priorities into object-level negation.
From a theoretical perspective, we are interested in study-
ing the similarities between I/O logic and neural networks.
From a practical point of view, it is hoped that the network
model will lead directly to an efficient hardware implemen-
tation. The normative CILP tool has been implemented
in Java and is available for download (together with the
dataset) at http://www.di.unito.it/∼genovese/tools/NNSS.zip.
The experiments reported here indicate how promising is
this line of research.

The paper is structured as follows: In section 2 we de-
scribe the relevant background about the neural-symbolic
approach, I/O logic and normative agents. In Section 3 we
introduce our approach and a motivating example. In Sec-
tion 4 we show how to encode I/O logic into a neural-network
using the Normative-CILP translation algorithm. In Sec-
tion 5 we present and discuss the results obtained from the
experiments. Section 6 concludes the paper and discusses
directions for future work.

2. RELATED WORK

2.1 Neural-Symbolic approach
The main purpose of a neural-symbolic approach is to

bring together connectionist and symbolic approaches [7].
In this way it is possible to exploit the strengths of both
approaches and hopefully avoid their drawbacks. With such
approach we are able to formally represent the norms gov-
erning the normative system in a neural network. In addi-
tion we are also capable of exploiting the instance learning
capacities of neural networks and their massive parallel com-
putation.

Algorithms like KBANN [19] and CILP [8] provide a trans-
lation of a symbolic representation of knowledge into a neu-
ral network. The advantage of CILP is that it uses a prov-
ably sound translation into single-hidden layer networks with
sigmoid activation functions. This allows the efficient use of
backpropagation for learning. In what follows, we use a vari-
ant of CILP since we are interested in the integration of
reasoning and learning capabilities.

2.2 I/O Logic
To describe the norms regulating the system we use I/O

Logic [11]. Rules used in I/O logic are defined as couples
R1 = (A,B), where both A and B represent sets of lit-
erals that can be in disjunctive or conjunctive form. A is
called the antecedent of the rule, while B is the consequent:
A must hold for the rule to be activated, and B is conse-
quently activated. I/O logic provides some reasoning mecha-
nisms to produce outputs from the inputs, and each of them
bears a specific set of features. The simple-minded output
does not satisfy the principle of identity, but it allows the
strengthening input, conjoining output and weakening out-
put features. The basic output and reusable output mecha-
nisms allow the additional features of input disjunction and
reusability, while the reusable basic output approach satisfies
both of the above. A detailed description of the I/O logic
mechanisms and features can be found in [11], [12].

Boella et al. [1] described how a connectionist approach
like neural networks can embed the different features of I/O
logic: within this perspective, it is possible to use translation
algorithms (like KBANN or CILP) to reproduce the mecha-
nisms of I/O logic. In many examples of this paper, since we
are dealing with normative reasoning, the consequents of the
rules will be expressed using the O operator: for instance,
(getF ine,O(payF ine)) represent the norm If you are given
a fine, you ought to pay it.

2.3 Normative agent
In this paper we focus on modeling and reasoning about

what a normative agent [2] is obliged or allowed to do in
given states of the surrounding environment. Normative rea-
soning requires agents to deal with specific problems such as
dilemmas, exceptions and contrary to duties.

Dilemmas: two obligations are said to be contradictory
when they can not be accomplished together. A possible
example of contradictory normas is the dilemma. This usu-
ally happens when an agent is subject to different normative
codes (i.e. when an agent has to follow the moral and the
legal code). Anyway it is outside the scope of this paper to
discuss about how to overcome dilemmas, as we are focusing
on how to use priorities to regulate exceptions and contrary
to duties.

Priorities are used to give a partial ordering between
norms. This is useful when, given two applicable norms, we
always want one to preempt the other, for instance when
dealing with exceptions.

We encode priorities among the norms by using negation
as failure (∼). Given two norms R1 = (A1 ∧ A3,O(β1))
and R2 = (A2 ∧A3,O(β2)) and a priority relation R1 � R2

between them (such that the first norm has priority), we
encode the priority relation by modifying the antecedent of
the norm with lower priority. Specifically, we include in the
antecedent of the norm with the lower priority the negation
as failure of the literals in the antecedent of the higher pri-
oritized norm that does not appear in the antecedent of the
lower priority norm. We do so in order to ensure that, in
a situation where both (unmodified) norms would be appli-
cable, the newly inserted negation-as-failure atoms in the
antecedent of the modified lower-prioritize rule evaluate to
false and make the whole rule not applicable. Considering

for example the two rules given above, we have to modify
R2. The only atom appearing in R1’s antecedent and not in
R2’s antecedent is A1, and therefore we introduce ∼ A1 as
a conjunct in R2’s antecedent. After embedding the prior-
ity, the second rule becomes R�

2 = (A2∧ ∼ A1 ∧A3,O(β2)).
Note that in a potentially conflicting situation when A1, A2

and A3 hold, R1 and R2 are applicable, but R�
2 is not, thus

avoiding the conflict.

Exceptions occur when, due to particular circumstances,
a norm should be followed instead of another one. Suppose
that a norm R1 = (α,O(β)) should be applied in all the
situations containing α. For exceptional situations we con-
sider an additional norm R2 = (α ∧ γ,O(¬β)). The latter
norm should be applied in a subset of situations w.r.t. R1:
specifically all those when, in addition to α, also γ holds.
We can call situations where both α and γ hold exceptional
situations. In these exceptional situations both norms could
be applied. This would produce two contrasting obligations:
O(β) and O(¬β). To avoid this we add the following prior-
ity relation: R2 � R1. Therefore we modify the antecedent
of the norm with lower priority as described earlier. The re-
sult is a new norm R

�
1 = (α∧ ∼ γ,O(β)), that would not be

applied in the exceptional situations, avoiding the problem
of contrasting obligations.

Contrary to Duties: an important property of norms
is that they are soft constraints. Accordingly to this feature
they can be violated. Contrary to duties provide additional
obligations to be fulfilled when a violation occurs.

For example, consider a norm R1 = (α,O(β)) that should
be applied in all situations containing α and producing the
obligation O(β). As mentioned, norms can be violated,
therefore we can also define a norm that produces alterna-
tive obligations to be followed in case of a violation. Let this
new norm be R2 = (α∧¬β,O(γ)). The latter norm contains
in its antecedent both the antecedent of R1 and the negation
of its consequent. In this way it describes which should be
the alternative obligation to O(β) in the case that it can not
be achieved, in this example O(γ).

We use a priority relation between the two norms in order
to avoid the generation of the obligation O(β) in case it is
already known that it is not satisfiable. We add then the
following priority relation R2 � R1 that modifies the first
norm as follows: R�

1 = (α∧ ∼ ¬β,O(β)).

Permissions: an important distinction between oughts
and permissions is that the latter will not be explicitly en-
coded in the neural network. In our approach we consider
that something is permitted to the agent if not explicitly for-
bidden (note that we consider the ought of a negative literal
as a prohibition). Due to this we consider that rules with a
permission in their consequent implicitly have priority over
the rules that forbid the same action. For example, consider
two rules R1 = (A1,P(β1)), R2 = (A2,O(¬β1)). The first
rule permits β1 and the second forbids it. In this case we
assume the following priority relation R1 � R2 holds.

3. ARCHITECTURE AND CASE STUDY
Our goal is to allow the agent to learn from experience

and take decisions which respect the norms she is subject
to. Thus, the agent needs to know what is obligatory and

!"#$%&'(
)*%+&,-.,

/,012&
/,3+%14 5/6789/:5/;

<=5/;
>?@AB,21*AC1%#A
5D2#E&,F

<(3'%*F

>G@AH7BI

>J@AKE-23,A3L,A)M

Figure 1: Normative agent architecture.

forbidden according to norms (conditional rules) in any situ-
ation in real time. What is obligatory can eventually become
an action of the agent, while what is forbidden inhibits such
actions, like in agent architectures [6].

Rules may change: the normative environment changes
over time so the agent should be flexible enough to adapt its
behavior to the context using as information the instances
of behaviors which have been considered illegal.

Figure 1 describes our approach. It starts from the sym-
bolic knowledge-base (KB) of norms contained in the agent,
transforming it into a neural network (NN) using an exten-
sion of the CILP algorithm (introduced below). The NN
is structured as follows: input neurons of the network rep-
resent the state of the world (e.g., in the robocup domain,
kickoff, have ball, etc.), while the output neurons represent
the obligations of the agent, e.g., pass the ball (i.e. cooper-
ate), minimize impact, etc., or the prohibitions, e.g., do not
pass, do not score own goal, etc. The NN is used as part of
the controller for the agent and, given its ability to learn, it
is hoped to give the agent the required flexibility.

We then train the NN on instances of robocup match be-
haviors to adapt the agent to the current context. E.g.,
given a set of situations where the referee punishes an agent
for kicking the ball backwards, we specify them as learning
instances where there is the prohibition to kick the ball back-
wards. The NN can generalize the conditions under which
this prohibition holds. To learn from behaviors which are
regulated by norms, the NN must be able to cope with the
peculiarities of normative reasoning.

In our tests we used a version of the RoboCup rules from
the 2007 competition where, for simplicity, teams are com-
posed of two players. To make things more interesting, in
addition to those rules, we have added to the KB some norms
representing the coach’s directions that regulate the behav-
ior of the robots during the match.

Each rule is of the form IF α THEN β. The precondition α

is a set of literals in conjunctive form while the postcondition
β can be either an obligation or a permission concerning a
single literal. Rules like IF � THEN O(¬impact opponent)
and IF have ball ∧ opponent approaching THEN O(pass)
contain obligations in their postconditions. Differently, a
rule like IF goalkeeper∧inside own area THEN P(use hands)
contains a permission.

It is possible, however, that the environment requires the
agent to adopt some sub-optimal behavior in circumstances
when the optimal solution is not available. We use priorities
to manage general and specific rules, creating a general-to-
specific superiority relation and dealing with sub-optimal
and exceptional situations. The two rules that compose an
instance of contrary to duty are in the following configu-
ration: the first one IF α THEN O(β) and IF ¬β THEN
O(γ); β represents the obligation to be fulfilled in an or-

¬α β γ

R1 R2

˜

φ¬φ

ρ σ

R3

˜

ψ

Figure 2: Example of I/O logic embedding in a NN

dinary situation α. If the agent is in a state of the world
where β cannot be fulfilled, the second rule overcomes the
first one through the use of priorities. For instance, IF �
THEN O(¬impact opponent) ≺ IF impact opponent THEN
O(minimize impact). Intuitively, we use (≺) such that
(y) ≺ (x) means that, whenever the conclusion of rule (x)
holds, the conclusion of (y) does not hold.

Figure 2 shows a neural network built from four rules:
R1 = (¬α ∧ β ∧ γ,O(¬φ)), R2 = (γ ∧ ρ,O(φ)), R3 =
(γ,O(¬ψ)) and the permission rule R4 = (γ ∧ σ,P(ψ)).
In addition, a priority ordering R2 � R1 is expected to in-
hibit the activation of the first rule whenever the second rule
applies. This priority is embedded within the rules as de-
scribed earlier and, as a result, we obtain a new first rule:
R

�
1 = (¬α ∧ β ∧ γ∧ ∼ ρ,O(¬φ)). Further, the implicit

priority of R4 over R3 embeds in R3 a negative literal ob-
taining a new rule, as follows: R�

3 = (γ∧ ∼ σ,O(¬ψ)). The
neural network is built, then, from rules R

�
1, R2 and R

�
3

(permission rules are not encoded in the network and are
only used to define the priorities). Dotted lines in the figure
indicate links with negative weighted which, in turn, imple-
ment the negation in the rules R

�
1 and R

�
3. Notice how

input and output neurons in the network have a natural
correspondence with inputs and outputs in I/O logic. Each
hidden neuron represents a rule, e.g. R1, and the network,
sometimes called an AND/OR network, is supposed to com-
pute conjunctions in its hidden layer and disjunctions in its
output layer. In what follows, we detail the algorithm that
achieves this translation and its proof of soundness w.r.t. an
answer set semantics. Notice that, although the network is
associated with a logic programming semantics, it has very
naturally an input and output layer that make it appropri-
ate, rather like I/O logic, for normative reasoning. This will
be exemplified later.

4. NEURAL NETWORKS FOR NORMS
In this section we introduce a new approach for coding

(a fragment of) I/O logic into a neural network. The main
intuition behind this methodology is that, although logic
programs do not capture the concepts of inputs and out-
puts, an extended logic program-based neural network does,
on a purely structural level: inputs and outputs in I/O log-
ics correspond to the input and output layers of the neural
network.

Neural-symbolic algorithms (like CILP) provide a sound
and complete translation of logic programs (LP) into a neu-
ral network (NN). Unfortunately, LP is not directly suitable
for reasoning about normative systems (in particular about
CTD and dilemmas). This is due to the fact that LP does

not have an explicit representation of inputs.
A fact a in an LP could be mapped, at first sight, as

the input of the NN, so to make rules like a → b fire to
produce output b. At the same time, a should be also among
the output of the network, due to identity property of the
underlying logic: a follows from a. But this would require
to implement identity property in the NN, making it more
complicated.

CILP does not need to represent a fact as an initial input,
thanks to transitivity property of logic, which is expressed
by the fact that the NN is recurrent: every output neuron
is connected to the corresponding input neuron.

If the fact a was directly represented as an output, it would
not need to be represented as an explicit input, since the
transitivity property allows to propagate output to input.

To minimize the structure of the network, CILP translates
a fact a (representing the input to other rules) directly as
an output a of the neural network and, given a rule like
a → b, to derive b as output, the output a becomes the
”input” of the NN due to the fact that the NN is recurrent:
every output becomes an input subsequently, rather than at
the initial iteration. So in a sense the NN resulting from
CILP given an LP returns always the same output after the
network stabilizes, since it has no explicit input.

In normative reasoning, as captured by IO logic, the in-
put does not become necessarily an output, since identity
does not hold. The reason is that the output is interpreted
as what is obligatory, thus, if a is in the input, it is not
necessarily the case that a is obligatory as well. Differently
from LP, what is in the input must be distinguished from the
output: a fact a cannot be modeled as an output which be-
comes an input due to transitivity. As an example, the logic
programs P1 = {∅} and P2 = {a → b} both have the empty
set as model, this is because LP semantics do not reflect the
meaning of the program rule. However, if we translate P1

and P2 with CILP we get two different networks, one with
an empty set of input and output nodes and the other with
a as the input note and b as output. The need to explicitly
reason about inputs and outputs of rules in normative sys-
tems has been put forward by Makinson and van der Torre
[11] in their Input-Output (I/O) Logic framework. In I/O
logic, norms are represented as ordered pairs of formulas like
(α, β), read as: if α is present in the current situation then
β should be the case. These two formulae are also named
correspondingly the input and the output, to make it clear
that the input of the norm is the current situation and what
is desirable for this situation is the output. A peculiarity of
I/O logic (shared with conditional logics) is that it does not
have (α, α) for any α (i.e. identity is not an axiom), while
in LP we always have α ← α. This input/output perspec-
tive corresponds straightforwardly to the intuition behind a
NN. However, to take advantage of the existing CILP algo-
rithm and its proof of soundness we translate (a simplified)
IO logic into LP to be processed by CILP without mapping
the input into atoms translated as output. Rather the input
is subsequently passed as input of the network producing an
output representing what is obligatory, where some input
appears in the output only if it is made obligatory by some
rule.

In CILP output nodes are always connected to input nodes
creating a recurrent network, to represent the transitivity
property. In normative reasoning transitivity is not always
accepted (since if you are obliged to do a and if a then you

are obliged to b, does not imply that you are obliged to do
b), thus the normative CILP thus extends CILP to account
for the fact that certain outputs should not be connected to
their corresponding inputs.

4.1 Mapping I/O Logic into Neural Networks
In this section, we first introduce a fragment of I/O logic,

then we present an embedding of such fragment into ex-
tended logic programs and finally, we discuss how to repre-
sent priorities between rules within extended logic programs.

Definition 1. An extended logic program is a finite set
of clauses of the form L0 ← L1, . . . ,∼ Ln,∼ Ln+1, . . . ,∼
Lm, where Li (0 ≤ i ≤ n) is a literal i.e., an atom or a
classical negation of an atom denoted by ¬ and ∼ LJ (n+1 ≤
j ≤ m) is called default literal where ∼ represents negation
as failure.

Given an extended logic program P we identify its answer
sets [9] as EXT (P).

Definition 2 (I/O Normative Code). A normative
code G = �O,P,�� is composed by two sets of rules r : (α, β)
and a preference relation � among those rules. Rules in
O are called obligations, while rules in P are permissions.
Rules in O are of the type (α, β) where

• α = α1 ∨ . . . ∨ αn is a propositional formula in dis-
junctive normal form i.e., αi (for 0 ≤ i ≤ n) is a con-
junction of literals (¬aαi1 ∧ . . . ∧ ¬aαim ∧ aαi(m+1)

∧
. . . ∧ aα1(m+p)

). Without loss of generality we assume
that the first m literals are negative while the others
(m+ p)− 1 are positive.

• β = ¬bβ1 ∧ . . .∧¬bβm ∧ bβm+1 ∧ . . .∧ bβm+p is a finite
conjunction of literals.

While rules in P are of type (α, l) where α is the same as for
obligations but l is a literal.

As put forward in [4] the role of permissions is to undercut
obligations. Informally, suppose to have a normative code
G composed of two rules:

1. b is obligatory (i.e., (�, b) ∈ O).
2. If a holds, then ¬b is permitted (i.e., (a,¬b) ∈ P).

We say that the rule (a,¬b) has priority over (�, b), i.e.,
b is obligatory as long as a does not hold, otherwise ¬b is
permitted and, therefore b is not obligatory anymore.
The semantics of such fragment of I/O is defined by the

rules in Fig 3. I(G) is the set of literals in the antecedent
of rules in G. The rules are a syntactical restriction of the
those presented in [11].
The fact that we consider only I/O rules as defined in

Definition 2 permits us to define a natural embedding of
I/O rules and extended logic programs.

Definition 3. We define a function �·� which embeds
I/O logic rules into extended logic programs

�r : (α1 ∨ . . . ∨ αn, β1 ∧ . . . ∧ βm)� =
{r11 : (�β1�out ← �α1�in); . . . ; r1m : (�βm�out ← �α1�in)

; . . . ;
rn1 : (�β1�out ← �αn�in); . . . ; rnm : (�βm�out ← �αn�in)}

�l1 ∧ . . . ∧ ln�in/out = �l1�in/out, . . . , �ln�in/out

�a�in = in a �a�out = out a

�¬a�in = ¬in a �¬a�out = ¬out a

we call rules rij as instances of r and we informally write
rij ∈ Ints(r).

Notice that the program resulting from the application of
�·� has a unique model because it is negation-as-failure-free
(NAF). Given a set of obligations O, its closure O

� under
the rules of Fig. 3 exists and is finite.

Lemma 1. Given a set of obligations O = {(α1, β1), . . . , (αn, βn)}
and its closure O

� under the rules defined in Fig. 3 we have

If (α, β) ∈ O
� then �β�out ∈ E ∈

EXT ({�(α1, β1)�; . . . ; �(αn, βn)�} ∪ �α�in)

Proof. First, we notice that E is unique (see Corollary
4.1). The if direction is trivial while the only if can be proved
by showing that every application of the immediate conse-
quence operator T (as defined in [9]) can be encoded into an
application of the rules in Fig. 3.

We now show how to extend the preference relation � w.r.t.
rules generated with �·� as in Def. 3

Definition 4. Given a normative code G = �O,P,�� we
define a transformation Tro(·) such that Tro(G) = ��O�,P,��

� where �� is defined as follows:

• tij ��
t
�
i�j� , for all tij ∈ Inst(t) and t

�
i�j� ∈ Inst(t�) for

t, t
� ∈ O such that t � t

�.

For this reason, for a given normative code Tro(G), we de-
fine a further transformation Trp(·) defined as follows

Definition 5. Given a normative code Go = Tro(G) =
��O�,P,��� we define Trp(Go) = ��O�,P,����, where ��� is
defined as follows:

• For all p : (α, l) ∈ P, p ��� tij , for all tij : (α,¬l) ∈ �O�

We now discuss how to encode priorities between rules into
extended logic programs [15].

Definition 6. Given a preference relation between ri and
r such that ri � r for 1 ≤ i ≤ j,
Replace the clause r : L1, ..., Lp → Lq+1 by clause L1, ..., Lp,∼
L

1
p+1, ...,∼ L

1
q, ...,∼ L

j
p+1, ...,∼ L

j
q → Lq+1,

where ri(1≤i≤j) : L
i
p+1, ..., L

i
q → L

i
q+1;

Example 1. Suppose to have the following normative code
G = �{r : (a,¬b ∧ c)}, {p : (d, b)}, {}�, then Tro(G) = {�r11 :
(a,¬b); r12 : (a, c)}, {p : (d, b)}, {}� and Trp(Tro(G)) =
{�r11 : (a,¬b); r12 : (a, c)}, {p : (d, b)}, {p � r11�}.

Rules with permissions in the consequent, which are of
the form pi : Li1 ; . . . ;Lin ;Lin+1 ; . . . ;Lim → Lim+1 such
that, for any other rule r : Li1 ; . . . ;Lin → ¬Lim+1 (resulting
from the application of �G�) we impose pi � r. The role
of permission rules is to undercut (obligations rules) in �G�
and will not be encoded into the symbolic neural network
(every output encoded in the NN counts as an obligation,
permission are not represented in the network but something
is permitted if the contrary is not obligatory, see Section
4.2).

Lemma 2. Let P� = {r1, r2, ..., rn} be an extended pro-
gram with an explicit superiority relation � . Let P denote
the translation of P� into a program without �. We have
that EXT (P�) = EXT (P).

(αi1 ∧ . . . ∧ αin ,αo1)
(SI)

(αi1 ∧ . . . ∧ αin ∧ βi1 ,αo1)

(αi1 ∧ . . . ∧ αin ,αo1) (αi1 ∧ . . . ∧ αin ,αo2)
(CO)

(αi1 ∧ . . . ∧ αin ,αo1 ∧ αo2)

(α,αo1 ∧ αo2 ∧ . . . ∧ αon)
(WO)

(α,αo2 ∧ . . . ∧ αon)

(αi1 ∧ . . . ∧ αin , γo1) (βi1 ∧ . . . ∧ βin , γo1)
(DI)

((αi1 ∧ . . . ∧ αin) ∨ (βi1 . . .βin), γo1) with βi1 ∈ I(G)

(α1 ∨ α2 ∨ . . . ∨ αn,β)
(WI)

(α2 ∨ . . . ∨ αn,β)

Figure 3: Semantics for I/O Logic

We are interested in the translations above between P�
and P because it is well-known that CILP networks will al-
ways settle down in the unique answer set of P provided P is
well-behaved (i.e. locally stratified or acyclic or acceptable,
see [7]). This result will be explored further in what follows.

4.2 The N-CILP algorithm
In this section we introduce the translation algorithm we

have implemented in order to encode a normative code into
a feed-forward NN (with semi-linear neurons), namely the
Normative-CILP (N-CILP) algorithm. The proposed algo-
rithm differs from standard CILP [7] in how priorities are en-
coded into the resulting neural network and does not connect
input and output neurons that represent the same atom.

N-CILP
Given a normative code G

1. G� = Tro(G);G�� = Trp(G�)

2. Apply the encoding of priorities as described in Definition
6 to G��.

3. For each rule Rk = βo1 ← αi1 ; . . . ;αin ;∼ αin+1; . . . ;∼
αim /∈ P.

(a) For each literal αij (1 ≤ j ≤ m) in the input of the
rule. If there is no input neuron labeled αij in the
input level, then add a neuron labeled αij in the input
layer.

(b) Add a neuron labeled Nk in the hidden layer.

(c) If there is no neuron labeled βo1 in the output level,
then add a neuron labeled βo1 in the output layer.

(d) For each literal αij (1 ≤ j ≤ n); connect the respec-
tive input neuron with the neuron labeled Nk in the
hidden layer with a positive weighted arc.

(e) layer with a negative weighted arc (the connections
between these input neurons and the hidden neuron
of the rule represents the priorities translated with the
NAF).

(f) Connect the neuron labeled Ni with the neuron in the
output level labeled βo1 with a positive weighted arc
(each output in the rules is considered as a positive
atom during the translation, this means that if we
have a rule with a negative output ¬β, in the network
we translate an output neuron labeled β� that has the
same meaning of ¬β but for the translation purpose
can be treated as a positive output).

Proposition 1. For any normative code in the form of
an extended logic program there exists a neural network ob-
tained from the N-CILP translation algorithm such that the
network computes the answer set semantics of the code.

Proof. Def. 3.3 translates a normative code into an ex-
tended logic program having a single extension (or answer

set). From Lemma 3.11, the program extended with a pri-
ority relation also has a single extension. In [7] it is shown
that any extended logic program can be encoded into a neural
network. N-CILP performs one such encoding using network
weights as defined in [7]. Hence, N-CILP is sound. Since the
program has a single extensions, the iterative recursive appli-
cation of input-output patterns to the network will converge
to this extension, which is identical to the unique answer set
of the program, for any initial input.

5. EXPERIMENTAL RESULTS
The N-CILP algorithm was implemented as part of a sim-

ulator which is available online. In the simulator, the KB
contains the rules that an agent knows. We assume that the
priorities are embedded in the rules following the description
used in the previous section. The KB is then read as input
for the N-CILP translation which produces a standard NN
for training. The network can be then trained within the
simulator by backpropagation.

In this section, we describe the results of experiments car-
ried out using the N-CILP simulator for network translation
and training.

To evaluate the performance of the network, we use two
distinct measures: tot and part.

tot =

�n
i=1 I(

�k
j=1(cij == oij))

n

part =

�n
i=1

�k
j=1 I(cij == oij)

n ∗ k
where n refers to the cardinality of the test set, k is the
number of output neurons in the network, oij is the value
of the j-th output of the NN for the i-th test instance, cij
is the true value (desired value) of the j-th literal for the
i-th test instance, I(·) is the indicator, a function returning
1 if the argument is true and zero otherwise. The tot mea-
sure evaluates how many instances were processed entirely
correctly, whle part considers the number of single output
neurons correctly activated.

In our experiments we train the network using a 10fold
cross validation. We divide the initial data set of instances
in ten distinct subsets. Each subset is then used as test
set while the others are used together as training set. In
this way the instances seen during training are left out of
the testing phase, ten networks are trained and the results
are averaged. The test-set performance provides us with
an estimate of the network’s generalization capability, i.e.
its ability to predict the results (network output) for new
instances (inputs), not seen during training. In all the ex-
periments, we set the training parameters for the networks
as follows: learning rate: 0.8, momentum: 0.3 and training
cycles: 100. The reader is referred to [10] for the details of

the backpropagation learning algorithm with momentum.

Non-symbolic approach comparison: we compare
the learning capacity of a network built with N-CILP with a
non-symbolic neural network. One of the well known issues
in neural-network training is how to decide the number of
neurons in the hidden layer. In the case of N-CILP, this
number is given by the number of symbolic rules. We adopt
the same number of hidden neurons for both networks, in
order to avoid the risk of an unfair comparison with a ran-
domly assessed topology for the non-symbolic network. The
difference between the networks involved in this test lies in
their connection weights. The neural network built with
N-CILP sets its weights according to the rules in the KB.
Instead, the non-symbolic network has its weights randomly
initialized. One advantage of a network built with N-CILP
is that even without any training, it is capable of correctly
processing certain instances by applying the rules contained
in the KB (if the rules are correct).

The network built with N-CILP has the head-start of a
KB containing 20 rules. During the training phase, the net-
work tries to learn 9 additional rules provided in the form of
training instances (examples of input/output patterns). The
non-symbolic network is provided with the same instances,
including the instances for the initial 20 rules, but has to
learn all the 29 rules using backpropagation.

The results from this little experiment show that the non-
symbolic neural network is not able to achieve the same level
of accuracy as the N-CILP network. For the non-symbolic
network tot = 5.13% and part = 45.25%. For the N-CILP
network tot = 5.38% and part = 49.19%. We can see that
with the same knowledge provided as rules or instances, the
networks achieve different results with the N-CILP network
showing an improved performance.

Enhancing the knowledge base: the second experi-
ment measures how the neural network performs by increas-
ing the number of rules in the knowledge base. This test is
important because the goal of a Neural-Symbolic System, is
not only to construct a neural network capable to compute
the same semantics as rule into the knowledge base. Another
important objective is to exploit the learning capabilities of
the neural networks, allowing the agent to increase the num-
ber of rules in its knowledge base from what it learned[7].

The test is done incrementally. From the full set of 29
rules, the experiment first step starts with a knowledge base
containing 20 rules and tries to learn the remaining 9. Suc-
cessively 2 rules are incrementally added into the initial
knowledge base during each step. In this way the unknown
rules that the network has to learn decreases by 2 each step.
In example at the second step of the experiment the starting
knowledge base contains 22 rules and the network tries to
learn 7 rules during the training phase.

During each step the neural network is tested over in-
stances where the full set of rules is applied. In this way the
network continues to process using the rules already known,
reducing the risk to forget them and in the meantime it tries
to learn of the unknown rules.

The results of this experiment are shown in Figure 4. We
can see that for the first two steps of the experiment the
accuracies measured quite low. instead for the last two steps
the performance of the neural network increases, reaching an
accuracy peak of 98,01% for the part measure and 91,18%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 18 20 22 24 26 28

A
cc

u
ra

cy

of Rules

tot
part

Figure 4: Accuracy of tot and part measures increas-

ing the number of rules

for the tot.
From the experiment proposed we observed a direct corre-

lation between the number of the rules in the starting knowl-
edge base and the performance of the neural network. An-
other thing that can be noticed is that the smaller becomes
the number of rules that the network does not know, w.r.t.
the number of rules in the initial knowledge base can impact
the performances of the network, also due to the fact that a
network built from a larger knowledge base possesses more
connections.

Learning Contrary to Duties: in this test we measure
the capacity of a neural network built with N-CILP to learn
new contrary to duties. In this case we use a starting knowl-
edge base where the priority-based orderings regulating the
contrary to duties were missing.

We tested the network on learning three different contrary
to duties. The first refers to a situation where a robot player
should never impact on an opponent. But if a collision route
is inevitable, then the robot should make its best to mini-
mize the impact. The second manages the situation where
the robot is in physical contact with an opponent, which is
forbidden by the RoboCup rulings. The robot should then
try to terminate the contact. The third handles the situa-
tion where the robot is touching the ball with his hands, but
he is not supposed to.

By removing the priority based orderings what is obtained
is an incomplete system that produces, in similar situations,
both the unfulfillable obligation and the relative obligation
to handle the suboptimal situation that is being analyzed.
What we expect from this test is that our approach is capa-
ble to learn from the examples, the priority based orderings
that regulates the contrary to duties.

The neural network is trained with a set of instances that
contain both normal situations and situations in which the
contrary to duty is applied. The resulting network is tested
with a test set containing sub-optimal situations, where an
application of the contrary to duty is necessary. From the
results of this test we verify that regarding the first contrary
to duty, in the test set 95% of the instances were processed
correctly and generating only the output obligation for the
suboptimal situation that is what is desired on those situ-
ations. For the two other contrary to duties, we obtain an
accuracy equal to 93% and 87% with their respective test
sets.

Our approach is capable to learn contrary to duties not
included in the construction of the neural network. This is

a strength of the neural-symbolic architecture, that allows
to avoid a total description of the investigated domain that
could be, in some cases, very expensive and infeasible.

6. CONCLUSION
To the best of our knowledge this paper is the first to

combine normative reasoning and learning with connection-
ist systems. Concerning the learning of normative systems
in general, it is possible – as this paper also shows through
the proposed translation of I/O logic into extended logic
programs – to use a purely symbolic set-up. In the ex-
periments proposed we see that a neural-symbolic approach
has some advantages w.r.t. a pure connectionist one. This
approach solves problems like the decision a priori of the
NN size. From the results obtained in the tests, we empir-
ically show that embedding previous knowledge in the NN
increases its learning and processing performances. Notably,
it should be possible to learn the kind of extended programs
that we are considering here through the use of Inductive
Logic Programming (ILP) [14] (or some adaptation of it to
accommodate the use of negation, for example [16]). ILP
has been used successfully in bioinformatics, but we are not
aware of its application in normative systems. It would be
interesting to compare and contrast the performance of the
symbolic and connectionist approaches in the context of a
real normative-systems application. Measurable criteria for
comparison would include: accuracy, learning performance
and noise tolerance indexes.
In this paper we chose to focus on the translation in one di-
rection, as this can be used for tasks such as creating adapt-
able controllers. As future work, we’ll be working on exten-
sions of the tool to include an extraction module so it can
be used when explicit explanations are required.
The system described thus far considers only one type of
norms: the so called regulative norms, i.e., the norms pre-
scribing the behavior of agents, in terms of what is obliga-
tory, forbidden or permitted. Future work is also introducing
constitutive rules besides regulative ones prescribing what is
obligatory, forbidden or permitted. Constitutive rules pro-
vide a classification of reality in terms of the so called in-
stitutional facts, like marriages, licences, authorizations, in-
stitutions, etc. In the antecedents of regulative rules refer
to the situation in which the norm should apply not only
in terms of the brute facts (i.e., to the physical world) but
also to institutional facts. Institutional facts are also inputs
of constitutive rules meaning that differently than regula-
tive rules, constitutive rules respect cumulative transitivity.
Constitutive rules can be seen as a component whose out-
put is fed as input to the component of regulative rules. The
challenge is to study the interaction between the learning of
the two components.

7. REFERENCES
[1] G. Boella, S. Colombo Tosatto, A. S. d’Avila Garcez,

and V. Genovese. On the relationship between i-o
logic and connectionism. In 13th International
Workshop on Non-Monotonic Reasoning, 2010.

[2] G. Boella, S. Colombo Tosatto, A. S. d’Avila Garcez,
D. Ienco, V. Genovese, and L. van der Torre. Neural
symbolic systems for normative agents. In 10th
International Conference on Autonomous Agents and
Multiagent Systems, 2011.

[3] G. Boella, G. Pigozzi, and L. van der Torre.
Normative framework for normative system change. In
8th Int. Joint Conf. on Autonomous Agents and
Multiagent Systems AAMAS 2009, pages 169–176.
IFAAMAS, 2009.

[4] G. Boella and L. van der Torre. Permission and
authorization in normative multiagent systems. In
Procs. of Int. Conf. on Artificial Intelligence and Law
ICAIL, pages 236–237, 2005.

[5] G. Boella and L. van der Torre. A game theoretic
approach to contracts in multiagent systems. IEEE
Transactions on Systems, Man, and Cybernetics, Part
C, 36(1):68–79, 2006.

[6] J. Broersen, M. Dastani, J. Hulstijn, and L. van der
Torre. Goal generation in the BOID architecture.
cognitive science quarterly. In Cognitive Science
Quarterly, volume 2(3-4), pages 428–447, 2002.

[7] A. d’Avila Garcez, K. Broda, and D. Gabbay.
Neural-Symbolic Learning Systems: Foundations and
Applications. Perspectives in Neural Computing.
Springer, 2002.

[8] A. S. d’Avila Garcez and G. Zaverucha. The
connectionist inductive learning and logic
programming system. Applied Intelligence, 11:59–77,
July 1999.

[9] M. Gelfond and V. Lifschitz. Classical negation in
logic programs and disjunctive databases. New
Generation Computing, 9:365–385, 1991.

[10] S. Haykin. Neural Networks: A Comprehensive
Foundation. Prentice Hall, 1999.

[11] D. Makinson, L., and V. D. Torre. Input-output logics.
J. of Philosophical Logic, 29:2000, 2000.

[12] D. Makinson and L. van der Torre. Constraints for
input/output logics. Journal of Philosophical Logic,
30:155–185, 2001.

[13] E. Menegatti. Robocup soccer humanoid league rules
and setup, 2007.

[14] S. Muggleton and L. De Raedt. Inductive logic
programming: Theory and methods. J. Log. Program.,
19/20:629–679, 1994.

[15] D. Nute. Defeasible logic. In D. Gabbay and
J. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 3, pages
353–396. Oxford University Press, 1994.

[16] O. Ray. Automated abduction in scientific discovery.
In Model-Based Reasoning in Science, Technology, and
Medicine, volume 64 of Studies in Computational
Intelligence, pages 103–116. Springer, 2007.

[17] S. Sen and S. Airiau. Emergence of norms through
social learning. In Procs. of the 20th International
Joint Conference on Artificial Intelligence - IJCAI,
pages 1507–1512, 2007.

[18] Y. Shoham and M. Tennenholtz. On the emergence of
social conventions: Modeling, analysis, and
simulations. Artif. Intell., 94(1-2):139–166, 1997.

[19] G. G. Towell and J. W. Shavlik. Knowledge-based
artificial neural networks. Artif. Intell., 70:119–165,
October 1994.

