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ABSTRACT
A central problem in environmental sensing and monitor-
ing is to classify/label the hotspots in a large-scale envi-
ronmental field. This paper presents a novel decentralized
active robotic exploration (DARE) strategy for probabilis-
tic classification/labeling of hotspots in a Gaussian process
(GP)-based field. In contrast to existing state-of-the-art ex-
ploration strategies for learning environmental field maps,
the time needed to solve the DARE strategy is independent
of the map resolution and the number of robots, thus mak-
ing it practical for in situ, real-time active sampling. Its
exploration behavior exhibits an interesting formal trade-off
between that of boundary tracking until the hotspot region
boundary can be accurately predicted and wide-area cover-
age to find new boundaries in sparsely sampled areas to be
tracked. We provide a theoretical guarantee on the active
exploration performance of the DARE strategy: under rea-
sonable conditional independence assumption, we prove that
it can optimally achieve two formal cost-minimizing explo-
ration objectives based on the misclassification and entropy
criteria. Importantly, this result implies that the uncertainty
of labeling the hotspots in a GP-based field is greatest at or
close to the hotspot region boundaries. Empirical evaluation
on real-world plankton density and temperature field data
shows that, subject to limited observations, DARE strategy
can achieve more superior classification of hotspots and time
efficiency than state-of-the-art active exploration strategies.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes;
I.2.9 [Robotics]: Autonomous vehicles

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Multi-robot exploration and mapping, adaptive sampling,
active learning, Gaussian process

1. INTRODUCTION
A fundamental problem in environmental sensing and mon-

itoring is to identify and delineate the hotspot regions in a
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large-scale environmental field [2, 11]. It involves partition-
ing the area spanned by the field into one class of regions
called the hotspot regions in which the field measurements
exceed a predefined threshold, and the other class of re-
gions where they do not. Such a problem arises in many
real-world applications such as precision agriculture, mon-
itoring of ocean and freshwater phenomena (e.g., plankton
bloom), forest ecosystems, rare species, pollution (e.g., oil
spill), or contamination (e.g., radiation leak). In these ap-
plications, it is necessary to assess the spatial extent and
shape of the hotspot regions accurately due to severe eco-
nomic, environmental, and health implications, as discussed
in [11]. In practice, this aim is non-trivial to achieve be-
cause the constraints on the sampling assets’ resources (e.g.,
energy consumption, mission time, sensing range) limit the
number and coverage of in situ observations over the large
field that can be used to infer the hotspot regions. Subject
to limited observations, the most informative ones should
therefore be selected in order to minimize the uncertainty
of estimating the hotspot regions (or, equivalently, classify-
ing/labeling the hotspots) in the large field, which motivates
our adaptive sampling work in this paper.

Mobile robot teams are particularly desirable for perform-
ing the above environmental sensing task because they can
actively explore to map the hotspot regions at high resolu-
tion. On the other hand, static sensors lack mobility and
are therefore not capable of doing this well unless a large
quantity is deployed. While research in multi-robot explo-
ration and mapping have largely focused on the conventional
task of building occupancy grids [10], some recent efforts
are put into the more complex, general task of sampling
spatially distributed environmental fields [4, 5, 6]. In con-
trast to occupancy grids that assume discrete, independent
cell occupancies, environmental fields are characterized by
continuous-valued, spatially correlated measurements, prop-
erties of which cannot be exploited by occupancy grid map-
ping strategies to select the most informative observation
paths. To exploit such properties, exploration strategies for
learning environmental field maps have recently been devel-
oped and can be classified into two regimes: (a) wide-area
coverage strategies [3, 4, 5] consider sparsely sampled (i.e.,
largely unexplored) areas to be of high uncertainty and con-
sequently spread observations evenly across the field; (b)
hotspot sampling strategies [7] assume areas of high uncer-
tainty and interest to contain extreme, highly-varying mea-
surements and hence produce clustered observations. For-
mal, principled approaches of exploration [4, 5] have also



been devised to simultaneously perform hotspot sampling
when a hotspot region is found as well as wide-area coverage
to search for new hotspot regions in sparsely sampled areas.
These strategies optimize their observation paths to mini-
mize the uncertainty (e.g., in terms of mean-squared error
or entropy) of mapping the entire continuous-valued field.
They are, however, suboptimal for classifying/labeling the
hotspots in the field, which we will discuss and demonstrate
theoretically and empirically in this paper. More details of
their exploration behavior and properties will be provided
in Section 6.1.

This paper proposes a novel decentralized active robotic
exploration (DARE) strategy for probabilistic classification/
labeling of hotspots in a large-scale environmental field (Sec-
tion 5). The environmental field is assumed to be realized
from a rich class of probabilistic spatial models called Gaus-
sian process (GP) (Section 2) that can formally character-
ize its spatial correlation structure. More importantly, it
can provide formal measures of classification/labeling uncer-
tainty (i.e., in the form of cost functions) such as the misclas-
sification and entropy criteria (Section 3) for directing the
robots to explore highly uncertain areas of the field. The
chief impediment to using these formal criteria is that they
result in cost-minimizing exploration strategies (Section 4),
which cannot be solved in closed form. To resolve this, they
are reformulated as reward-maximizing dual strategies, from
which we can then derive the approximate DARE strategy
to be solved in closed form efficiently. The specific contri-
butions of our work include:
• analyzing the time complexity of solving the DARE strat-

egy (Section 5): we prove that its incurred time is indepen-
dent of the map resolution and the number of robots, thus
making it practical for in situ, real-time active sampling.
In contrast, existing state-of-the-art exploration strategies
[3, 4, 5] for learning environmental field maps scale poorly
with increasing map resolution and/or number of robots
(Section 6.1);
• analyzing the exploration behavior of the DARE strategy

through its formulation (Section 5): it exhibits an inter-
esting formal trade-off between that of boundary tracking
until the hotspot region boundary can be accurately pre-
dicted and wide-area coverage to find new boundaries in
sparsely sampled areas to be tracked. In contrast, ad hoc,
reactive boundary tracking strategies [9, 12] typically re-
quire a hotspot region boundary to be located manually
or via random exploration and are not driven by the need
to maximize the fidelity of estimating multiple hotspot
regions given limited observations;
• providing theoretical guarantee on the active exploration

performance of the DARE strategy (Section 5): we prove
that, under reasonable conditional independence assump-
tion, it produces the same optimal observation paths as
that of the centralized cost-minimizing strategies, the lat-
ter of which otherwise cannot be solved in closed form.
This result has a simple but important implication: the
uncertainty of labeling the hotspots in a GP-based field is
greatest at or close to the hotspot region boundaries;
• empirically evaluating the active exploration performance

and time efficiency of the DARE strategy on real-world
plankton density and temperature field data (Section 6):
subject to limited observations, the DARE strategy can
achieve better classification of the hotspots than state-of-
the-art active exploration strategies [1, 5] while being sig-

nificantly more time-efficient than those performing wide-
area coverage and hotspot sampling.

2. GAUSSIAN PROCESS-BASED ENVIRON-
MENTAL FIELD

The Gaussian process (GP) can be used to model an envi-
ronmental field as follows: the environmental field is defined
to vary as a realization of a GP. Let X be a set of sampling
locations representing the domain of the environmental field
such that each location x ∈ X is associated with a real-
ized (random) measurement yx (Yx) if x is sampled/observed
(unobserved). Let {Yx}x∈X denote a GP, that is, every finite
subset of {Yx}x∈X has a multivariate Gaussian distribution

[8]. The GP is fully specified by its prior mean µx
4
= E[Yx]

and covariance σxs
4
= cov[Yx, Ys] for all x, s ∈ X . In the

experiments (Section 6), we assume that the GP is second-
order stationary, i.e., it has a constant prior mean and a
stationary prior covariance structure (i.e., σxs is a function
of x − s for all x, s ∈ X ). The prior mean and covariance
structure of the GP are assumed to be known. Let S denote
a subset of locations of X sampled a priori (either by the
robot team or other sampling assets) and yS be a row vector
of corresponding measurements. Given the set S of sampled
locations and corresponding measurements yS , the distribu-
tion of Yx at any unobserved location x ∈ X \ S remains
Gaussian with the following posterior mean and variance

µx|S = µx + ΣxSΣ−1
SS(yS − µS)> (1)

σ2
x|S = σ2

x − ΣxSΣ−1
SSΣSx (2)

where µS is a row vector with mean components µs for every
location s ∈ S, ΣxS is a row vector with covariance compo-
nents σxs for every location s ∈ S, ΣSx is the transpose of
ΣxS , and ΣSS is a covariance matrix with components σss′

for every pair of locations s, s′ ∈ S. To map the entire field,
the measurements at its unobserved areas can be predicted
using the posterior mean (1) and the uncertainty of each of
these point-based predictions is represented by the poste-
rior variance (2). An important property of GP is that the
posterior variance σ2

x|S (2) is independent of the observed
measurements yS .

If the environmental field evolves over time, then its do-
main is extended to include the temporal dimension: let X
instead denote a set of spatiotemporal inputs such that each
input x ∈ X comprises both the spatial location and time.
The rest of the GP model formulation remains unchanged.

3. COST FUNCTIONS
Recall that the exploration objective is to select observa-

tion paths that minimize the uncertainty of estimating the
hotspot regions in the field. To achieve this, formal measures
of uncertainty (specifically, in the form of cost functions)
have to be defined. Let us first consider the feasibility of us-
ing cost functions that quantify the uncertainty of mapping
the entire continuous-valued field, such as (a) sum of poste-
rior variances (2) over the unobserved locations in X \ S [4]∑

x∈X\S

σ2
x|S (3)

and (b) posterior joint entropy of the measurements YX\S
at the unobserved locations in X \ S [5]

H[YX\S |yS ]
4
= −

∫
P (yX\S |yS) logP (yX\S |yS) dyX\S .



These cost functions have been utilized in [4, 5] to guide
exploration: the resulting active exploration strategies for
learning GP-based field maps are non-adaptive and per-
form wide-area coverage, that is, observation paths are dis-
tributed evenly across the field. Do these wide-area coverage
strategies also optimize our exploration objective or should
observation paths be directed to sample specific features of
the field instead? In the rest of this paper, we will show
that, by defining cost functions to measure the uncertainty
of classifying the hotspots in the field, our objective can be
better achieved by performing the latter.

Let us begin by framing the problem of estimating the
hotspot regions in a field formally as one of classifying/labeling
the hotspots in the field: A location x is defined as a hotspot
if its corresponding field measurement Yx is greater than or
equal to a predefined threshold, denoted by γ. Let {Zx}x∈X
denote a binary random process such that Zx is an indicator
variable of label 1 if Yx ≥ γ (i.e., location x is a hotspot),
and label 0 otherwise. Then, our problem of estimating the
hotspot regions is equivalent to one of labeling the hotspots
in the field, specifically, by predicting the label of Zx for
every location x ∈ X . As a result, our exploration objec-
tive can be achieved through the use of cost functions that
measure the uncertainty of labeling the hotspots in the field.
Two such cost functions will be defined next.

Let Ẑx be the predicted label of Zx for every location
x ∈ X and the cost of predicting (or, more precisely, misclas-

sifying) the label of Zx with Ẑx be denoted by the following
0− 1 loss function

L(Zx, Ẑx) =
∣∣∣Zx − Ẑx

∣∣∣ =

{
1 if Zx 6= Ẑx ,

0 otherwise.
(4)

That is, (4) counts a false positive (i.e., the location x is
labeled as a hotspot but it is not) or false negative (i.e., x
is not labeled as a hotspot but it is) as a misclassification.
If Zx is unlabeled (i.e., location x is unobserved), then we
calculate the expected cost (or risk) of predicting the label

of Zx with Ẑx instead, which is denoted by

RẐx|S =
∑1

i=0 L(Zx = i, Ẑx) P (Zx = i|yS)

= Ẑx (1− P (Zx = 1|yS)) + (1− Ẑx) P (Zx = 1|yS)

= P (Ẑx 6= Zx|yS)
(5)

where P (Zx = 1|yS) = P (Yx ≥ γ|yS), the second equality
results from P (Zx = 0|yS) = 1−P (Zx = 1|yS), and the last
equality states that the risk (5) is equal to the probability
of misclassification.

The risk (5) is minimized by the Bayes decision/classification
rule

Ẑ∗x =

{
1 if P (Zx = 1|yS) ≥ 0.5 ,

0 otherwise.

= arg max
i∈{0,1}

P (Zx = i|yS) .

Using Ẑ∗x as the predicted label of Zx, the risk (5) reduces
to

RẐ∗x|S
= min (P (Zx = 1|yS), 1− P (Zx = 1|yS)) . (6)

Consequently, the sum of risks (or expected number of mis-
classifications) over the unobserved locations in X \ S is∑

x∈X\S

RẐ∗x|S
, (7)

which defines our first cost function. We call this (7) the
misclassification criterion.

The second cost function, which we call the entropy cri-
terion, is defined as the posterior joint entropy of the labels
of ZX\S at the unobserved locations in X \ S

H[ZX\S |yS ] . (8)

4. CENTRALIZED ACTIVE EXPLORATION
In this section, we will formulate greedy cost-minimizing

exploration strategies based on the misclassification (7) and
entropy (8) criteria defined in Section 3. Unfortunately,
these centralized strategies cannot be evaluated in closed
form, as explained in this section. To resolve this, these cost-
minimizing strategies must first be reformulated as reward-
maximizing dual strategies, from which we can then derive
the approximate DARE strategy (Section 5) to be solved in
closed form efficiently.

Supposing the misclassification criterion (7) is used and
a set S of locations are previously sampled, the exploration
strategy for directing a team of k robots has to select the
next set O ⊆ X \ S of k locations to be observed that mini-
mize the sum of expected risks:

min
O

∑
x∈X\S

EYO|yS

{
RẐ∗x|S

⋃
O

}
. (9)

This cost-minimizing strategy (9) can be reformulated as the
following reward-maximizing dual strategy, which selects the
next setO of locations to be observed that maximize the sum
of expected risk reductions:

max
O

∑
x∈X\S

RẐ∗x|S
− EYO|yS

{
RẐ∗x|S

⋃
O

}
. (10)

The equivalence between these two strategies follows imme-
diately from observing that the first term

∑
x∈X\S RẐ∗x|S

in

(10) remains constant with any choice of O. Both strategies
cannot be solved exactly due to the expectation term, which
cannot be evaluated in closed form.

If the entropy criterion (8) is used instead, then the explo-
ration strategy has to select the next set O of locations to be
observed that minimize the expected posterior joint entropy
of the labels of ZX\(S⋃

O):

min
O

EZO|yS
{
H[ZX\(S⋃

O)|yS , ZO]
}
. (11)

This cost-minimizing strategy (11) can be reformulated as
the following reward-maximizing dual strategy, which selects
the next set O of locations with maximum label entropy to
be observed:

max
O

H[ZO|yS ] . (12)

To show their equivalence, H[ZX\S |yS ] (8) is first expanded
using chain rule of entropy:

H[ZX\S |yS ] = H[ZO|yS ] + EZO|yS
{
H[ZX\(S⋃

O)|yS , ZO]
}
.

(13)
From (13), since H[ZX\S |yS ] is a constant, the choice of
O that maximizes H[ZO|yS ] (i.e., (12)) will also minimize
EZO|yS

{
H[ZX\(S⋃

O)|yS , ZO]
}

(i.e., (11)). When |O| = k ≥
2, both strategies cannot be solved exactly due to the en-
tropy terms, which contain multivariate Gaussian cumula-
tive distribution functions that cannot be evaluated in closed
form.



5. DECENTRALIZED ACTIVE EXPLORATION
This section presents a novel decentralized active robotic

exploration (DARE) strategy that can approximately achieve
both cost-minimizing exploration objectives (9) and (11)
(Section 4) based on the misclassification and entropy cri-
teria, respectively. Unlike the centralized cost-minimizing
and reward-maximizing exploration strategies (Section 4),
the DARE strategy can be solved in closed form efficiently.

The DARE strategy for directing each of the k robots has
to select the next location x ∈ X \ S to be observed that
trades off between (a) minimizing the difference between its
predicted measurement µx|S and the boundary threshold γ,
and (b) maximizing the square root of its posterior variance
σ2
x|S :

min
x
|γ − µx|S |/σx|S . (14)

Intuitively, the behavior of the DARE strategy exhibits an
interesting trade-off between that of (a) boundary track-
ing and (b) wide-area coverage: it simultaneously tracks a
hotspot region boundary that is found until it can be accu-
rately predicted as well as searches for new hotspot region
boundaries in sparsely sampled areas to be tracked.

In this paper, the domain X of the field is assumed to
be a grid of sampling locations. The next location x to
be observed by each robot is then constrained to be selected
from the 4-connected neighborhood N of the robot’s current
location instead of from X \ S.

Theorem 1 (Time Complexity). Solving the DARE
strategy (14) requires O

(
|S|2(|S|+ |N |)

)
time.

The above result reveals that the time needed to compute
the DARE strategy is independent of the map resolution
(i.e., domain size |X |) and the number k of robots, thus
making it practical for in situ, real-time active sampling.

Theorem 2 (Communication Overhead). Let the com-
munication overhead be the number of broadcast messages
sent by each robot over the network. Then, the asynchronous
communication overhead of DARE strategy (14) is O(1).

In terms of data sharing, each robot broadcasts a message
to the other robots sharing its sampled observations since
its last broadcast. Coordination between robots is needed
only if their neighborhoods intersect: in this case, they may
select the same next location to be observed. To avoid
this, each robot can broadcast on the same or another mes-
sage sharing its selected location to be observed next. With
asynchronous (e.g., turn-based) communication, the remain-
ing robots avoid choosing prior selected locations. With
synchronous communication, for each location in conflict,
the higher-numbered robot (obtained by numbering robots
uniquely) uses (14) to choose new unselected location to be
observed. This is iterated until the conflicts are resolved.
This process is not communication-expensive as every loca-
tion is in conflict with at most 4 robots in its neighborhood.

Under conditional independence assumption, the DARE
strategy (14) produces the same observation paths as that
of the centralized cost-minimizing strategies (9) and (11)
(Section 4), as established in the result below:

Theorem 3 (Performance Guarantee). If the un-
observed measurements YX\S are conditionally independent
given the sampled measurements yS , then the DARE strat-
egy (14) is equivalent to both cost-minimizing strategies (9)
and (11) based on the misclassification and entropy criteria.
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Figure 1: Temperature field bounded within lat.
30.75 − 50.75N and lon. 157.75 − 222.25E: γ is set to
3 ◦C, which results in a hotspot region in the top left
and another one in the bottom right.
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Figure 2: Plankton density field bounded within lat.
30 − 31N and lon. 245.3625 − 246.1125E: γ is set to
30 mg/m3, which results in a hotspot region in the
top right and another one in the bottom left.

The proof of the above result can be found in the appendix.
The proof construction in fact describes how the DARE
strategy (14) can be derived from either reward-maximizing
dual strategy (i.e., (10) or (12)) (Section 4). A simple but
important implication of this result is that the uncertainty
of estimating the hotspot regions in a GP-based field (i.e.,
in terms of misclassification or entropy criterion) is greatest
at or close to the hotspot region boundaries.

In practice, how reasonable is the conditional indepen-
dence assumption? Firstly, such an assumption is often
made in order to calculate the widely-used sum of poste-
rior variances (i.e., mean-squared error) criterion (3) [2, 4].
Secondly, we conjecture that the assumption becomes less
restrictive (i.e., Theorem 3 becomes more reliable) when the
number |S| of sampled locations increases to potentially re-
duce the degree of violation of conditional independence, the
spatial correlation between field measurements decreases,
and the robots are sufficiently far apart (this last case applies
only to the entropy criterion).

6. EXPERIMENTS AND DISCUSSION
This section evaluates the active exploration performance

of the DARE strategy (14) empirically on 2 real-world spa-
tial datasets off the west coast of USA: (a) August 2009
AVHRR temperature data (Fig. 1), and (b) March 2009
MODIS plankton density data (Fig. 2). These regions are
discretized, respectively, into (a) 130× 41 (i.e., |X | = 5330)
and (b) 61 × 81 (i.e., |X | = 4941) grids of sampling loca-
tions. Each location x is, respectively, associated with (a)
temperature measurement yx in ◦C, and (b) chlorophyll-a



Table 1: Comparison of active exploration strategies (WC: Wide-area Coverage, HS: Hotspot Sampling, BT:
Boundary Tracking).
Exploration strategy Behavior Coordination type Time complexity Map resolution |X | No. of robots k

Maximize mutual information [3] WC Centralized O
(
|N |k|X |2(|X |+ k2)

)
Cubic Exponential

Minimize sum of variances [4] WC Centralized O
(
|N |k|S|2|X |

)
Linear Exponential

MES [5] WC Centralized O
(
|N |k|S|2(|S|+ k2)

)
Independent Exponential

MES+HS [5] WC+HS Centralized O
(
|N |k|S|2(|S|+ k2)

)
Independent Exponential

Straddle [1] WC+BT Decentralized1 O
(
|S|2(|S|+ |N |)

)
Independent Independent

DARE WC+BT Decentralized O
(
|S|2(|S|+ |N |)

)
Independent Independent

(chl-a) measurement yx in mg/m3. Using a team of k =
2, 4, 8 robots, each robot is tasked to, respectively, explore
1250, 625, 312 locations in its path to sample a total of about
2500 observations. The simulated robot team is given 120
randomly selected observations as prior data before explo-
ration. We use 2000 randomly selected observations to learn
the hyperparameters (i.e., mean and covariance structure) of
GP through maximum likelihood estimation [8].

6.1 Comparing Active Exploration Strategies
Since the domains X of both fields are considerably large,

it is prohibitively expensive to compare meaningfully with
the wide-area coverage strategies [3, 4] that scale poorly with
increasing map resolution and are thus not practical for in
situ, real-time active sampling. For example, it was reported
in [6] that the greedy mutual information-based strategy
of [3] incurred more than 62 hours to generate paths for 3
robots to sample a total of 267 observations in a grid of only
|X | = 1424 locations. The performance of the DARE strat-
egy is therefore compared to that of three state-of-the-art
exploration strategies whose incurred times are independent
of the map resolution: (a) The decentralized1 straddle strat-
egy [1] for directing each robot selects the next location x
to be observed using maxx 1.96σx|S − |γ − µx|S |. Similar to
DARE, its exploration behavior is a trade-off between that of
boundary tracking and wide-area coverage. Unlike DARE,
its trade-off has to be manually adjusted using an arbitrary
weight that, if set inappropriately, may produce subopti-
mal behavior. For example, this weight is proposed by [1]
to be set to 1.96, which is empirically demonstrated later
to emphasize boundary tracking more than wide-area cov-
erage. As a result, it tends to persist in tracking boundaries
that are already well-predicted before deciding to search for
new ones. Subject to limited observations, it may conse-
quently not perform as well as DARE in a field with multi-
ple hotspot regions. Also, it is not known how or whether
the value of this weight can be formally derived in order
for the straddle strategy to achieve the cost-minimizing ex-
ploration objectives (9) and (11); (b) The centralized maxi-
mum entropy sampling (MES) strategy [5] for directing the
robot team performs only wide-area coverage by selecting
the next set O of locations with maximum entropy to be
observed using maxO H[YO|yS ]; (c) It can be coupled with
hotspot sampling (HS) by modifying the exploration ob-
jective to maxO H[YO|yS ] +

∑
x∈O µx|S . We call this the

MES+HS strategy [5]. For these centralized strategies, the
joint action space is exponential in the number of robots.
So, they scale poorly with increasing number of robots. Ta-

1The original straddle strategy proposed by [1] is developed
for a single robot. To transform it into a decentralized multi-
robot strategy, we simply execute the single-robot straddle
strategy on every robot in the team.

ble 1 summarizes and compares the characteristics of the
above-mentioned active exploration strategies; it does not
include the communication overhead, which is O(1) for all
strategies.

6.2 Performance Metric
The first performance metric used to evaluate the tested

strategies is the number of misclassifications

M(A)
4
=
∑
x∈A

L(zx, Ẑ
∗
x)

over all locations in a given set A where the function L is
previously defined in (4). Three cases are considered:

(a) A = X (i.e., all locations in the domain of the field),

(b) A = X ′ where

X ′ = {x ∈ X | |γ − yx| ≤ 0.2(max
x′∈X

yx′ − min
x′∈X

yx′)}

(i.e., all locations with measurements that are close to the
boundary threshold of 30 mg/m3 for the plankton density
field and 3 ◦C for the temperature field), and

(c) A = X \ X ′.
We observe that |X ′| is only about 22% of |X | for both fields.
The second metric is the time taken to compute a strategy.

6.3 Temperature Field Data
Fig. 3 shows the results of the performance of tested strate-

gies averaged over 5 randomly generated starting robot lo-
cations for the temperature field. In terms of the M(X )
performance, Figs. 3a−3c show that the DARE strategy
quickly outperforms the MES and MES+HS strategies as
the number of observations increases: their performance dif-
ferences have been verified using t-tests (α = 0.1) to be
statistically significant after a total of 500, 750, and 800
observations sampled by teams of 2, 4, and 8 robots, re-
spectively. Hence, the boundary-tracking DARE strategy
reduces a greater number of misclassifications over the entire
field than wide-area coverage and hotspot sampling. With
more observations, the DARE strategy can also perform bet-
ter than the straddle strategy: their performance differences
have been verified using t-tests (α = 0.1) to be statistically
significant after a total of 500, 1000, and 1600 observations
sampled by teams of 2, 4, and 8 robots, respectively. To
explain this, we examine the observation paths of a team of
2 robots in one of the 5 test runs, as shown in Fig. 4. The
initial performance of the DARE and straddle strategies are
similar because they are both searching for hotspot region
boundaries (Fig. 4a). As the number of observations in-
creases further, DARE’s performance improves over that of
the straddle strategy because we observe that it directs the
robots to search for new boundaries when the ones that are
currently being tracked are well-predicted. In contrast, the
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Figure 3: Graphs of (a-c) M(X ), (d-f) M(X ′), and (g-i) M(X \ X ′) vs. no. of observations/robot for varying
number of robots actively exploring the temperature field.

straddle strategy tends to persist in tracking boundaries that
are already well-predicted before deciding to search for new
ones (Figs. 4b−4e). In terms of the M(X ′) and M(X \ X ′)
performance, Figs. 3d−3i reveal that, with increasing ob-
servations, the DARE strategy also reduces a greater num-
ber of misclassifications than the other evaluated strategies
whether they are over locations close to the boundaries (i.e.,
in X ′) or away from the boundaries (i.e., in X \X ′). It is in-
teresting to note that locations close to the boundaries incur
the majority of the misclassifications as compared to those
away from the boundaries, which further corroborates the
implication of Theorem 3 that there is higher uncertainty in
labeling the locations close to the hotspot region boundaries.

6.4 Plankton Density Field Data
Fig. 5 shows the results of the performance of tested strate-

gies averaged over 5 randomly generated starting robot loca-
tions for the plankton density field. The results are very sim-
ilar to that of the temperature field (Section 6.3) except that
the performance of the straddle strategy approaches that of
the DARE strategy with excessive observations: their per-

formance differences have been verified using t-tests (α =
0.1) not to be statistically significant after a total of 2000
and 2240 observations sampled by teams of 2 and 4 robots,
respectively. This is expected because the straddle strategy
can track and predict the boundaries as well as the DARE
strategy given a long enough exploration. However, sub-
ject to limited observations (which is more practical, as ex-
plained in Section 1), the performance of the DARE strategy
is clearly superior to that of the straddle strategy.

6.5 Incurred Time
Fig. 6 shows the results of the time taken to compute the

tested strategies averaged over 5 randomly generated start-
ing robot locations for the temperature field; the results of
incurred time for the plankton density field are very similar
and therefore not shown here. The time differences between
the DARE and straddle strategies have been verified using
t-tests (α = 0.1) not to be statistically significant, which
is expected due to the same time complexities, as shown
in Table 1. The time taken to compute these two decen-
tralized boundary tracking strategies are shorter than that
needed to compute the centralized wide-area coverage and
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Figure 4: Evolution of 2-robot observation paths
produced by DARE (left column) and straddle
(right column) strategies sampling a total of (a) 250,
(b) 500, (c) 750, (d) 2000, and (e) 2500 observations.
The robots start at locations of different lat. 37.75N
and 40.75N and same lon. 192.75E.

hotspot sampling strategies (i.e., MES+HS and MES) by
about one and two orders of magnitude for the cases of 2
and 4 robots, respectively. With a larger number of robots,
it can be observed from Fig. 6 that the centralized wide-area
coverage and hotspot sampling strategies incur significantly
more time because their time complexities are exponential
in the number of robots, as shown in Table 1. In contrast,
the time incurred by the decentralized boundary tracking
strategies do not increase because their time complexities
are independent of the number of robots. Note that Fig. 6
does not show the graphs of time taken to compute the cen-
tralized strategies for the case of 8 robots because they incur
significantly more time than that of 4 robots and their in-
curred time consequently cannot be recorded correctly due
to long integer overflow in C’s clock function.

7. CONCLUSION
This paper describes a decentralized active robotic explo-

ration strategy for probabilistic classification of hotspots in
a large-scale GP-based environmental field. It has the prac-
tical advantage of being significantly more time-efficient over
existing state-of-the-art active exploration strategies [3, 4, 5]
because its incurred time is independent of the map resolu-
tion and the number of robots. In terms of active exploration
performance, we have theoretically guaranteed that, under
reasonable conditional independence assumption, the DARE
strategy can optimally achieve the formal cost-minimizing
exploration objectives based on the misclassification and en-
tropy criteria, both of which otherwise cannot be optimized
exactly to yield closed-form solutions. We have demon-
strated theoretically and empirically that the uncertainty
of labeling the hotspots in a GP-based field is greatest at or
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Figure 5: Graphs of (a-c) M(X ), (d-f) M(X ′), and (g-
i) M(X\X ′) vs. no. of observations/robot for varying
number of robots actively exploring the plankton
density field.
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Figure 6: Graphs of incurred time vs. no. of obser-
vations/robot for varying number of robots actively
exploring the temperature field.

close to the hotspot region boundaries. The DARE strat-
egy is capable of exploiting this to produce an exploration
behavior that formally trades off between that of boundary
tracking until the hotspot region boundary can be accurately
predicted and wide-area coverage to find new boundaries in
sparsely sampled areas to be tracked. Empirical evaluation
on real-world plankton density and temperature field data
shows that, given limited observations, the DARE strategy
can reduce a greater number of misclassifications than state-
of-the-art active exploration strategies.
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APPENDIX
Proof of Theorem 3
In Section 4, we have already shown the equivalence between
the cost-minimizing and reward-maximizing strategies based
on the misclassification and entropy criteria. Therefore, it
suffices to prove that the DARE strategy (14) is equivalent
to the reward-maximizing strategies.

Let us first prove that the reward-maximizing strategy
(10) for the misclassification criterion is equivalent to the
DARE strategy (14). From (10),

max
O

∑
x∈X\S

RẐ∗x|S
− EYO|yS

{
RẐ∗x|S

⋃
O

}
= max

O

∑
x∈O

RẐ∗x|S
+

∑
x∈X\(S

⋃
O)

(
RẐ∗x|S

− EYO|yS

{
RẐ∗x|S

⋃
O

})
= max

O

∑
x∈O

RẐ∗x|S
+

∑
x∈X\(S

⋃
O)

(
RẐ∗x|S

− EYO|yS

{
RẐ∗x|S

})
= max

O

∑
x∈O

RẐ∗x|S

=

k∑
i=1

max
xi

RẐ∗xi
|S .

The first equality follows from RẐ∗x|S
⋃
O = 0 for x ∈ O by

assuming no observation noise. The second equality is due
to the conditional independence assumption that is provided

as a sufficient condition in the theorem. The third equality
is due to the second summation term evaluating to zero.
The last equality follows from the observation that each risk
term in the summation depends only on the choice of the
next location x to be observed by a single different robot.
Hence, we can maximize each risk term in the summation
independently and in a decentralized manner to achieve the
same result as that in the third equality.

max
x

RẐ∗x|S

= max
x
{min (P (Zx = 1|yS), 1− P (Zx = 1|yS))}

= max
x
{min (P (Yx ≥ γ|yS), 1− P (Yx ≥ γ|yS))}

≡ max
x

{
min

[
−erf

(
γ − µx|S

σx|S
√

2

)
, erf

(
γ − µx|S

σx|S
√

2

)]}

= max
x
−

∣∣∣∣∣ erf

(
γ − µx|S

σx|S
√

2

) ∣∣∣∣∣
≡ min

x

∣∣∣∣∣ erf

(
γ − µx|S

σx|S
√

2

) ∣∣∣∣∣
≡ min

x

|γ − µx|S |
σx|S
√

2

≡ min
x

|γ − µx|S |
σx|S

.

The first equality follows from (6). The first equivalence is

due to P (Yx ≥ γ|yS) =
1

2

[
1− erf

(
γ − µx|S

σx|S
√

2

)]
.

Now, let us prove that the reward-maximizing strategy
(12) for the entropy criterion is equivalent to to the DARE
strategy (14). From (12),

max
O

H[ZO|yS ]

= max
O

∑
x∈O

H[Zx|yS ]

=

k∑
i=1

max
xi

H[Zxi |yS ] .

The first equality follows from chain rule of entropy and
conditional independence assumption. The second equality
follows from observing that each entropy term in the sum-
mation depends only on the choice of the next location x to
be observed by a single different robot. Hence, we can max-
imize each entropy term in the summation independently
and in a decentralized manner to achieve the same result as
that in the first equality.

max
x

H[Zx|yS ]

≡ min
x
P (Zx = 1|yS) logP (Zx = 1|yS) +

(1− P (Zx = 1|yS)) log(1− P (Zx = 1|yS))

≡ min
x

∣∣∣∣12 − P (Zx = 1|yS)

∣∣∣∣
= min

x

∣∣∣∣12 − P (Yx ≥ γ|yS)

∣∣∣∣
≡ min

x

∣∣∣∣∣ erf

(
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σx|S
√

2

) ∣∣∣∣∣
≡ min

x

|γ − µx|S |
σx|S
√
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≡ min
x

|γ − µx|S |
σx|S

.


