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ABSTRACT
We consider the problem of dynamic self-reconfiguration in
a modular self-reconfigurable robot (MSR). Previous ap-
proaches to MSR self-reconfiguration solve this problem us-
ing algorithms that search for a goal configuration in the
MSR’s configuration space. In contrast, we model the self-
reconfiguration problem as a constrained optimization prob-
lem that attempts to minimize the reconfiguration cost while
achieving a desirable configuration. We formulate the MSR
self-reconfiguration problem as finding the optimal coalition
structure within a coalition game theoretic framework. To
reduce the complexity of finding the optimal coalition struc-
ture, we represent the set of all robot modules as a fully-
connected graph. Each robot module corresponds to a ver-
tex of the graph and edge weights represent the utility of a
pair of modules being in the same coalition (or, connected
component). The value of a coalition structure is then de-
fined as the sum of the weights of all edges that are com-
pletely within the same coalition in that coalition structure.
We then use a graph partitioning technique to cluster the
vertices (robot modules) in the constructed graph so that the
obtained coalition structure has close to optimal value. The
clustering algorithm has time complexity polynomial in the
number of agents, n, and yields an O(log n) approximation.
We have verified our technique experimentally for a vari-
ety of settings. Our results show that the graph clustering-
based self-reconfiguration algorithm performs comparably
with two other existing algorithms for determining optimal
coalition structures. 1

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous vehicles—modular robots, dy-
namic reconfiguration

General Terms
Algorithms
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1. INTRODUCTION
Over the past few years, modular self-reconfigurable robots

(MSRs) have been proposed as an elegant, yet efficient way
to build robots that are capable of maneuvering in tight
spaces or unstructured terrain [18]. Structurally, an MSR is
composed of functionally simple modules that are connected
together into a certain formation. Each module is individu-
ally capable of performing very limited operations, but when
connected with other modules, they can adapt their shape to
form a single robot that can accomplish a complex task. In
spite of the simple and inexpensive construction of an MSR’s
modules, and easy maneuverability, a principal challenge in
MSRs is to solve the self-reconfiguration problem i.e. how
to adapt their shape autonomously so that they can change
tasks or continue their operation after encountering obsta-
cles or occlusions that impede their movement. As a moti-
vating example, we consider a scenario where a set of robot
modules are deployed individually, possibly scattered on the
ground within communication range of each other, from an
airborne vehicle. The objective of these individual modules
is to autonomously determine suitable multi-module config-
urations, maneuver themselves to get within close proximity
of each other, and, finally align and dock with each other
to realize those configurations. This paper focuses on the
computational aspects of the problem faced by the individ-
ual modules to determine their ’best’ set of configurations
that gives them an improved efficiency or value in perform-
ing their assigned task, while considering the costs in terms
of energy expended to get in proximity of, and align and
dock with each other to get into those configurations. This
problem is challenging because a fixed set of rules does not
work for all situations. An MSR needs to perceive its current
environment to determine how many modules to connect to-
gether, and the configuration or shape those modules should
get into, so that the MSR can perform its assigned task most
efficiently.

In this paper, we have addressed theMSR self-reconfiguration
problem by modeling it as a coalition structure generation
(CSG) problem in coalition game theory. Coalition games
are suitable for the MSR self-reconfiguration problem be-
cause the solution found by a coalition game ensures sta-
bility. Once the best partition or coalition of agents, corre-
sponding to the best configuration of MSRs has been found,
the MSR modules that have been determined to form the



new configuration will remain together and will not try to
leave the new configuration and attempt to combine with
other modules. However, there are several research chal-
lenges that need to be addressed while using coalition game
theory for MSR self-reconfiguration. First, in coalition game
theory, the assimilation of agents into teams and the com-
munication between agents is assumed to be free of cost.
However, for MSRs, modules incur “cost” by expending en-
ergy to communicate with each other and physically move
to each other’s proximity to dock with each other. Secondly,
solving the CSG problem that deals with finding the best or
optimal coalition in a coalition structure graph is known to
be an NP-hard problem with a few existing heuristic solu-
tions. To address these problems, in this paper we first de-
velop a utility-based formulation for the costs corresponding
to the dynamic reconfiguration problem in MSRs within a
coalition game theoretic framework. Then we use a graph
clustering algorithm to solve the CSG problem within this
setting, using a polynomial time complexity and logarithmic
approximation. To illustrate the operation of our MSR we
have used the domain of robotic exploration of initially un-
known environments. Our experimental results show that
our graph clustering technique can be successfully used to
dynamically self-reconfigure an MSR into different configu-
rations.

2. RELATED WORK
Modular self-reconfigurable robots (MSRs) are a type of

self-reconfigurable robots that are composed of identical mod-
ules. These modules can change their connections with each
other to manifest different shapes of the MSR and select a
shape that enables the MSR to perform its assigned task
efficiently [4, 16]. An excellent overview of the state of the
art MSRs and related techniques is given in [18]. Out of
the three types of MSRs — chain, lattice and hybrid - we
have used a chain-type MSR to illustrate the experiments in
this paper although our techniques could be used for other
types too. The self-reconfiguration problem in MSRs has
been solved using search-based [3, 5] and control-based
techniques [14]. However, both these techniques require
the initial and goal configuration to be determined before
the reconfiguration process starts. A third technique called
task-based reconfiguration has recently shown considerable
success [9]. Here the goal configuration of an MSR do-
ing reconfiguration is not determined a priori, but is deter-
mined as the configuration that helps the MSR perform its
task efficiently. Our work in this paper is targeted towards
task-based reconfiguration techniques; we do not explicitly
specify a goal configuration but allow the reconfiguration
algorithm to select a new configuration that minimizes the
reconfiguration cost.

Coalition game theory gives a set of techniques that can
be used by a group of agents to form teams or coalitions
with each other [10, 13]. A coalition can be loosely defined
as a set of agents that remain together with the intention of
cooperating with each other, possibly to perform a task. In
terms of MSRs a coalition represents a set of MSR-modules
that are connected together while performing a certain task.
Within coalition games, the coalition structure generation
problem that deals with partitioning the agents into disjoint
and exhaustive sets called coalitions has received significant
attention. This problem is NP-complete, and Sandholm [15]
and Rahwan [11] have proposed anytime algorithms to find
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Figure 1: (a) CAD figure of a single module of the
MSR. (b) A simulated version of the MSR inside
Webots. (c) Major components of the MSR.

near-optimal solutions. In contrast to these works, we use
a graph clustering-based approach to find the optimal coali-
tion structure.

Weighted graph games were introduced in [8] as a specific
case of coalition games where the set of agents is modelled as
a vertex set of a graph, and the valuation function is calcu-
lated by summing the edge weights of the constructed graph.
Coalition structure generation in graph games has recently
received attention in [17], [1], and the problem was shown
to be NP-complete. Our method uses the graph coalition
game formulation and the graph clustering technique pre-
sented in [7] to obtain close to optimal coalition structures
in the graph. The technique is based on a generalized version
of correlation clustering [2] known as correlation clustering
with partial information.

3. A NOVEL 4-DOF MODULAR ROBOT
We have used an MSR called ModRED [6] that is cur-

rently being developed by us, for implementing and testing
the techniques in this paper. Unlike most other MSRs, it has
4 DOF (3 rotational and 1 translational); this allows each
module to rotate along its long axis as well as extend along
that same axis, as shown in Figure 1(a). This combination of
DOF enables the MSR to achieve a greater variety of gaits to
possibly maneuver itself out of tight spaces. A picture of the
MSR, its simulated version within a robot simulator called
Webots and its major components are shown in Figure 1.
For the simulated version of each module, we have used a
GPS node that gives global coordinates on each robot2, an
accelerometer to determine the alignment of the robot with
the ground, in addition to the IR sensors and Zigbee modules
in the physical robot. The movement of the MSR in fixed
configuration is enabled through gait tables [16]. Each gait
table applies to a specific movement of the robot in a spe-
cific configuration. The contents of the gait table give the
sequence of movements of the different joints of the robot to
achieve the desired motion. Videos showing the movement
of the MSR in different configurations using gait tables are
available at http://cmantic.unomaha.edu/projects/modred/.
The MSR ModRED can be configured into a chain struc-

2In the physical MSR, relative positioning is planned to be
done using the IR sensors.



Figure 2: ModRED modules in a chain configuration

Figure 3: ModRED modules in a ring configuration

ture as is shown in Figure 2 as well as a ring structure as is
shown in Figure 3 (images taken from Webots). When mod-
ules form these configurations the MSR performs more effi-
ciently; it can move faster and it can overcome obstacles. In
different configurations, the MSR uses different gaits which
enable it to move faster and overcome more obstacles. In the
chain structure the MSR can mimic the movement of a snake
for movement or it can use its rotational degree of freedom
to roll sideways, while in the ring structure the MSR can
perform several ”rolling” motions akin to that of a wheel.

While moving in a fixed configuration, if the MSR’s mo-
tion gets impeded by an obstacle or an occlusion in its path,
it needs to reconfigure into a new configuration so that it
can continue its movement efficiently. In the next section,
we formalize the MSR self-reconfiguration problem and then
provide a graph clustering approach for finding the optimal
coalition.

4. DYNAMIC SELF-RECONFIGURATION
IN MSRS

Let A be the set of modules or agents that have been
deployed in the environment. The set of MSRs (coalition
structure) at time t, {At

i}, is defined as a set of exhaustive
and disjoint partitions of A, i.e., ∪i A

t
i = A and Ai ∩Aj = ∅

for i 6= j. The i-th MSR (coalition) at time t is given by a

set of ordered modules or agents, i.e.,

A
t
i = {at
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, a

t
i2
, a

t
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, ..., a

t
i
|At

i
|
} (1)

Here, at
i1

is the leading module of At
i, a

t
i
|At

i
|
is the trailing

or end module of the MSR and {at
ij
, at

ij+1
}, j = 1...|At

i | − 1
are the set of modules that are physically coupled together
pairwise in a chain configuration using their end couplers.
Using this definition, when At

i is a singleton, it represents a
single module that is not coupled with any other modules.

Let Π(A) be the set of all partitions of A and let CS(A) =
{A1, A2, ..., Ak} ∈ Π(A) denote a specific partition of A. 3

We define V : Π(A) → R, a value function that assigns each
partition CS(A) ∈ Π(A) a real number. Consider an MSR in
configuration CSold(A) = {Aold

1 , Aold
2 , ..., Aold

k } that recon-
figures to CSnew(A) = {Anew

1 , Anew
2 , ..., Anew

k′ }. Note that k
and k′ may be different. Such reconfigurations can happen,
for example, when an MSR gets stuck at an obstacle while
navigating during an exploration task. The objective of the
MSR is to get into a new configuration that lets it continue
performing its assigned task while incurring the minimum
reconfiguration cost. We parametrize the reconfiguration
cost in the following manner. Let costCSold(A)→CSnew(A)(ai, aj)
denote the cost that will be incurred to couple modules ai

and aj with each other (in the process of reconfiguration
from CSold(A) to CSnew(A)). For simplicity we will write
costold,new(ai, aj). If these two modules remain in the same
MSR after reconfiguration, this cost is 0. Otherwise, this
cost is given by the sum of the costs of undocking the mod-
ules ai and aj respectively from their current MSRs, the cost
of one of the modules, say aj , moving to the vicinity of the
other module ai and the cost of aligning and docking the
two modules, as described below:4

costold,new(ai, aj) =



























0, if ai,aj∈Aold
k1

and ai,aj∈Anew
k2

costUndock(ai)

+ costUndock(aj)

+ costCrawl(aj ,loc(ai))

+ costAlignAndDock(ai,aj), otherwise
(2)

Within this framework, we define the MSR self-reconfiguration
problem as the following:

Definition 1. Modular Self Reconfiguration. Given a
partition CSold(A) = {Aold

1 , Aold
2 , ..., Aold

k }, find a partition
CSnew(A) = {Anew

1 , Anew
2 , ..., Anew

k′ } such that the following
constraint is satisfied:

max
CSnew(A)∈Π(A)

V (CSnew(A))−
∑

ai,aj∈A

costold,new(ai, aj)

(3)

4.1 Coalition Game for MSR Self-Reconfiguration
We formulate the MSR self-reconfiguration problem as

finding an optimal coalition structure using a coalition game
theoretic framework. Each module of the MSR is provided
with a software agent that performs calculations related to
the coalition game based algorithm to solve the modular

3For legibility, and without loss of generality, we drop the
notation for time t from the MSR
4We assume that costs are symmetric, i.e.,
costold,new(ai, aj) = costold,new(aj , ai).



Figure 4: Coalition structure graph with 4 agents

self reconfiguration problem. We have used a popular rep-
resentation of coalition games called characteristic function
games (CFG) [10]. A CFG is defined by a pair of attributes
(A, v), where A is the set of agents, and v : 2A → R is
called a characteristic function or value function. v gives
a real number called the value or worth for each possi-
ble subset or coalition S of the set of A agents. A coali-
tion structure is an enumeration of the subsets S of A such
that every agent appears exactly once in one of the subsets.
For a set of agents A, let Π(A) denote the set of coalition
structures. For example, with A = {a1, a2, a3}, Π(A) =
{{a1}{a2}{a3}, {a1}{a2, a3}, {a2}{a1, a3}, {a3}{a1, a2},
{a1, a2, a3}}. Π(A) can be enumerated recursively as a coali-
tion structure graph (CSG), as shown in Figure 4.1. Each
coalition structure CS(A) ∈ Π(A) appears as a node in
the CSG. Nodes are organized into levels, and a node at
level l − 1 can be generated recursively by combining pair-
wise the members from disjoint partitions, for each node in
level l. Each coalition structure CS(A) is associated with
a value V (CS(A)) that is usually calculated by adding the
values of each coalition within the coalition structure, i.e.,
V (CS(A)) =

∑

S∈CS(A)

v(S). For example, with 4 agents, for

the coalition structure {a1, a2}{a3}{a4}, V ({a1, a2}{a3}{a4}) =
v({a1, a2}) + v(a3) + v(a4). For the context of MSR re-
configuration, an agent ai corresponds to a single MSR-
module, a coalition S corresponds to an MSR Aj , while a
coalition structure corresponds to a set of MSRs. To solve
the modular self-reconfiguration problem given in Definition
1, we have to find the coalition structure in the CSG that
corresponds to the maximum value, i.e., find CS∗(A) =
arg max

CS(A)∈Π(a)
V (CS(A)).

4.2 Graph-based Representation of CSG
Let G = (A,E) denote a weighted, complete graph with

its vertex set as the set of modules A, edge set as E =
{(aj , ak) : ∀aj, ak ∈ A} and edge weight function w : E → R

defined as:

w(e) = w(aj , ak) = V al − cost(aj , ak) (4)

where V al is a fixed constant. As a simplification, we take
the cost function to be symmetric so that w(e) = w(e′),∀e =

(ai, aj), e
′ = (aj , ai) ∈ E and thus the graph can be treated

as undirected. We define the sum of the edge weights in a
coalition Ai to be the utility of the coalition, i.e.

v(Ai) =
∑

e=(aj ,ak):
aj ,ak∈Ai,j 6=k

w(e) (5)

It is important to note that the edge weight function is not
non-negative (which is a requirement of most graph cluster-
ing algorithms). Edges which have a positive weight corre-
spond to a positive contribution to utility if the two modules
were to join the same coalition, whereas negative edges will
correspond to a decrease in utility if they were to join the
same coalition. Also, with this definition, the utility of a
singleton, i.e. a coalition consisting of only one module, is 0
since there are no edges within the coalition.

Graph-based MSR Reconfiguration Problem. Re-
call that Π(A) is the set of all partitions of A i.e. the set of
all possible non-overlapping coalition structures.

The utility of a coalition structure CS(A) = {A1, A2, ..., Ak},
is given by:

V (CS(A)) =
k

∑

i=1

v(Ai) (6)

Initially, A has a coalition structure consisting entirely of
singletons i.e. each module is on its own and no coalitions
of two or more modules have been formed. In this setting,
the problem of finding an optimal coalition structure con-
sists of clustering the graph G = (A,E) into CS∗(A) =
{A1, A2, ..., Ak} such that:

V (CS∗(A)) = max
CS(A)∈Π(A)

V (CS(A))

4.3 Graph Clustering Approach for Coalition
Formation

We will use the approach proposed in [7]. The penalty of
a coalition structure CS(A) = {A1, A2, ..., Ak} takes into ac-
count positive weighted edges between different coalitions in
the structure and negative weighted edges within the same
coalition in the structure and is defined to be:

Penalty(CS(A)) = Penaltyp(CS(A))+Penaltym(CS(A))



Penaltyp(CS(A)) =
∑

e=(ai,aj):w(e)>0
ai∈Ak1

,aj∈Ak2
,

k1 6=k2

|w(e)|

Penaltym(CS(A)) =
∑

e=(ai,aj):w(e)<0
ai,aj∈Ak1

|w(e)|

The penalty of a coalition structure is equivalent to what
is defined as the cost of a clustering in [7]. We use the
term ”penalty” so there is no confusion with the cost func-
tion which was defined in Equation 2. To obtain a coalition
structure with close to optimal utility, we are interested in
maximizing the sum of edge weights that are within coali-
tions in the structure. That is, it is beneficial to have mod-
ules (vertices) that have a positive edge between them to
be in the same coalition, and to have modules that have
a negative edge to be in different coalitions. Notice that
by reducing the total weight of negative edges within coali-
tions, and total weight of positive edges between coalitions,
the utility of the coalition is increased. By minimizing the
penalty we are thus minimizing the absolute total weight of
positive edges between coalitions and absolute total weight
of negative edges completely within coalitions, and therefore
increasing the utility of the coalition structure. In fact, as
we will show, minimizing the penalty of a coalition structure
is equivalent to maximizing its utility.

As in [7], for each pair of modules (vertices) i.e. for each
edge (ai, aj) ∈ E, we introduce binary variables xaiaj ∈
{0, 1} for a clustering CS(A) = {A1, A2, ..., Ak} such that
xaiaj = 0 ↔ ∃Al ∈ CS(A) : ai, aj ∈ Al (the two modules
are in the same coalition) and xaiaj = 1 ↔ ∃Ak1

, Ak2
∈

CS(A), k1 6= k2 : ai ∈ Ak1
, aj ∈ Ak2

(the two modules are
in different coalitions). Notice that 1 − xai,aj = 0 iff ai

and aj are in different coalitions and 1 − xai,aj = 1 iff ai

and aj are in the same coalition. We will use the abbre-
viation xe for xaiaj where e = (ai, aj) ∈ E. Formulating
Penalty(CS(A)) using these binary variables, we need non-
negative constants:

me =

{

|w(e)| if w(e) < 0
0 if w(e) ≥ 0

pe =

{

|w(e)| if w(e) > 0
0 if w(e) ≤ 0

So Penalty(CS(A)) becomes:

Penalty(CS(A)) =
∑

e∈E

pexe +
∑

e∈E

me(1− xe) (7)

We wish to find a coalition structure with minimal cost.
This is equivalent to finding the structure with optimal util-
ity as we now show.

Proposition 1. A coalition structure with minimal penalty
will have a maximal (optimal) utility.

Proof: From Equation 7 we have that the penalty of a
coalition structure CS(A) is:

Penalty(CS(A)) =
∑

e∈E

pexe +
∑

e∈E

me(1− xe)

Using the same notation, we have that the utility of a
coalition structure from Equations 5, 6 is:

V (CS(A)) =
k
∑

i=1

v(Ai) =
k
∑

i=1

∑

e=(aj,ak):
aj ,ak∈Ai,j 6=k

w(e) =

∑

e∈E

pe(1− xe)−
∑

e∈E

me(1− xe) =

∑

e∈E

pe −

(

∑

e∈E

pexe +
∑

e∈E

me(1− xe)

)

=
∑

e∈E

pe − Penalty(CS(A))

Since
∑

e∈E

pe is a constant (the variables are the xe’s),

then minimizing Penalty(CS(A)) is equivalent to maximiz-
ing V (CS(A)) and thus the coalition with minimal penalty
will have the maximal (optimal) utility.

2

Notice that Penalty(CS(A)) ≥ 0, ∀CS(A) ∈ Π(A) and to
minimize the Penalty using the above formulation, it would
suffice to set xe = 0 whenever pe > 0 and xe = 1 whenever
me > 0 so that Penalty = 0, however this will not neces-
sarily correspond to a valid coalition structure since the xe

variables are not independent. As noted in [7], an assign-
ment of values {0, 1} to the variables xe corresponds to a
valid coalition structure (clustering) if the variables satisfy
the triangle inequality, that is ∀ai, aj , ak ∈ A, i 6= j 6= k,
xai,aj + xaj,ak

≥ xai,ak
. The problem can therefore be for-

mulated as a 0-1 integer linear program:

min:
∑

e∈E

pexe +
∑

e∈E

me(1− xe)

constraints:
xai,aj ∈ {0, 1}, ∀ai, aj ∈ A, i 6= j

xai,aj + xaj,ak
≥ xai,ak

,∀ai, aj , ak ∈ A, i 6= j 6= k

xai,aj = xaj,ai∀ai, aj ∈ A, i 6= j

As is known, 0-1 integer linear programming is NP-complete,
so the problem is relaxed to a linear program [7]:

min:
∑

e∈E

pexe +
∑

e∈E

me(1− xe)

constraints:
xai,aj ∈ [0, 1], ∀ai, aj ∈ A, i 6= j

xai,aj + xaj,ak
≥ xai,ak

,∀ai, aj , ak ∈ A, i 6= j 6= k

xai,aj = xaj,ai∀ai, aj ∈ A, i 6= j

The problem can now be solved in polynomial time, though
it may yield a fractional solution i.e. the variables xe are
in the interval [0, 1], and are not necessarily binary. In
this case the authors in [7] propose a rounding algorithm
based on region growing to obtain a valid approximate so-
lution i.e. obtain a valid assignment of 0’s and 1’s to the
xe variables which will yield a close to minimal penalty.
The whole algorithm runs in polynomial time (polynomial
in the number of variables) and is a O(log n) approximation.
The number of variables is simply the number of edges in



the graph. In our case, we have a complete graph so that

|E| =
(

|A|
2

)

=
(

n

2

)

= n(n−1)
2

and so the algorithm will run
in time polynomial in the number of modules (vertices) n.
The algorithm is outlined as follows:

1. Coordinates of all agents in A are specified. Parameter
V al is specified.

2. ∀ai, aj ∈ A, w(ai, aj) is calculated using Equations 2
and 4.

3. Objective function given by Equation 7 is formulated
and constraints are set.

4. Linear programming is used to obtain a solution to the
optimization problem.

5. If the solution is 0-1 integer then a valid coalition struc-
ture has been found. Else if the solution is fractional, the
region growing rounding algorithm [7] is used to obtain a
valid approximate solution.

5. EXPERIMENTAL RESULTS
We have implemented the described algorithm for obtain-

ing optimal coalition structures using the mixed integer lin-
ear programming solver LPsolve version 5.5.2.0. In this sec-
tion we present results on simulations for agent set sizes from
3 to 43. For agent set sizes between 3 and 12, we were able
to perform an exhaustive search on the space of all coali-
tion structures to find the actual optimal coalition structure
and compare it with the structure obtained using the graph
clustering linear programming model. For higher agent set
sizes the exhaustive search (complexityO(nn)) becomes pro-
hibitive, as do the algorithms for the general CSG problem
[11, 15]. The reason we are able to outperform those meth-
ods is that our formulation is a restricted case i.e. we are
restricting the problem to a weighted graph where coalition
utilities are calculated by summing pairwise utilities (edge
weights).

For each of the agent set sizes n = {3, 4, ..., 43}, we used a
grid size of (n+ 4)× (n+ 4) and generated random integer
coordinates for each of the agents i.e. for each agent ai ∈
A, 1 ≤ i ≤ n, we assigned coordinates (xai , yai) where xai is
randomly generated from {0, 1, ..., n+3} and yai is randomly
generated from {0, 1, ..., n + 3}. We generated 30 random
arrangements of n agents in an (n + 4) × (n + 4) grid for
each value of n from 3 to 12, and 10 random arrangements
for n from 13 to 43. The edge weights were calculated using
w(e) = V al − cost(aj , ak), and for simplification we took
cost(aj , ak) = d(aj , ak) + costAlignAndDock where d(aj , ak)
is the Euclidean distance between agents aj , ak in the grid
and costAlignAndDock = 1 was a constant representing the
cost of alignment and docking of two modules (agents). We
set V al = n

2
+3 for each different value of n. V al was chosen

so that for each edge (ai, aj), the weight is w(e) = V al −
cost(aj , ak) =

n
2
+3−d(aj , ak)−1 = n+4

2
−d(aj , ak) meaning

if modules ai, aj are within a distance of n+4
2

(half the width
of the grid) then their edge weight (utility) will be positive,
and if they are at least half a grid width apart then they
will have a negative edge weight. For singleton coalitions we
used the utility of 0. Notice that in the graph formulation,

singleton coalitions have no edges contained and hence do
not contribute anything to the coalition utility5. A zero
utility for singletons also indicates that a coalition consisting
of a single module will not provide any contribution to the
total utility of the coalition structure.

Such a scenario arises in a practical setting where the mod-
ules are deployed in an unknown environment as singletons.
Deploying a configured MSR is harder than deploying single
modules separately. Each of the individual modules may be
dropped from an aircraft/spacecraft with a parachute and
thus will be scattered in the ground environment once they
land. Our goal is then to find the optimal coalition structure
so that the modules can form into larger MSRs and proceed
with exploration.

After randomly generating the test cases for each agent
set size and calculating the edge weights, we formulated the
objective function (the penalty of a coalition structure) to
minimize and the constraints, then used LPsolve to produce
a valid solution. For agent set sizes up to 43, using the
default settings in LPsolve, all solutions to the randomly
generated test cases were 0-1 integer i.e. no rounding is
required. In this case an exact solution is obtained to the 0-1
integer linear programming model and thus it is an optimal
coalition structure. As empirical evidence of this we took
the actual optimal utility from the exhaustive search and
compared to the value obtained using LPsolve.

Table 1 shows the mean ratio (averaged over the 30 test
cases for each agent set size) of the utility of the coalition
structure we found to the utility of the optimal coalition
structure. Mean runtime (average over each of the 30 test
cases) is also displayed. For implementation we used a desk-
top PC (Intel Core i7 - 960 3.20GHz, 12GB DDR3 SDRAM)

No. of
Agents

Mean Ratio
to Optimal
Utility

Mean
Runtime
(secs)

3 1 0.004667
4 1 0.004733
5 1 0.004833
6 1 0.005
7 1 0.005233
8 1 0.005733
9 1 0.006367
10 1 0.007233
11 1 0.008567
12 1 0.01127

Table 1. Mean Ratio of Utilities for Coalition Structures
Obtained to Optimal Coalition Structures

From Table 1, we see that the method we implemented is
able to find optimal coalition structures for the given number
of agents. In fact, in all of the 30 cases for each agent size,
optimal coalition structures were found.

Figure 5 shows running times averaged over 10 test cases
for each value of agent set size from 3 to 43. The algorithm
was implemented for agents set sizes 13 to 43 on the same
machine. Notice that even for 43 agents, the running time
is approximately 5 seconds. Running algorithms which ex-
plore the space of all coalition structures for such numbers
5While realistically, singleton coalitions should have a value,
we do not consider this in our formulation. Adding vertex
weights to the formulation is a possible way to account for
singleton coalitions.



Figure 5: Average running times for various agent
set sizes

Figure 6: Initial locations of 20 ModRED modules
randomly scattered within an environment (snap-
shot from Webots)

of agents is prohibitive. The algorithms are all bounded be-
low by Ω(2n) since the utility of every possible subset of A
has to be obtained. While the algorithms [15], [11] are
applicable to any coalition game i.e. any valuation func-
tion, the method implemented by us is only applicable to
the graph coalition game case where the valuation function
is calculated by summing pairwise utilities.

Figure 6 shows the initial random arrangement of 20 ModRED
modules in a 24 × 24 grid (snapshot taken from Webots).
Each module is assumed to be in its own singleton coalition,
edge weights are calculated using equation 5 with V al =
15, cost = 1, and Euclidean distances between modules.
The coalition structure obtained using the graph clustering
method with the given parameters is displayed (modules in
the same coalition are circled). The clustering method natu-
rally groups close modules into the same cluster (since with
constant cost, edge weights are primarily influenced by dis-
tance). Once the coalition structure is determined, the mod-
ules are instructed to form into their respective coalitions
and configure into chains as is illustrated in Figure 7.

For agent set sizes larger than 43, LPsolve produced frac-
tional solutions i.e. the edge variables xai,aj were values in

Figure 7: ModRED modules form the specified
coalitions and configure into four different chain for-
mations (snapshot from Webots)

the interval (0,1). In this case, the region growing round-
ing algorithm in [7] is implemented to obtain O(log n)-
approximations to the optimal coalition structure. Addi-
tional time is required for this procedure but it should be
noted that it runs in polynomial time and therefore does not
change the fact that the overall algorithm runs in polynomial
time.

6. CONCLUSION AND FUTURE WORK
We have formulated the CSG problem for our setting of

MSR reconfiguration as a graph coalition formation game.
Current state of the art algorithms for general coalition for-
mation are all bounded below by Ω(2n) [15], [11] and for
a guaranteed optimal solution, the worst case running time
is O(nn). In our formulation, although it is a specific case
with a graph representation, there is no longer a Ω(2n) lower
bound and algorithms exist [7] which guarantee a O(log n)
approximation and run in polynomial time. In this setting,
coalition formation for large sets of agents becomes feasible.

In general, solving the 0-1 integer linear programming
problem (which is part of the graph clustering technique)
is NP-Complete, but when the problem is relaxed to a gen-
eral linear programming problem, solutions can be found
in polynomial time. Fractional solutions do not represent a
valid coalition structure and a O(log n) approximation poly-
nomial time algorithm is used to obtain a valid coalition
structure. In the simulation results presented, we did not
have to implement the region growing rounding algorithm
in [7] since we obtained 0-1 integer solutions and thus opti-
mal coalition structures. As the agent set size grows larger,
the solutions obtained in the linear programming part of the
algorithm are fractional and region growing has to be applied
to obtain valid coalition structures. We plan to extend our
work to include the rounding algorithm so that the prob-
lem can be approximately solved for larger agent set sizes
and compare it with more recent coalition structure search
algorithms [12].

Also, our current formulation is able to produce a close
to optimal coalition structure when reconfiguring from the
coalition structure in which each module is in a coalition
on its own i.e. each coalition is a singleton. We plan to
extend the approach so that we can reconfigure from any
given initial configuration. Assigning tasks for the coalitions
is another extension we hope to explore. In this scenario



each coalition is assigned a task and constraints are set so
that each coalition is able to solve the assigned task. In
the case when not all tasks can be solved, reconfiguration
has to be performed to obtain a coalition structure which
will meet the task needs. Implementing our approach in the
physical world to the MSR ModRED requires that we take
into account uncertainty since sensor noise becomes a key
issue. Extending our formulation by using stochastic edge
weights is one approach to tackling the issue of uncertainty
in the graph coalition formation problem.
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