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ABSTRACT
Both Learning from Demonstration (LfD) and Reinforce-
ment Learning (RL) are popular approaches for building
decision-making agents. LfD applies supervised learning to a
set of human demonstrations to infer and imitate the human
policy, while RL uses only a reward signal and exploration
to find an optimal policy. For complex tasks both of these
techniques may be ineffective. LfD may require many more
demonstrations than it is feasible to obtain, and RL can take
an inadmissible amount of time to converge.
We present Automatic Decomposition and Abstraction

from demonstration (ADA), an algorithm that uses mutual
information measures over a set of human demonstrations
to decompose a sequential decision process into several sub-
tasks, finding state abstractions for each one of these sub-
tasks. ADA then projects the human demonstrations into
the abstracted state space to build a policy. This policy can
later be improved using RL algorithms to surpass the perfor-
mance of the human teacher. We find empirically that ADA
can find satisficing policies for problems that are too com-
plex to be solved with traditional LfD and RL algorithms.
In particular, we show that we can use mutual information
across state features to leverage human demonstrations to
reduce the effects of the curse of dimensionality by finding
subtasks and abstractions in sequential decision processes.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Human Factors.

Keywords
Reinforcement learning, learning from demonstration, task
decomposition, state abstraction.

1. INTRODUCTION
As it is impractical to implement manually every possible

skill an agent might need to flourish in a human environ-
ment, our research aims to enable autonomous agents to
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Figure 1: RainbowPanda domain. The agent must
pick all balls, aiming at those that match the agent
color at each moment. With 12 continuous state fea-
tures, traditional RL does not converge in a reason-
able amount of time. ADA finds a satisficing policy
quickly by decomposing the problem into simpler
subtasks.

learn new skills from non-expert humans without interven-
tion from an engineer or programer. Agents such as non-
player characters in video games or robotic domestic assis-
tants must be able to adapt their behavior and learn new
skills from everyday people.

Our approach derives a great deal from Learning from
Demonstration (LfD) [3]. In the typical LfD scenario, an
agent learns a mapping from states to actions using super-
vised learning techniques on a set of human demonstrations
of a task. Such approaches assume that human demonstra-
tions are positive examples of a near-optimal policy.

While LfD has proven successful [2], human demonstra-
tions are expensive to obtain and, depending on the size of
the state-action space, may require an impractical number
of demonstrations. Additionally, small errors in imitating
the human policy can compound and lead the agent to an
unknown region of the state space. This large difference
between training and testing state distributions can signifi-
cantly impact performance.

In order to sidestep these shortcomings, we look for other
kinds of information that human demonstrations can com-
municate to a learning agent. Instead of direct policy in-



formation, we use human demonstrations to learn a state
abstraction and task decomposition to improve learning.

1.1 State Abstraction from Demonstration
We build on recent work in Abstraction from Demonstra-

tion [4] (AfD). In AfD, an agent uses human demonstrations
on a task to figure which features of the state space are rele-
vant for the task by measuring mutual information between
each feature and the actions taken by the human teacher.
Once the relevant features are identified, the agent builds
an abstract state space in which the human policy can be
expressed compactly, and then applies Reinforcement Learn-
ing (RL) algorithms to learn a policy in that abstract state
space. If the original state space contains policy-invariant [9]
features that can be ignored, this can lead to exponential
speedups in skill learning, compared with traditional, raw-
state space RL.

1.2 Task Decomposition from Abstraction
It is often the case that multipurpose agents have a high

number of input signals of which only a subset are relevant
for any specific task; however, using AfD does not help if all
state features are relevant for the skill to be learned.
Our key insight is that there are often tasks where the

entire state space is relevant for some part of the task, but
the task can decomposed in subtasks so that for any given
subtask there does exist an abstraction in which the policy
can be expressed. For example, when we drive a car, we
focus our attention almost completely on the car keys at the
start and end of a drive, but completely ignore them for the
rest of the trip. Our brain can receive simultaneously up to
11 million pieces of information, but it is estimated that at
any given moment a person can be consciously aware of at
most 40 of these [14].
Our goal is to infer this attentional focus, the particular

task decomposition and state abstraction that the human
demonstrator is using during their demonstration. We de-
fine a subtask as a region of the state space where only a
subset of features is relevant, this subset being different from
those of other subtasks. Thus we want a decomposition that
maximizes our ability to apply AfD in each part.

1.3 Automatic Decomposition and Abstraction
In this paper we introduce Automatic Task Decomposition

and State Abstraction from Demonstration (or Automatic
Decomposition and Abstraction (ADA)), which uses human
demonstrations to both decompose a skill into its subtasks
and find independent state abstractions for each subtask.
ADA can build more powerful abstractions than AfD, find-
ing compact state space representations for more complex
skills in which all state features are relevant at some point
in time.
To determine which features are relevant to a particular

subtask, we measure the mutual information between each
feature of the state and the action taken by a human in a
set of demonstrations. Once the state space is decomposed
in different subtasks, the agent can learn and represent a
compact policy by focusing only on the features that are
relevant at each moment.
Fig.1 shows a simple example in our experimental domain.

In this domain, an agent represented as a panda bear moves
in an spherical surface. The agent can move forward and
backwards and turn left and right. The overall task of the

agent is to pick up all the balls, but at each moment it can
only pick up balls of a specific color. With six balls, there are
12 continuous variables (relative angle and distance of each
ball) and 1 discrete variable, the color the agent is currently
allowed to pick up. In this 13-dimensional state space, tra-
ditional tabular RL takes an unreasonable amount of time
to converge. Further, the complexity of the policy grows ex-
ponentially with the number of balls. As we shall see, with
ADA, we can automatically decompose this problem into a
set of subtasks, one per color, with each one needing to pay
attention only to the closest ball of the target color. These
2-dimensional policies are easy to obtain, and the complex-
ity of the global policy grows linearly with the number of
balls.

After further situating our work in the next section, we
describe in detail the ADA and ADA+RL algorithms and
show that they can obtain good policies in problems where
traditional RL and LfD algorithms offer poor performance.

2. RELATED WORK
Our work is at the intersection of different research lines,

namely Learning from Demonstration, task decomposition,
and state abstraction for RL.

LfD is a broad area of research, and several works ex-
plore how to combine demonstrations with traditional RL
methods. Among these, using demonstrations or feedback
to guide exploration [17, 12] or to learn a reward function [1]
are complementary and could be combined with the method
we propose. Other previous work uses demonstrations to
extract task decompositions, like our method, but require a
dynamic Bayesian network representation of the transitions
and rewards models [16, 19], while our approach is model
free.

There are also many approaches to task decomposition,
but they usually require the user or the designer to explicitly
specify the task structure [6, 10]. Others rely on heuristics
that are adequate only for a very specific class of domains [8,
5, 18]. ADA is automatic and more general than these meth-
ods.

Regarding state abstraction in RL, prior work has used
L1 [13] and L2 regularization [7], as well as selection from
features that are based on Bellman error analysis [11]. While
these approaches select features to represent a near-optimal
value function, our work focuses on representing compactly
a satisficing human policy, which is likely to be simpler and
easier to learn than the optimal one. In the hierarchy for
MDP state abstractions [15], ADA abstractions are in be-
tween a∗-irrelevance and π∗-irrelevance.

3. AUTOMATIC DECOMPOSITION AND
ABSTRACTION

3.1 Preliminaries
We focus on sequential decision problems that can be ex-

pressed as Markov Decision Processes:

M = (S,A, P
a
ss′ , R

a
s , γ) ,

where S is a finite state space, A a finite set of actions,
P a
ss′ = Pr (s′|s, a) is the transition model, Ra

s = r(s, a) the
reward function and 0 ≤ γ ≤ 1 the discount factor. F =
{F1, . . . , Fn} is the set of features of the state space, so that



S = {F1 × · · · × Fn} and a state s ∈ S is an n-tuple of
features s = (f1, f2, . . . , fn).
Solving an MDP means finding a policy π : S → A map-

ping states to actions. The value or sum of discount rewards
of taking action a in state s and then following a policy π is

Q
π(s, a) = R

a
s + γ

∑

s′∈S

P
a
ss′Q

π(s′, π(s′)).

Most RL algorithms look for an optimal policy, i.e., the
policy that maximizes the sum of discounted reward,

π
∗(s) = argmax

a∈A
R

a
s + γ

∑

s′∈S

P
a
ss′Q

π∗

(s′, π∗(s′));

however, ADA will aim to find a satisficing policy, i.e., a pol-
icy that is comparable in performance to that of the human
teachers.
We utilize usual notation for set operations, including | · |

for cardinality. We use ‖ · ‖ for the L2 norm of a vector.
Human demonstrations are defined as a set of episodes,

each one comprising a list of state action pairs

H = {{(s1, a1), (s2, a2), . . .}, . . .}, si ∈ S, ai ∈ A.

Mutual information is a measure of the amount of entropy
in one random variable that can be explained by the value
of a different random variable,

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ),

and can be computed as

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log

(

p(x, y)

px(x)py(y)

)

, (1)

where p(x, y) is the joint probability density function (pdf)
of random variables X and Y and px(x) and py(x) the re-
spective marginal pdfs of each random variable. Thus, we
define:

~miE = (I(F1;A), . . . , I(Fn;A))

as a vector whose elements are the mutual information be-
tween each feature of the state space and the action taken
by the human teacher, according to the samples of H in the
region E ⊂ S. To compute ~miE , we estimate the appropri-
ate joint and marginal pdfs using the samples of H that fall
in region E, and use Equation 1.

3.2 Overview
Given an MDP M and a set of human demonstrations

H for a skill to be learned, ADA finds a policy in three
conceptual steps and an optional fourth step:

1. Problem decomposition. Using H, partition the
state space S in different subtasks T = {t1, t2, . . .},
∪T = S, ti ∩ tj = ∅ if i 6= j.

2. Subtask state abstraction. Using H, determine,
for each subtask ti ∈ T the relevant features F̂i =
{Fi1 , Fi2 , . . .}, Fij ∈ F . and build a projection from
the original state space S to the abstract state space
φ(s) = {i, fi1,s, fi2,s, . . .} ∈ Ŝ, s ∈ ti.

3. Policy construction. Build a stochastic policy π(ŝ).

4. Policy improvement. Use Reinforcement Learning
to improve over the policy found in the previous step.
We refer to our algorithm as ADA+RL when it in-
cludes this step.

For clarity, we list the first two steps as if they are se-
quential; however, they are interwoven and concurrent. The
decomposition of the state space depends on the quality of
the abstractions that can be found on different subspaces.

3.3 Problem decomposition

Definition 1. A set of subtasks T = {t1, t2, . . .} of an
MDP M are a set of regions of the state space S such that:

• The set of all subtasks T form a partition of the original
state space S, i.e., ∪T = S and ti ∩ tj = ∅ if i 6= j.

• A subtask ti is identified by having a local satisficing
policy πi that depends only on a subset of the avail-
able features. This subset is different from neighboring
subtasks.

• The global policy π(ŝ), the combination of the policies
of each subtask, is also satisficing.

While this definition is not the typical one for subtasks
in a sequential decision problem, it turns out to be a useful
one, particularly if we focus on human-like activities. For ex-
ample, cooking an elaborate recipe requires multiple steps,
and each of these steps will involve different ingredients and
utensils. It is possible that two conceptually different sub-
tasks may depend on the same features, but in our frame-
work, and arguably in general, the computational benefits
of separating them are not significant.

With ADA, we can identify these subtasks given a set of
human demonstrations H with two requirements:

• There must be a sufficient number of samples minss

from each subtask in the set of demonstrations H.

• The class of possible boundaries between subtasks B =
{b1, b2, , . . .}, bi ⊂ S must be defined. Each boundary
divides the state space in two, bi and S − bi. ADA
will be able to find subtasks that can be expressed as
combinations of these boundaries.

The necessary number of samples is determined in the first
step of the ADA algorithm. This minimum sample size is
needed due to the metric we use to infer feature relevance.
Mutual information is sensitive to the limited sampling bias,
and will be overestimated if the number of samples consid-
ered is too low.

The decomposition algorithm is described in Algorithm 1.
At each iteration of the while loop, we consider a subspace
E, with E = S in the first iteration. We then consider all
valid boundaries. If there are none, then E itself is a subtask.
If there are valid boundaries, we score them and choose the
one with the highest score. We then split E according to
the boundary, and add the two new subspaces to the list of
state spaces to be evaluated, to be further decomposed if
necessary.

The boundaries B can have any form that is useful for
the domain. In our experiments we consider thresholds on
features, i.e., axis-aligned surfaces. Using these boundaries,



Algorithm 1 ADA problem decomposition.

Require: MDP M =
(

S,A, Pa
ss′

, Ra
s , γ

)

, S = {F1 × . . . × Fn},
human demonstrations H = {{(s1, a1), (s2, a2), . . .}, . . .}, s ∈
S, a ∈ A, boundaries B = {b1, b2, . . .}, bi ∈ S, ǫ.
minss ← min sample size(H, ǫ)
T ← {}
S← {S}
while S 6= ∅ do
{pop removes the element from S}
E ← S.pop()
BE ← {b ∈ B, valid split(b, E,minss)}
if BE = ∅ then

T.push(E)
else

bbest ← argmaxb∈BE
(boundary score(b, E)))

S.push(bbest ∩ E)
S.push((S − bbest) ∩ E)

end if

end while

Return T

Algorithm 1 is just building a decision tree with a special
split scoring function and stopping criteria.
In the next subsections we discuss the details of the split

scoring function, the discriminator of valid boundaries, and
the estimator of the minimum number of samples necessary.
These contain the most interesting insights of ADA.

3.3.1 Boundary discriminator
Given a subspace E ⊂ S, mss and H, we consider a

boundary b ⊂ S to be valid if it meets three conditions:

1. There are enough samples in the set of human demon-
stration H to ensure we can measure mutual informa-
tion with accuracy on both sides of the boundary, i.e.

|{{s, a} ∈ H, s ∈ b ∩ E} | > minss,

|{{s, a} ∈ H, s ∈ (S − b) ∩ E} | > minss.

2. At least in one side of the boundary, either b ∩ E or
(S−b)∩E, it is possible to find a state abstraction, i.e.,
some features are policy-invariant and can be ignored.
We detail how we find these features in Section 3.4.

3. The state abstraction at both sides of the boundary is
not the same.

This boundary discriminator works as the stopping crite-
ria of the algorithm. When there are no more valid bound-
aries to be found, the decomposition step finishes.

3.3.2 Boundary scoring
The boundary scoring function determines the quality of

b as a boundary between different subtasks within a region
E ∈ S.

boundary score(b, E) =

∣
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∣

∣

∣

∣

∣
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∣
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.

(2)
The score is thus the euclidean distance between the nor-

malized mutual information vectors at both sides of the
boundary.

We are therefore measuring the difference between the rel-
ative importance of each feature at both sides of the bound-
ary. As we want to find subtasks that rely on different fea-
tures, we choose the boundary that maximizes this difference
(see Algorithm 1).

3.3.3 Minimum samples
Due to the limited sampling bias, mutual information is

overestimated if it is measured in an insufficient number of
samples. The minimum samples in ADA, given a set of
demonstrations H and parameter ǫ ≈ 0.1 is

mss = argmin
n

average

(

~miS − ~miS,n
~miS

)

> ǫ, (3)

where miS,n is the mutual information vector on the origi-
nal state space S, taking only a subset of n randomly chosen
samples from all the samples in H. The subtraction and di-
vision are element-wise and the average function takes the
average of the values of the resulting vector. Because of the
variability of mutual information, it is necessary to evalu-
ate Equation 3 several times for each possible n, each time
with a different and independently chosen set of samples.
Because of the limited sampling bias, the difference between
~miS and ~miS,n will grow as n decreases, and a binary search

can be used to find mss efficiently.

3.4 Subtask state abstraction
Given a region of the state space E ⊂ S, we consider ~miE

in order to estimate policy-irrelevant features. Even if a fea-
ture is completely irrelevant for the policy in a region of the
space, its mutual information with the action will not be
zero due to the limited sampling bias. Therefore, in ADA
we group the values of ~miE in two clusters separated by the
largest gap among the sorted values of the vector. If the
value difference between any two features in different clus-
ters is larger than the distance within a cluster, we consider
we found a good abstraction that discards the features in
the lower value cluster.

Note that this step occurs concurrently with the previous
one, since the decomposition step needs to know in which
regions of the state space there are good abstractions. Once
these steps complete, we can build the projection function
from the original function state space S to the abstract state
space φ(s) = {i, fi1 , fi2 , . . .} ∈ Ŝ, s ∈ ti.

3.5 Policy construction
Once the task decomposition and state abstraction are

completed and we have the projection function φ(s), we use
the demonstrations H to build a stochastic policy that sat-
isfies

P (π(ŝ) = ai) =

∣

∣{{s, ai} ∈ H,φ(s) = ŝ∗}
∣

∣

∣

∣{{s, a} ∈ H,φ(s) = ŝ∗, a ∈ A}
∣

∣

, (4)

where ŝ∗ equals to ŝ if |{{s, a} ∈ H,φ(s) = ŝ, a ∈ A}}| >
0. Otherwise, ŝ∗ equals to the nearest neighbor of ŝ for
which the denominator in Eq. 4 is not zero.

To compute the policy we project the state of each sam-
ple of H into the abstracted space and make a normalized
histogram of each action. This concludes the basic ADA
algorithm.



3.6 Policy improvement
ADA+RL adds another step, policy improvement, in which

we use Reinforcement Learning techniques to find the op-
timal policy that can be represented in the abstract state
space Ŝ. Unlike traditional LfD techniques, ADA was de-
signed so that the resulting policy can be easily improved
given additional experience. In this way, we can obtain a
better policy than that of the human teacher.
Given the kind of abstraction that ADA performs, boot-

strapping methods such as Sarsa or Q-learning are not guar-
anteed to converge in the abstract state space[15]. As such,
we can use either Monte Carlo methods or direct policy
search. In Section 4 we choose to use policy search because
it is fast and performs well given the compact state space
that ADA generates.

4. EXPERIMENTAL RESULTS

4.1 Domains
To test the ADA and ADA+RL algorithms, we used two

different domains, PandaSequential and RainbowPanda. We
implemented a 3D game interface, shown in Figure 1, to
capture human demonstrations. In both games, an agent (a
panda bear) runs on a spherical surface collecting a series
of colored balls. In PandaSequential, the agent must pick
balls of different colors in a specific, fixed order, while in
RainbowPanda, the agent is tinted with the color of the balls
it is allowed to pick at any given moment. The color of the
agent in RainbowPanda changes when the agent picks the
last ball that matches the current color and may also change,
with a small fixed probability, at any time step. With both
domains, the initial position of the balls is assigned randomly
at the start of each episode.
The state features are the distance and angle to each ball,

relative to the agent. In RainbowPanda there are two balls
of each color, so there are separate features for the closest
ball and further ball from the agent. Distance and angle are
measured in radians, and when a ball is not present (it has
already been picked up), both features take a value outside
of their normal range. RainbowPanda also has a discrete
feature that contains the color of the agent, which is the
color of the balls that the agent is allowed to pick up.
On both domains, the actions are move forward, back-

ward, rotate right, rotate left, and no operation. The agents
move backwards at a fourth of the speed they can move for-
ward. The balls are picked up just by touching them. If the
touched ball is the correct one to pick, the agent receives a
positive reward and the ball disappears. Nothing happens
if the agent touches a different ball. To compute the dis-
counted reward, we use a discount factor γ < 1. The games
were played at 20 frames per second, and this was also the
rate at which the state was updated in the screen and an
action was taken.
Both domains have similar interfaces, but their subtask

structure is quite different. In PandaSequential, the sub-
tasks have a fixed order, while in RainbowPanda there is
no fixed order and every subtask may appear many times
in the same episode. Additionally, in the first domain the
current subtask is determined by the presence or absence of
the balls (continuous variables) while in the second domain
the current subtask is encoded in the color of the agent (a
discrete variable).
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Figure 2: Results using Sarsa(λ) algorithm on a sim-
plified version of the domain with only one or two
balls. 1 extra ball decreases performance 2 orders
of magnitude, even if the algorithm is left training
2k times longer.

To compare LfD, AfD and ADA, we captured a set of hu-
man demonstrations. We obtained 400 episodes for the Pan-
daSequential domain (about 2 hours of gameplay) and 200
and 300 episodes, from different individuals, for the Rain-
bowPanda domain (1.5h and 2.25h, respectively).

4.2 Results
Using the domains described above, we compared ADA

with Reinforcement Learning using Sarsa(λ), Learning from
Demonstration using a C4.5 decision tree, and Abstraction
from Demonstration. We first discuss RL and LfD, then our
algorithm, and finally we compare the abstractions that our
algorithm and AfD found.

4.3 Reinforcement Learning using Sarsa
For Sarsa, we discretized the continuous values in 64 bins.

The results were very poor in these domains because the
dimensionality of the problems is so high. The simpler do-
main, PandaSequential, still has 646 possible states, for a
total of about 343 billion Q-values. To ensure our imple-
mentation of the algorithm was correct and find its limits,
we tested it with simplified versions of the game, with only
one and two balls. The results are shown in Figure 2. We
can see that Sarsa performs reasonably well for the case of
only one ball (4096 states), but no longer so for the two-
ball game (16.8 million states), even if leaving the algorithm
running for 8 days in a modern computer, this is, 2000 times



Table 1: LfD results over 10K episodes, using a C4.5
decision tree. Avg. steps computed only over suc-
cessful episodes.

Domain/Player Episodes Success rate Avg. steps

Sequential
100 0.28% 241.21
200 0.44% 227.79
400 0.82% 242.83

Rainbow/A
100 8.1% 1543.84
200 2.76% 1650.37

Rainbow/B
100 0.27% 1518.70
200 0.27% 1994.92
300 0.73% 1901.51

Table 2: Comparison of human performance, ADA,
and ADA+RL, measured in number of steps to task
completion averaged over 10 thousand episodes.
Domain/Player Episodes Human ADA ADA+RL

Sequential
100 322.67 360.75

267.11200 318.71 360.11
400 311.30 335.92

Rainbow/A
100 525.33 - -
200 504.71 626.27

466.59
Rainbow/B

100 540.03 596.46
200 536.43 593.45
300 533.56 583.34

longer than it took for the 1-ball policy to converge. The
policy performance keeps improving, but at an extremely
slow rate. Therefore, Sarsa is not an effective option for
these domains.

4.4 Learning from Demonstration using C4.5
To compare with the performance of traditional LfD tech-

niques, we trained a C4.5 decision tree with the demonstra-
tions captured from human players, in a purely supervised
learning fashion. We can see in Table 1 that LfD also per-
formed poorly. The best result we obtained, using all avail-
able demonstrations, was a policy that would reach the goal
state in less than 3% of the episodes1.

4.5 Automatic Decomposition and Abstraction
from Demonstration

To use ADA in our domains, we discretized the continuous
values in 64 bins (same as for RL/Sarsa), used ǫ = 0.1 and
considered as candidate boundaries every possible threshold
on every feature of the domain. ADA was much more ef-
fective than the other methods on both domains, and led to
near-optimal polices that succeeded on every episode. Ta-
ble 2 shows that we obtained policies comparable to those
of the human teacher. Note that even though the average
number of steps is slightly higher than for the LfD policy
in the Sequential domain, this is averaged over all episodes,
while the number for LfD is only averaged over the small
percentage of episodes that LfD is able to resolve.
The success of ADA, compared with LfD and Sarsa, is

1It should not be a surprise that sometimes, with more sam-
ples, the number of average steps on successful episodes in-
creases. This is due to the policy being able to deal with
more difficult episodes (remember that the initial placement
of the balls is random) that require more steps to complete.

due to its finding the right decomposition of the domains.
For both domains, the algorithm builds an abstraction that
focuses only on the angle with respect to the agent of the
next ball to be picked up. Which ball is the target ball de-
pends on what balls are present for the Sequential domain,
and on what is the current color the agent is targeting for
the Rainbow domain. The algorithm was able to identify
the right boundary on each domain. It was a surprise that
only the angle, and not the distance to the ball, was nec-
essary, but it is easy to see that a satisficing policy can be
found using only the angle: rotate until the ball is in front
of the agent and then go forward. In fact, this was what
the human players were doing, except in the rare case where
the ball to pick up was right behind the agent; since the
agent moves faster forward than backward it was usually
not worth moving backwards.

Only one case in Table 2 did not produce the abstraction
described above. Rainbow/B-100 episodes did not find any
abstraction. This was due to mss being higher than a third
of the total number of samples, therefore it could not find
any of the 3 subtasks, one per color and roughly of the same
size, that were found in the other cases. We tested a lower
value for ǫ and in that case the usual abstraction was found.

In the same table we can see results for ADA + RL, ap-
plying policy search on top of the policy found by ADA.
The abstraction built by ADA may prevent boot-strapping
algorithms such as Sarsa or Q-learning from converging, but
with only 192 states in the abstraction and a good starting
policy, we can use direct policy search methods. We could
obtain good results by just iteratively changing the policy
of each state and evaluating the effect in performance using
roll-outs.

Notice that, using this additional policy improvement step,
we can find policies that are better than those demonstrated
by the human teachers. The policies found were better than
those demonstrated in three ways. First, the preferred ac-
tion for states that were rarely visited was sometimes incor-
rect in the ADA policy because there were not enough sam-
ples in the demonstrations. ADA+RL could find the best
action for these uncommon states. Second, human players
would make the agent turn to face the target ball and then
move forward when the relative angle to the ball was less
than 15 degrees. ADA+RL found it was more efficient to
turn until the angle to the ball was less than 3 degrees and
only then move forward. Third, ADA policies assign some
probability to each action depending how often it is taken
in the demonstrations for a particular state. ADA+RL can
identify which actions were not appropriate for the state
and never execute them even if they appear in the demon-
strations, maybe because of distractions or errors from the
teacher. In short, the policy found by ADA+RL was a more
precise and less noisy version of the policy derived directly
from the demonstrations.

4.6 Abstraction from Demonstration
Finally, we tried AfD in the domains, using the abstrac-

tion algorithm described in Section 3.4 for the whole state
space. In the Sequential domain, AfD would identify as the
only useful feature the position of the first ball. This ab-
straction leads to a policy that can find the first ball quickly
but can only perform a random walk to find the other two
balls. The large difference in mutual information between
each ball position and the action is due to the fact that while



the first ball is present, its position is significant for the pol-
icy; however, the second ball is significant for the policy only
half of the time it is present, and the third ball only a third
of the time it is present.
Regarding AfD for the Rainbow domain, because the ac-

tive color at each moment is chosen at random, the mutual
information measures between each ball relative position and
the action are similar. In this case, AfD is able to identify the
true relevant features, i.e., the relative position to the clos-
est ball of each color. Due to the nature of AfD abstraction,
we could not use bootstrapping algorithms such as Sarsa,
and 643 = 262144 states are too many for our naive pol-
icy search, so we tried to obtain a policy using Monte Carlo
methods. Unfortunately, these are known to be much slower
to converge than Sarsa and, even after experimenting with
various exploration parameters, we could not reach a policy
better than a random walk.
We can thus conclude that for complex domains that can

be decomposed in different subtasks, ADA can find poli-
cies better than those demonstrated by humans, while tra-
ditional LfD, RL and AfD cannot find policies significantly
better than a random walk.

4.7 Discussion
There are several advantages of ADA over traditional LfD.

ADA can obtain much better performance from a small set
of samples, while LfD often needs more samples than it is
practical to obtain. In fact, for our two domains, we did
not have the resources to collect a number of demonstra-
tions large enough to obtain reasonable performance with
LfD. Additionally, even with an arbitrarily large number
of demonstrations, it is likely that ADA+RL can obtain
policies better than those demonstrated and thus beat LfD,
whose policy performance is limited by the quality of the
demonstrations used.
Regarding RL techniques, it may seem unfair to compare

those with ADA, as RL does not use the human demon-
strations that are necessary for ADA. Yet, in the domains
considered, even if we account for the time and cost of ac-
quiring the human demonstrations, ADA still outperforms
RL. We have seen in Section 4 that even for the simpler
version of the Sequential domain with 2 balls, we still do
not have a reasonable policy after a week. Using ADA, just
with half an hour of human demonstrations and less than
ten minutes of computing, we obtain a satisficing policy.
ADA is successful in these domains because it can find

different state abstractions for different regions of the state
space. Abstraction for Demonstration (AfD), a previous
technique combining RL and LfD, only finds a single ab-
straction for the whole domain, and therefore it does not
help much in the domains considered since all balls are rel-
evant at some point during the task. AfD could make a
small difference in performance by ignoring the distance to
the balls, but the complexity of an AfD policy would still
grow exponentially with the number of balls in the domain,
while the complexity of the ADA policy grows linearly with
the number of balls in the domain.
Obviously ADA cannot help if there is no possible de-

composition of the domain and every feature is important
at every moment; however we conjecture that such com-
plex policies are rare, especially among tasks that can be
demonstrated by humans. Humans have a limited capac-
ity of attention and accomplish complex tasks by dividing

them in manageable pieces. Therefore, if we have a set of
demonstrations of a complex task, it is likely there are task
decompositions to be found.

One “unfair” advantage of ADA over the other methods
is that we must provide it with a set B of candidate bound-
aries, which is after all a form of domain information. In
principle we could chose as boundary every possible subset
of S, but this would be computationally intractable, so we
must explicitly choose the candidate boundaries. This is a
small price to pay for the performance gains of the algorithm.
As a default choice, axis-aligned boundaries, i.e., thresholds
in a single feature, are a compact class that works well across
a diverse range of domains. They would work for the Taxi
domain, which is the typical example of task decomposition
in RL, using as boundary whether the passenger has been
picked up or not yet. If the features are learned from low-
level sensing information using unsupervised feature learn-
ing techniques, it is likely that one of the generated features
will provide adequate thresholds. Additionally, many learn-
ing algorithms have similar kinds of bias; e.g., decision trees
also consider only thresholds in a single feature, just like
ADA in our experimental setup.

A real limitation of ADA is that it does not consider
second-order mutual information relationships, and these
can be relevant. For example we can imagine a domain
where the action to take depends on whether two indepen-
dent random variables have the same value. The mutual
information between each variable and the action might be
0, but the mutual information between both variables and
the action would account for all the entropy of the action.
We have decided to use only first-order mutual information
because we believe it is enough to obtain a good decomposi-
tion of a wide range of problems and because the number of
samples needed to get an accurate estimate of higher-order
relationships is much larger. However, if a large number of
demonstrations is available, ADA can be easily extended to
use these additional mutual information measures.

One additional advantage of ADA, is that it can be used
as part of a larger system of transfer learning. Once an
autonomous agent learns a new skill and the subtasks it de-
composes to, the subtask policies can be useful for other
skills that may be decomposed in a similar way. An agent
might, e.g., as part of the policy improvement step for a spe-
cific subtask, try policies of previously learned subtasks that
have the same abstraction, maybe after comparing policies
and determining that the subtasks are similar. Demonstrat-
ing the utility of ADA for transfer learning is an important
area of future work.

5. CONCLUSIONS
We have introduced Automatic Task Decomposition and

State Abstraction from demonstration (ADA), an algorithm
that leverages a small set of human demonstrations to de-
compose a skill in different subtasks, find abstractions for
each of these subtasks, and build a compact satisficing pol-
icy for the skill. We have shown experimentally that, with
a small number of demonstrations, ADA can easily find a
policy for problems that are intractable using traditional
RL and LfD techniques. Furthermore, we have shown that,
given the structure of the policy that ADA finds, it can be
improved to obtain a policy that outperforms the human
teachers.

With this work we show that mutual information can be



used to extract useful domain knowledge of a sequential de-
cision process from a set of human demonstrations. In the
future, we plan to build upon this technique and combine it
with function approximation and transfer learning.
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