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ABSTRACT
A market maker sets prices over time for wagers that pay out con-
tingent on the future state of the world. The market maker has
knowledge of the probability of realizing each state of the world,
and of how the price of a bet affects the probability that traders
will accept it. We compare the optimal policy for risk-neutral (ex-
pected utility maximizing) and Kelly criterion (expected log-utility
maximizing) market makers. Computing the optimal policy for
a risk-neutral market maker is relatively simple, while computing
the optimal policy for a Kelly criterion market maker is challeng-
ing, requiring advanced techniques adapted from the computational
economics literature to run efficiently. We show that while a risk-
neutral market maker has an optimal policy that does not depend on
the market maker’s state, a Kelly criterion market maker’s optimal
policy has an intricate dependence on both time and state. Counter-
intuitively, a Kelly criterion market maker may offer bets that are
myopically irrational with respect to the market maker’s beliefs for
the entire trading period. In contrast, a risk-neutral market maker
never offers a myopically irrational bet.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; I.2.11 [Distrib-
uted Artificial Intelligence]: Multi-agent Systems

General Terms
Algorithms, Economics, Experimentation

Keywords
Agent Design, Computational Economics, Interpolation, Numeri-
cal Dynamic Programming, Kelly Criterion, Wagering

1. INTRODUCTION
Market makers are trading agents that set the prices for assets in

exchanges. Market makers profit in two ways: first, by the bid/ask
spread imposed when they buy a contract at a lower price than they
sell it for, and second, by speculatively taking on positions and
holding that inventory for a profit. Many realistic market-making
settings, like Las Vegas sports betting or a proprietary trading desk
at a bank, are characterized by a market maker that has a good prior
on the future state of the world and on how traders will bet as prices
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change. A complication arises when traders and the market maker
have substantially different beliefs. Then, the market maker must
balance two competing factors: the desire to hedge bets for a cer-
tain profit, and the desire to profit in expectation from wagers made
at favorable prices. For instance, a market maker could find itself
in a situation where it could either increase its exposure to an event
it thinks will probably occur at a bargain price, or hedge out its
current risk on that event in order to guarantee a small but certain
profit.

In this paper, we compute the policy of a Kelly criterion market
maker over a series of interactions with traders. The Kelly crite-
rion [Kelly Jr, 1956] is a way to make bets that mandates maximiz-
ing the expected log utility of a setting. While simple as a guiding
precept, the Kelly criterion accomplishes a broad range of objec-
tives: over a series of bets, it is the fastest way to double an initial
investment, produces the highest median wealth, and produces the
highest mode wealth. Poundstone [2006] provides a compelling in-
troduction to the Kelly criterion and its use in practice, particularly
by the mathematician and hedge fund manager Ed Thorp.

There are two prior literatures that deal with the sequential in-
teraction of a market maker with traders: artificial intelligence, and
finance. In the AI literature, there are cost function based mar-
ket makers [Chen and Pennock, 2007, 2010]—agents which price
bets so that they are neutral between them being accepted and them
being not accepted [Ben-Tal and Teboulle, 2007, Agrawal et al.,
2009]. Another closely-related branch of the AI literature involves
Bayesian market makers which attempt to learn the correct value of
a security by applying Bayes Rule to a series of interactions with
traders [Das, 2008, Das and Magdon-Ismail, 2009, Chakraborty
et al., 2011]. In contrast to these agents, the market makers we
consider here behave rationally in the classical sense: they maxi-
mize utility given knowledge of the future and of how their prices
affect trader actions.

In the finance literature, Glosten and Milgrom [1985] defined the
basic framework used in many later works, including ours, for a
market maker interacting with an anonymous pool of traders. Kyle
[1985] considers a game-theoretic interaction between a profit-seek-
ing monopolistic market maker and a mix of noise traders and in-
formed traders. Our setting is similar, in that we consider utility-
maximizing pricing by a monopolistic market maker, but we as-
sume that no traders are privileged in their information. The most
challenging part of our work involves computing the policy of a
risk-averse market maker. The notion of a risk-averse, rather than
risk-neutral, market maker was introduced in Rock [1996].

Our experimental results show that a Kelly criterion market maker
follows a complex time-dependent strategy. In the early stages of
wagering, the market maker will attempt to match orders to profit
from the bid/ask spread. Towards the end of trading, the policy



gradually shifts to myopic optimization on the market maker’s pri-
vate beliefs. Perhaps surprisingly, we show that in the early stages
of the market, profiting from the bid/ask spread dominates the de-
sire to sell inventory at agreeable prices, that is, if it facilitates more
trade, a Kelly criterion market maker should buy obligations at a
price higher than, or sell obligations at a price lower than, its pri-
vate beliefs. Moreover, because the inventory a risk-averse market
maker accumulates affects the prices it offers, the market maker
could offer bets that are myopically irrational for the entire trading
period. This is in contrast to a risk-neutral market maker that would
never offer a myopically irrational bet.

2. MODEL
Following Glosten and Milgrom [1985], the setting is a repeated

sequential interaction between the market maker and a set of traders.
In each period, the market maker sets prices for a finite set of bets,
and then a trader is drawn randomly from a large pool of potential
traders. That trader enters the market and selects one of the offered
bets to make with the market maker (or none at all). After a finite
number of periods the process halts, one of the n events is realized,
and the bets are settled with the traders.

Our setting is closest to Das and Magdon-Ismail [2009], which
also involved a dynamic stochastic optimization. In that work, how-
ever, the market maker was responding to a shock in the state of
the world and was attempting to learn the new, correct values for
contracts. In contrast, here, the market maker’s beliefs over the
probabilities of the future state of the world do not change, and the
market maker seeks to maximize expected utility over the interac-
tion with the traders.

2.1 Traders
The traders have the following features:

• Traders are anonymous, so there is no way for the market
maker to distinguish between traders. Anonymity is a stan-
dard component of many models in the literature (for exam-
ple, Feigenbaum et al. [2003] and Das [2008]), because it is
natural for settings where prices are posted publicly, as is the
standard in electronic markets.

• Traders are myopic, not strategic. They exist for only a sin-
gle period: they enter the market, perceive the prices of-
fered by the market making agent, select a bet to take (or no
bet), and then exit. The traders do not learn from historical
prices or strategize about their behavior. Myopic traders (also
known as noise traders) are a feature of much of the litera-
ture [Glosten and Milgrom, 1985, Kyle, 1985, Othman and
Sandholm, 2010]. Empirical studies of market microstruc-
ture have shown that the behavior of these agents is qual-
itatively very similar to behavior observed in real markets
with human traders [Gode and Sunder, 1993, Othman, 2008].
However, in some settings the simple behavior of these agents
may be an unrealistic model [Chen et al., 2007, Dimitrov and
Sami, 2008, Chen et al., 2010].

• The number of trading periods is drawn independently of the
market maker’s policy. Since traders have the ability to de-
cline to place a bet with the market maker if they do not find
the offered bets agreeable, this condition means that the num-
ber of traders placing bets with the market maker is not a
constant—instead, it will depend on the market maker’s pol-
icy. We assume the market maker knows the true distribution
of the number of trading periods.

2.2 Utility and the Bellman equation
The market maker’s state can be represented by a tuple (t,w) of

the index of the participating agent t ∈ {1, 2, . . .}, and the wealth
vector w, where wi is the market maker’s wealth (payoff) if state
of the world ωi ∈ Ω is realized. (Since exactly one trader appears
in each period, the variable t can be thought of as an index over
discrete time.) There is a termination state (t̄,w), where the mar-
ket maker gets an expected utility payout based on his subjective
beliefs p̂, which he believes to be the correct distribution over the
possible futures:

V (t̄,w) ≡
n∑
i=1

p̂iu(wi)

Without loss of generality, a risk-neutral market maker receives
its expected linear utility on termination:

V (t̄,w) ≡
n∑
i=1

p̂iwi

A Kelly criterion market maker receives its expected log utility
on termination:

V (t̄,w) ≡
n∑
i=1

p̂i log(wi)

The bets a market maker offers can be expressed by vectors in
payout space x ∈ Rn, so that xi is the trader’s payoff (that is, the
market maker’s loss) if ωi is realized. For instance, imagine that
the market maker is fielding bets on which of three horses will win
a horse race. A bet that pays the trader 10 dollars if the first horse
wins, 5 dollars if the second horse wins, and nothing if the third
horse wins, is represented by the vector (10, 5, 0).

The market maker’s policy when interacting with trader t, π(t, ·) :
Rn 7→ R, maps these vectors to the amount the market maker
would charge the agent for each bet. We denote by the zero-vector
bet 0 an agent declining to make a bet with the market maker, and
set π(0) = 0. (This can be interpreted as the intersection of the
individual rationality constraint of the traders (who would want
π(0) ≤ 0) and of the market maker (who would want π(0) ≥ 0).)
The market maker knows the probability that an agent will accept
a bet given the prices. Because traders are anonymous, the mar-
ket maker has no way to distinguish between traders and so these
probabilities are the same for all traders.

In full generality, there is a chance δ(t) of the interaction ter-
minating immediately before the t-th trader participates. Conse-
quently, the value of being in state (t,w) is

V (t,w) = (1− δ(t))
∑
x

P (Trader takes bet x at price π(x))

· V (t+ 1,w − x + π(x))

+δ(t)V (t̄,w)

In every state (t,w), a utility-maximizing market maker em-
ploys the optimal policy π∗ defined by the Bellman equation

π∗(t,w) = arg max
π

(1− δ(t))
∑
x

P (Trader takes bet x at price π(x))

· V (t+ 1,w − x + π(x))

+δ(t)V (t̄,w)

with respective values V ∗ defined by



V ∗(t,w) = (1− δ(t))
∑
x

P (Trader takes bet x at price π∗(x))

· V (t+ 1,w − x + π∗(x))

+δ(t)V (t̄,w)

Solving these equations when the market maker has log utility
is very challenging. We proceed to discuss how we solve for the
optimal policy and values in this case.

3. COMPUTATION OF THE POLICY OF A
KELLY CRITERION MARKET MAKER

When given a specification of the value function V ∗(t + 1,w),
it is simple to calculate the optimal value V ∗ and policy π∗ of any
state in the previous time step t. Thus, backward induction from
the termination state is a straightforward way to solve for optimal
values and policy across every time step. A complication arises
from the difficulty in representing arbitrary V ∗(t + 1,w). While
the termination state is closed form, the previous time steps will
generally not have closed form representations. In order to solve a
Kelly criterion market maker’s problem with backward induction,
we must find a way to approximately represent the value function
concisely.

3.1 Shape-preserving interpolation
While the value function for an arbitrary time step may have a

complex, non-analytic form, we know a great deal about its shape
from the properties it inherits from the log utility of the terminat-
ing state [Stokey et al., 1989]. In particular: (1) it is increasing in
wealth, (2) it is concave, and (3) it goes to minus infinity as the
wealth in any state goes to zero.

Since these properties are intrinsically linked to the logarithmic
utility of the Kelly criterion market maker, we choose to adopt
an approximation technique that preserves these properties, shape-
preserving interpolation. Specifically, we employ the shape-preser-
ving interpolation developed theoretically in Constantini and Font-
anella [1990]. By shape-preserving, we mean that the technique
retains the partial derivatives, concavity, and monotonicity of the
original function, and by interpolation, we mean that the approx-
imated function precisely matches the actual function at a set of
interpolating points. While shape-preserving interpolation is well-
known in the scientific computing literature [Judd, 1998], this spe-
cific technique has been featured rarely. Perhaps the most practical
example is Wang and Judd [2000], who study a tax planning prob-
lem with stochastic stocks and bonds.

Because the theory of shape-preserving interpolation developed
in Constantini and Fontanella [1990] is complete only for two di-
mensions, we focus only on settings with two events for the rest of
the paper. While it does appear possible to extend the interpolation
into n dimensions, it would suffer from the curse of dimensional-
ity and take significantly longer to compute the approximate value
function. The restriction to two events is not as limiting as it might
first appear, because many realistic and popular settings involve wa-
gers on binary events. An example from sports betting is whether
the Red Sox or Yankees will win their upcoming match. An exam-
ple from finance is credit-default swaps, where a bond either does
or does not experience a default event.

In order to properly preserve the shape of the function, shape-
preserving interpolation requires computing the partial derivatives
with respect to the wealth in each state at the interpolating points.
We compute these values by using the envelope theorem; since
V ∗(t,w) is given by the maximizing policy π∗, we calculate the
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Figure 1: The utility function u(x, y) = .6 log x + .4 log y on
the rectangle [2, 4]2.

After Constantini Step

Figure 2: The quilt which matches the function values and par-
tial derivatives.
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Figure 3: Evaluating the quilt using Bernstein bases produces
a good approximation.

partial derivatives with respect to wealth by numerically differ-
entiating the value function when the maximizing policy is fol-
lowed [Mas-Colell et al., 1995, Wang and Judd, 2000].

We proceed to describe the interpolation procedure at a high



level, first on a single rectangle and then over the whole positive
orthant. Figure 1 shows a sample expected utility function over a
single rectangle.

The first step to creating an approximate interpolating function
on this rectangle is to generate a three-by-three quilt (continuous,
piecewise-linear approximation) of the function by matching the
function values and partial derivatives at the vertices of the rectan-
gle. Figure 2 shows the quilt that results from the utility function in
Figure 1. This quilt retains the monotonicity, concavity, and partial
derivatives at the vertices of the original function.

The final step is to evaluate the quilt using bivariate Bernstein
basis functions. These are a variation-minimizing set of functions
that retain the monotonicity, concavity, and partial derivatives at the
vertices of the quilt. Of course, the quilt retained these properties
from the original function itself, and so the interpolation is shape
preserving. By variation minimizing, we mean that the bases are
weighted to produce a polynomial that minimizes the sup (L∞)
norm error. It is therefore accurate to think of the Bernstein bases as
smoothing the piecewise linear quilt [Judd, 1998]. Figure 3 shows
the interpolated function that results from the process. Since the
Bernstein evaluation step works directly on the quilt, the function
is approximated concisely: for each interpolating rectangle we only
need to store the sixteen values that create the quilt.

Computing the shape-preserving interpolated function is more
involved than a simple linear interpolation (table lookup). How-
ever, the benefit of these extra steps is the dramatically improved
accuracy of the evaluated function or, put another way, a substan-
tial decrease in the degree of grid fineness required to compute the
value function to the same level of accuracy. Table 1 compares the
accuracy of the shape-preserving interpolation versus a simple lin-
ear interpolation at an arbitrary collection of wealth vectors for the
representative utility function used in Figure 1.

Wealth vector Shape-preserving error Linear error Ratio
(2, 2) .0020 .14 72
(5, 1.1) .0026 .36 135
(20, 25) 1.2× 10−6 .0011 895
(50, 10) 1.0× 10−5 .0021 210

Table 1: Relative errors for shape-preserving interpolation ver-
sus linear interpolation on identical rectangles. At each wealth
vector, the interpolating rectangle is (w1 ± 1, w2 ± 1), i.e., a
square with side length 2 centered at the wealth vector.

The shape-preserving interpolation is between 72 and 895 times
more accurate than a linear grid at the example points. Perhaps un-
surprisingly, we found that the inverse of this relation also appeared
to hold—to achieve the same level of accuracy as shape-preserving
interpolation, the grid used in linear interpolation would need to be
roughly one thousand times finer. We estimate that the running time
of our experiments on a commodity PC using linear interpolation
would take about a week; in contrast, solving the dynamic program
took about ten minutes using shape-preserving interpolation.

3.2 Extending the technique
We have described how shape-preserving interpolation works on

a single rectangle over which the function to be approximated is
finite. It is straightforward to extend this technique from a single
rectangle to a finite grid of rectangles over which the function to be
approximated is finite. (In this case, care must to be taken to ensure
that the function approximation is continuous at the boundaries of
the individual interpolating rectangles, but this can be accommo-

dated without too much additional complexity, see Constantini and
Fontanella [1990] for details.)

However, the value function we are approximating is not just a
finite function over a finite grid: it fails this in two separate ways.
First, since limx↓0 log x = −∞, we have that at the lower bound-
ary of the positive orthant (i.e., values close to zero along either
dimension) the value function goes to−∞. Second, the value func-
tion has no finite upper bound on its input—it is defined over the
entire positive orthant. Consequently, we must extend the inter-
polation technique from the literature to accommodate the specific
properties of a Kelly criterion market maker. Our solution is to
have a large finite grid of interpolating rectangles on which we can
apply the standard shape-preserving technique, and then to employ
custom extensions to approximate below the lower boundary and
above the upper boundary of the grid.

3.2.1 Beyond the lower boundary of the grid
We interpolate beyond the lower boundary of the grid as if the

value were given by setting the value of a state equal to its termi-
nation value plus a constant that ensures continuity at the boundary
of the grid. Formally, to approximate the value of state w, with
nearest point on the interpolating grid wg, we set

V (t,w) ≈ V (t̄,w) + (V (t,wg)− V (t̄,wg))

(Observe that as w → wg, V (t,w) → V (t,wg)). This approx-
imation ensures the monotonicity of the value function and that it
goes to negative infinity as the wealth of either state goes to zero,
but, it is only an exact approximation for the termination function
itself. To ensure that this extension does not change the overall
value function substantially, in our experiments we start the inter-
polating grid at a small value, so the additional interpolation is only
relevant over a small fraction of the state space. In our exploratory
data analysis, we experimented with different lower bounds for
the interpolating grid and found that different small values did not
noticeably affect calculated optimal policies. We attribute this to
states at the lower boundary of the grid having such low utility that
they will be avoided, and are therefore largely irrelevant to the op-
timization problem as a whole.

3.2.2 Beyond the upper boundary of the grid
Consider the market maker’s pricing problem at the upper bound-

ary of the grid at time t. If the size of the trader’s bet is bounded
(say, to be no larger than c), then the market maker can approxi-
mately compute the optimal pricing policy by using an interpolat-
ing grid at time step t+ 1 whose upper boundary is larger than the
grid at time t by at least c. Using this insight, we eliminate the
need to calculate a value beyond the upper boundary of the grid
by increasing the upper boundary of the grid as time proceeds. (In
fact, recalling that we solve the dynamic program through back-
ward induction, from an algorithmic perspective we are actually
reducing the upper boundary of the grid as we solve backwards
through time.) In contrast to our extension to compute values be-
low the lower boundary of the interpolating grid that we discussed
above, this extension uses the same mechanics as the rest of the
shape-preserving interpolation process and so suffers from no ad-
ditional loss of accuracy.

3.3 Alternative approaches
As an alternative to the gridded approach here, we also con-

sidered but rejected a global shape-preserving approximation tech-
nique along the lines of De Farias and Van Roy [2003]. This would
involve selecting basis functions φi that are each monotonic and
concave, and representing the value function in each time step as a



conical combination of these functions:

V ∗(t,w) ≈
∑
i

γtiφi(w), γti ≥ 0.

Such a representation retains the monotonicity and concavity
properties of the value function and is concise. We rejected this
approach for two reasons. First, the heuristic selection of the basis
provides little guidance. Which set of functions is a good choice,
and why? Observe that many standard basis function selections,
such as radial basis functions, will not in general preserve the mono-
tonicity or concavity of the value function and so could lead to non-
sensical policies.

The second reason we chose to reject this technique is the diffi-
cult optimization to select the weights γt. In particular, a standard
linear regression that maximizes the deviation from sum of squares
at a set of relevant nodes can create aberrant behavior and an ap-
proximation that deviates significantly from the actual value func-
tion [Gordon, 1995, Guestrin et al., 2001, Stachurski, 2008]. The
correct optimization to use to determine the weights is to minimize
the sup norm (that is, L∞, rather than L2), which is a significantly
more challenging problem to solve numerically [Judd, 1998].

4. EXPERIMENTS
With only two possible events, it is possible to characterize bets

in terms of a single event. In particular, setting p to be the proba-
bility that the first event occurs implies 1− p is the probability that
the second event occurs. Applying this logic to the market maker’s
policy, we can without loss of generality have the market maker buy
and sell contracts on the first event only, because buying (selling) a
contract on the first event implicitly yields the sale (purchase) of a
contract on the second.

The ask is the price at which the market maker will sell a con-
tract, and the bid is the price at which the market maker will buy
a contract. For non-degenerate settings, ask prices will always be
higher than bid prices. In this section, we describe the optimal ask
and bid prices for two different settings.

4.1 Parameterization
Following Das [2008], in our experiments, traders have a belief

drawn from a Gaussian with a mean belief of p = 0.5 and standard
deviation 0.05. The traders are zero-intelligence agents; a trader
visits the market maker exactly once and behaves myopically. They
purchase a unit contract if they see an ask price lower than their
belief, sell a unit contract if they see a bid price higher than their
belief, and do not transact with the market maker otherwise.

In our experiments, we set 50 trading periods (that is, δ(t =
51) = 1, δ(t < 50) = 0), although we found our results hold
qualitatively for other distributions of traders. Recalling from Sec-
tion 3.2 that the upper boundary of the interpolating grid increases
in each trading period, we set the interpolating grid for trader t to
[1, 1.5, 2, 3, . . . , 250, 250 + t]2.

In our experiments with Kelly criterion market makers, we con-
sider only relatively small levels of wealth (alternatively, large bets
relative to the amount of wealth). This is because for bets with large
levels of wealth, a market maker maximizing the expected log of
wealth can be well-approximated by a risk-neutral, linear utility
agent. To see why, consider the Taylor expansion of log utility at
wealth x:

log(x+ ε) = log(x) +
ε

x
− ε2

x2
+ Θ

(
ε3
)

If x is large enough that x2 � x, then 1/x2 � 1/x. Con-

sequently, at large wealths, the impact of small bets on the utility
function can be well-approximated by the linear function log(x) +(
1
x

)
ε, with negligible higher-order effects.

We now turn our attention to how to calculate the optimal policy
for a risk-neutral market maker, and the qualitative properties of
that policy.

4.2 Optimal risk-neutral policy
For this setting, a risk-neutral market maker’s optimization prob-

lem is significantly simpler than the general case. Recall that in the
two-event case, the market maker’s knowledge of the future, the
vector p̂, can be represented by a single scalar p̂ (e.g., “Team A has
a 50 percent chance of winning the game"). Then the termination
state V (t̄,w) is

V (t̄,w) ≡ p̂w1 + (1− p̂)w2

Let the agents have beliefs on the first event distributed accord-
ing to the cumulative density function F with probability density
function f . In the penultimate step t̄ − 1, a risk-neutral market
maker sets their bid and ask price to maximize their utility in the
termination state, conditioning on three cases: the bid being taken,
the ask being taken, and neither offer being taken. Formally,

V ∗(t̄− 1,w) = max
b,a

F (b)V (t̄, (w1 − b+ 1, w2 − b))

+(1− F (a))V (t̄, (w1 + a− 1, w2 + a))

+(F (a)− F (b))V (t̄,w)

and since V (t̄,w) = p̂w1 + (1− p̂)w2 the right-hand side opti-
mization simplifies to

max
b,a

F (b)(p̂(w1 − b+ 1) + (1− p̂)(w2 − b))

+(1− F (a))(p̂(w1 + a− 1) + (1− p̂)(w2 + a))

+(F (a)− F (b))(p̂w1 + (1− p̂)w2)

which further simplifies to

max
b,a

V (t̄,w) + F (b)(p̂− b) + (1− F (a))(a− p̂) (1)

which implies

V ∗(t̄− 1,w) + C = V (t̄,w)

where C is a constant that does not depend on t or w. Conse-
quently, by inductive argument working back from the terminal
state the optimal policy for a risk-neutral market maker does not
depend on t or w. Equation 1 also makes it easy to see that the
optimal arguments (b∗, a∗) have b∗ ≤ p̂ ≤ a∗, because if not
changing to a policy satisfying that inequality would yield a higher
value. Thus, a globally optimal risk-neutral market maker is always
myopically rational.

This argument also applies to the general setting discussed in
Section 2.2 with more than two bets and events. In that case, by
similar reasoning, the result is that a risk-neutral market maker will
always price a bet x such that π(x) ≥ p̂ · x. In this more-advanced
case, however, traders’ demands could be a complex, combinatorial
function of the price vector offered by the market maker. If so,
computing the optimal policy could be infeasible.

We have shown that the optimal policy of a risk-neutral market
maker is constant and invariant to time and wealth. To actually
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Figure 4: When the market maker’s private beliefs align with
those of the traders, the optimal ask prices (top lines) and bid
prices (bottom lines) do not change significantly over the course
of the interaction period.

compute the optimal b∗ and a∗, in the simple two-event, unit-bet
case we can take the first-order condition of the optimization in
Equation 1 to get

F (b∗)(p̂− 1) + f(b∗)(p̂− b∗) = 0

(1− F (a∗))(1− p̂)− f(a∗)(a∗ − p̂) = 0

If p̂ ∈ (0, 1) and f(x) > 0 for all x ∈ (0, 1), the existence and
uniqueness of optimal b∗ < p̂ < a∗ are guaranteed. When F
and f are well-behaved smooth functions (as is the case for our
experiments where F is a normal distribution), the optimal values
can be solved quickly by numerical root-finding techniques.

4.3 Optimal log-utility policy
Following the procedure outlined in Section 3, we computed the

optimal value and policy functions for several different parame-
terizations of wealths and beliefs for both Kelly and risk-neutral
market makers.

We begin by considering the case where the market maker’s pri-
vate belief aligns with the beliefs of the traders. Figure 4 shows the
optimal bid and ask prices over the series of traders when the mar-
ket maker has wealth (100, 100) (thickest line), (50, 50) (medium
line), and (25, 25) (thinnest line). That is, the plot shows π(t, (w,w))
for t ∈ {1, . . . , 50} and w ∈ (25, 50, 100).

Here, prices throughout the interaction are very close to the my-
opic optimization for the last trader, and the prices are very similar
for all of the sampled wealths. In this scenario, the prices are also
essentially equivalent to the optimal policy of a risk-neutral market
maker.

In contrast, Figure 5 shows the optimal policies when the mar-
ket maker’s belief is p = 0.6 (shown by the cross-hatched line).
This value is two standard deviations higher than the mean of the
traders’ beliefs. The policies are calculated at the same wealths as
in Figure 4, that is, the policy of a market maker with wealth of 25,
50, and 100 in both states at every time step.

Unlike in the previous figure, the optimal policies change over
time and are wealth-dependent. In this scenario, the optimal risk-
neutral policy is a bid of 0.52 and an ask of 0.62. Because with
large wealth a logarithmic utility market maker making small bets
can be approximated well by linear utility, we know that as wealth
increases, the market maker’s optimal policy throughout the trading
period will converge to be the optimal linear utility policy. How-
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Figure 6: The probability of a trader taking each offered bet
from a market maker with 25 wealth in each state over the en-
tire trading period.

ever, at the smaller levels of wealth in our experiments, for all ex-
cept the last few traders, the asking price for a unit contract is below
the market maker’s belief that the event will occur. Thus, for much
of the trading period, from a myopic perspective the Kelly criterion
market maker offers irrational bets.1

On the surface, this result seems confusing and even paradoxi-
cal. To see why it is the optimal policy, consider Figure 6, which
displays the probability of each trader taking the bets offered by
a market maker with a (constant) wealth of 25 in both states. It
shows how the probability of a trader selling at the bid price rises
over time, while the probability of a trader buying at the ask price
falls. The first trader is about twice as likely to sell at the bid price
than to buy at the ask price, while the last trader is about 87 times
more likely to sell than to buy.

For early traders, the market maker’s bid and ask prices are roughly
centered around 0.5, just like the distribution of agent beliefs. Con-
1One might think that this phenomenon could be explained by the
market makers accumulating wealth from spread profits, and there-
fore becoming absolutely less risk-averse over time. However, even
market makers with considerably larger endowments than could
possibly be made through spread profits still display the same qual-
itative behavior.
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Figure 7: Simulating the prices (left axis; thin lines) and net
inventory (right axis; thick black line) that result from the in-
teraction of an optimal log-utility market maker starting with
25 wealth in both states. In this figure, both the inventory and
prices change over time.

sequently, the market maker has a reasonable chance of matching
traders’ bids and asks and thus profiting off the bid/ask spread.
A market maker that successfully matches the bids and asks of
traders books a profit regardless of the personal beliefs of the mar-
ket maker, even if those beliefs are, as in this scenario, very dif-
ferent from the prices in question. Of course, as fewer traders re-
main the setting more and more resembles a myopic optimization
where, with equivalent wealths in both states, the market maker
will employ a myopically rational strategy. This sophisticated pol-
icy emerges solely from the introduction of risk-aversion to the ter-
mination state, because a risk-neutral market maker in an identical
setting displays none of this behavior.

Once the optimal policy is computed, we can simulate the behav-
ior of the market maker against the pool of traders. Figure 7 shows
the simulated prices of wealth 25 market maker in a sample inter-
action for the case where the the market maker has belief 0.6 and
agents have belief mean of 0.5 (i.e., the setting for Figures 5 and 6).
The thin lines, with values marked by the left axis, show the ask
(upper line) and bid (lower line) prices of the market maker. The
thick black line, with values market by the right axis, shows the
market maker’s net inventory, i.e., the market maker’s payoff if the
event occurs. The values on Figure 7 show the prices faced by
trader i but the inventory after the participation of the trader. (The
inventory line starts at 1 in this case because the first trader took
the market maker’s bid.) In this simulation, the market maker’s ex-
pected utility from their wealth vector increases from 3.22 before
any traders participate to 3.27 after all 50 traders participate.

Recall that in this setting the market maker has a significantly
higher belief that the event will occur than does the pool of agents,
so it is natural for the market maker to accumulate inventory. As
the market maker accumulates inventory, its prices fall. This is be-
cause a risk-averse market maker prefers to take a small sure profit
(the bid/ask spread from matching orders) over a somewhat larger
speculative gain (from holding inventory). Consequently, the prices
from the simulation are very different than the prices in Figure 5,
because the prices in Figure 5 captured the prices of a market maker
with constant wealth in both states over time. If the market maker
were not taking on inventory, its prices would rise, as in Figure 5,
but because the market maker in our simulation takes on inventory,
that price rise is effectively dampened. Observe that in this simula-

tion, because the price rise is dampened, the market maker’s asking
price is always less than 0.6 and therefore is myopically irrational
for the entire trading period!

5. CONCLUSIONS
We initiated the study of rational market making where the mar-

ket maker has knowledge about the probabilities of future events
transpiring and of traders accepting bets that the market maker
could offer them. We gave a general description of the optimiza-
tion problem faced by a monopolistic market maker trying to max-
imize their expected utility. We investigated two cases in detail:
a risk-neutral market maker (linear utility), that yields the highest
expected wealth, and a Kelly criterion market maker (logarithmic
utility) that yields the highest expected median and mode of wealth.

We showed that for a two-event setting, computing the optimal
policy of a risk-neutral market maker is trivial, but computing the
optimal policy of a log-utility market maker is not straightforward.
Because there is no closed-form expression for the value function,
we approximated it using Constantini shape-preserving interpola-
tion. This interpolation technique preserves the concavity, mono-
tonicity, and partial derivatives of the original function. Because it
retains the shape of the approximated function, it is much more ac-
curate than a simple grid interpolation. Since it is more accurate, to
preserve the same level of accuracy we were able to solve the prob-
lem using a grid that is orders of magnitude coarser. Consequently,
the time spent calculating the value function at each iteration of
the dynamic program is orders of magnitude faster using the more-
sophisticated shape-preserving interpolation technique than with a
simple linear interpolation. Because our problem is defined over
the whole positive orthant while the shape-preserving technique we
used works only over a finite grid, we had to develop an extension
of the technique at the lower and upper boundaries of the grid.

We showed that the optimal policy for a risk-neutral market maker
is always myopically rational. In contrast, our experiments showed
that the optimal policy for a Kelly criterion market maker is of-
ten myopically irrational, and that a Kelly criterion market maker
could have a myopically irrational policy for the entire trading pe-
riod. We showed evidence that a log-utility market maker would
begin the trading period pricing in order to capture the bid/ask
spread from agents. Recall that the traders’ response to the market
maker’s prices is a random variable, so that whether or not a mar-
ket maker acquires inventory is stochastic, not deterministic. If that
pricing resulted in the market maker not taking on inventory, our
results showed the market maker would gradually transition from
pricing to capture the bid/ask spread to myopically pricing based
on their beliefs. However, if the policy in early periods resulted in
the market maker taking on inventory, we showed that the optimal
pricing throughout the interaction need not deviate much from ini-
tial prices. Therefore, depending on how traders react to the market
maker’s policy, a Kelly criterion market maker could follow a my-
opically irrational policy for the entire trading period.

In sum, we can distill our results into three qualitative sugges-
tions for monopolistic Kelly criterion market makers with good
prior information facing a stream of anonymous traders, as in Inter-
net sports betting: (1) change odds as bets are received and wealth
changes, (2) begin pricing with the goal of matching orders and
procuring a bid/ask spread, and (3) gradually transition into pricing
to accumulate the market maker’s desired inventory position.

There are several extensions to consider to our framework. Our
model assumed the market maker was monopolistic, so that it could
maximize profit without fear of competition. One extension could
be to examine a competitive setting between several risk-averse
market makers.



Another extension would be to incorporate informed traders into
the pool of trading agents. These agents could have correct knowl-
edge about the future, but, more importantly, the market maker
could know of and react to their existence. The presence of in-
formed traders that influence the market maker in this way would
make our setting much closer to the Bayesian market maker set-
ting explored in Das and Magdon-Ismail [2009], but would be even
more complex because of the risk aversion of the market maker.

While our framework applies to any number of events and bets,
our computational experiments focused on the binary case. An ex-
tension would be to develop algorithms to solve for optimal pol-
icy with multiple events. The Constantini shape-preserving tech-
nique used in this paper could presumably be applied to more than
two events, although it will suffer from the curse of dimensionality.
Perhaps an alternate approach to approximating the value function
could be used in this case, such as a spline of radial basis func-
tions, although this would be unlikely to preserve the monotonicity
and concavity of the value function and so could lead to poor or
unrealistic policies.
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