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ABSTRACT
This paper presents a novel scoring rule-based strictly domi-
nant incentive compatible mechanism that encourages agents
to produce costly estimates of future events and report them
truthfully to a centre. Whereas prior work has assumed a
fixed budget for payment towards agents, this work makes
use of prior information held by the centre and assumes a
budget that is determined by the savings made through the
use of the agents’ information over the centre’s own prior in-
formation. This mechanism is compared to a simple bench-
mark mechanism wherein the savings are divided equally
among all home agents, and a cooperative solution wherein
agents act to maximise social welfare. Empirical analysis is
performed in which the mechanism is applied to a simula-
tion of the smart grid whereby an aggregator agent must use
home agents’ information to optimally purchase electricity.
It is shown that this mechanism achieves up to 77% of the
social welfare achieved by the cooperative solution.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Economics, Theory

Keywords
Mechanism Design, Smart Grid, Information Aggregation,
Scoring Rules

1. INTRODUCTION
There are numerous scenarios in which, in order for a cen-
tre to optimally perform a task, it must gather predictive
information from other, potentially non-cooperative experts
such that the centre can optimally plan for future events. In
such situations, the centre often incurs a cost related to the
imprecision of its predictions, and consequently, the ability
to produce precise estimates results in a reduction of these
costs. In non-cooperative situations, it becomes necessary
for the centre to make payments to the experts in order to
encourage them to report any relevant information that they
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have. When these experts are self-interested rational agents,
the payments must be carefully designed in order to elicit
the behaviour that the centre requires.

As an example, consider the instance of the above set-
ting on which this paper focuses; information aggregation
within the smart grid. In this scenario, an aggregator agent
must purchase electricity for a set of homes, each of which
is represented by its own home agent. Based on historical
evidence, the aggregator has some belief of what each house
will consume at a given future time, but each house has a
wealth of information within it that can, at a cost, be col-
lected and processed by the home agent in order to be used
to make more precise estimates. It is the home agents’ jobs
to gather this information on behalf of the home owners and
transmit it to the aggregator agent in the form of a prob-
ability distribution over the houses’ possible consumptions
at the specified time. The aggregator must pay a penalty
for any difference between the amount it purchases and the
amount its customers consume. Thus, with more precise
information, the aggregator will in expectation make some
savings. The aggregator then distributes a portion of these
savings to the home agents as a reward for their information.

The truthful elicitation of information from self-interested
agents has already been the subject of much attention in
the literature. It has been shown that in scenarios where a
number of expert agents can be called upon to make prob-
abilistic estimates of some value, peer prediction techniques
can be employed to ensure those agents report truthfully [4,
6]. Peer prediction rewards experts by fusing reports from
a reference agent and the agent being scored; both of whom
are making estimates of the same variable. After the value
of the variable becomes known, the agent whose report is
being evaluated is rewarded according to how its report af-
fected the estimated likelihood of the realised event. This
evaluation makes use of proper scoring rules – functions of
probabilistic reports and outcomes that return a score that
is only maximised in expectation when the agent reports
truthfully. Indeed, scoring rules have also been the focus of
much attention, since their original use in meteorology [1],
through more general applications of evaluating predictors
[8], and their more recent application in the field of predic-
tion markets [7] wherein experts are asked by a centre to
give a probabilistic response to some question, and also in
the fair division of rewards among agents performing a task
[2]. Moreover, strictly proper scoring rules have been gener-
alised to take into account a prior distribution representing
knowledge held by the centre [5].

However, there are four main limitations to these works



that limit their applicability to the problem discussed in
this paper. Firstly, the works assume there exists multiple
experts from which the centre can elicit information. In do-
ing this, the experts’ reports can be compared to each other,
and the experts’ payments based upon how correlated theirs
and the other agents’ reports were. This results in payments
that are Nash incentive compatible, whereas a preferable so-
lution concept would be dominant strategy incentive compat-
ible, whereby truth telling is a dominant strategy regardless
of the other agents’ behaviour. Furthermore, in the sce-
nario above, only a single agent exists per home, and agents
are unable to measure their neighbours’ demand. Conse-
quently, agents’ reports cannot be directly compared as the
events they are predicting are unique to themselves. Sec-
ondly, in prior work, the reports from the experts are fused
with one-another, whereas in the scenario above, the centre
is interested in the cumulative demand of agents, and there-
fore must take the convolution of the reports. Thirdly, the
solutions do not take into account prior knowledge held by
the centre, with the exception of [5]. In the scenario above,
the centre has prior information about each home, and will
make savings based upon the precision of the information
he uses. The mechanism should take this into account such
that the aggregator does not pay for information less precise
than his own, and does not run a deficit in paying for said
information. The scoring rules in [5] have been adapted to
take into account prior information. However, the compu-
tation of the scores can be problematic and are unbounded
in the continuous domain. Finally, the solutions assume
that the budget for payment to the agents is somehow fixed,
whereas we propose to make use of the fact the centre has
prior information, and base agents’ rewards on the savings
made by the centre in using the agents’ reports over his own
prior information.

Against this background, we develop a novel, scoring rule-
based mechanism named the sum of others’ plus max mech-
anism, which distributes payments to agents from a budget
that is determined by their own reports in a way that is
incentive compatible, and ex ante weakly budget balanced
(i.e. the expected sum of payments to the agents is less than
or equal to the budget allocated for rewards by the centre).

In more detail, this paper makes the following contribu-
tions to the state of the art:

• We present a new scoring rule-based mechanism named
sum of others’ plus max (SOM), which we apply to the
scenario of information aggregation in the smart grid.
The mechanism rewards agents using a budget deter-
mined by their own reports, and takes into account the
agents’ reports and the centre’s prior information.

• We prove this mechanism to be dominant strategy in-
centive compatible and ex ante weakly budget balanced.

• We compare this mechanism using a computational ap-
proach to find equilibrium states to a benchmark mech-
anism in which rewards are divided uniformly between
agents, and the cooperative social-welfare maximising
solution. In doing so, we show that this mechanism is
much more efficient than the benchmark, and obtains
a social welfare that is up to 77% of that of the optimal
cooperative solution.

• We show that SOM reduces the risk of the aggregator
making a loss compared to the uniform mechanism.

The remainder of the paper is structured as follows: Sec-
tion 2 presents a formal model of the information aggrega-
tion problem applied to the smart grid. Section 3 discusses
two mechanisms to reward agents and their theoretical prop-
erties – the uniform mechanism, and the sum of others plus
max mechanism. Section 4 then discusses a cooperative so-
lution whereby all agents try to maximise the social welfare
of the system. Section 5 uses empirical analysis to compare
the two mechanisms and the social welfare solution. Finally,
the paper concludes in Section 6.

2. THE INFORMATION AGGREGATION
PROBLEM

This section presents a formulation of the information ag-
gregation problem for demand prediction within the smart
grid. In this scenario there are two types of agents – a sin-
gle aggregator agent, and n home agents, i ∈ N , where
N = {1, · · · , n}. The aggregator’s job is to gather infor-
mation about the future electricity consumption of a set of
homes and then buy electricity for those homes. The homes
each have their own agent, whose job it is to collect specific,
detailed consumption information about the home for which
it is responsible and then to report it to the aggregator. The
aggregator can then use this information to make better pre-
dictions of the future aggregate consumptions, which, due to
the design of the electricity markets, reduces the total cost
of the electricity consumed for all the homes.

In more detail, each day, D, is divided into a number of
time periods, which, for simplicity and without loss of gener-
ality, we assume to be one. For each time period, the aggre-
gator must purchase the amount of electricity it expects its
agents to consume. The aggregator can purchase electricity
in one of two markets, dependent on the time of purchase.
Electricity can be bought one day ahead of its consumption
in the forward market, in which case it costs f per unit of
electricity. At the end of each day, the aggregator is charged
for any imbalance between the amount it purchased in the
forward market for consumption and the amount it actually
consumed. We say these transactions are performed in the
balancing market in which the prices are designed by the
market regulator to penalise suppliers and consumers who
do not generate or consume as they predicted. The price at
which the grid buys back excess electricity, the system buy
price, is f − δb per unit, and the cost per unit of electricity
bought from the grid to fill any deficit, the system sell price,
is f + δs. Therefore, the total cost of consuming ω units of
electricity when χ units are initially bought is given by:

κ (ω |χ ) = f · χ+ (ω − χ) ·

{(
f − δb

)
, χ > ω

(f + δs) , χ < ω
(1)

Each agent, i, can generate at a cost an estimate, xi, of
its future consumption, represented by a Gaussian distribu-
tion1 with mean, µi, and precision, θi = 1/σ2

i , such that
xi = 〈µi, θi〉. However, it is important to note that the
mechanisms generalise to any probability distribution. The
cost incurred by agent i when generating an estimate of pre-

1Gaussian distributions were chosen as the estimates pro-
duced by the agents are likely to be dependent on numerous
noisy sources of information, and by the central limit theo-
rem, the sum of noisy data results in a Gaussian error.



cision θi is:

C (αi, θi) = αi · θi (2)

where αi is some positive, real-valued constant. The aggre-
gator also maintains its own belief about what each agent
i, will consume, xa,i = 〈µa,i, θa,i〉. However, the aggregator
does not incur a cost in maintaining its belief.

The day before the electricity is required, the aggregator
asks each agent to report its estimate of tomorrow’s con-
sumption, x̂i = 〈µ̂i, θ̂i〉, as a Gaussian distribution with

mean, µ̂i, and precision, θ̂i. The home agents are assumed to
be strategic and they will try to maximise the benefit they
receive; defined broadly as some payment for their report
minus the cost of generating that report. As such, agents
strategise over the precision of the estimate that they actu-
ally generate, xi = 〈µi, θi〉, and also the mean and precision

that they report to the aggregator, x̂i = 〈µ̂i, θ̂i〉. Conse-
quently, an agent will misreport (i.e. x̂i 6= xi) if it believes
doing so will gain it a greater utility.

Once received, the estimates reported by the home agents
are compared by the aggregator to its own information. The
aggregator does not know the correlation between the re-
ports of the agents and its own. Thus it takes the conser-
vative action of assuming they are perfectly correlated, and
simply takes the most precise estimate of its own and the
agent’s. In so doing, the aggregator produces the following
aggregate belief vector:

x = 〈x∗1, · · · , x∗n〉 (3)

where,

x∗i =

{
x̂i, if θ̂i > θa,i

xa,i, otherwise
(4)

The result of Equation 4 is that the aggregator will only
use the home agent’s reported estimate, x̂i, if said estimate
is more precise than the estimate the aggregator already
has, xa,i. Therefore, the aggregator will never use infor-
mation that is less precise than its own belief. In certain
situations, this can result in the aggregator losing informa-
tion. However, in general this behaviour is a necessary con-
sequence of the aggregator being unaware of the correlation
of the information sources being received, although domain-
specific knowledge might be applied to overcome this limi-
tation. Since the aggregator is interested in the cumulative
predicted demand of all homes, it convolves x to calculate
a distribution that represents the expected total demand.

In order to make notation less verbose, let the expected
total demand according to x be µ =

∑
x∗i ∈x

µ∗i , and its pre-

cision θ = 1/(
∑
x∗i ∈x

1/θ∗i ). Similarly, for the aggregator’s

beliefs, xa = 〈xa,1, · · · , xa,n〉, let the mean and precision be
µa =

∑
xa,i∈xa

µa,i and θa = 1/(
∑
xa,i∈x 1/θa,i).

Once the aggregator has collected estimates from all agents,
it performs an optimisation to determine the amount of elec-
tricity it must purchase in the forward market such that its
total expected cost is minimised. Essentially, the aggregator
tries to minimise its expected loss in the balancing markets,
which it does by solving the following equation:

χ (x) = arg min
z ∈Ω

f · z −
∫ z

0

(z − y)(f − δb)N (y;µ, θ) dy+∫ ∞
z

(y − z)(f + δs)N (y;µ, θ) dy

(5)

At the end of each day, the actual amount consumed by
each agent, defined by ω = 〈ω1, · · · , ωn〉, becomes known
to the aggregator. The total consumption is defined as
ω =

∑
ωi∈ω ωi. Each agent then pays the aggregator for the

electricity their home consumed, at a rate of fr per unit.
The aggregator can also calculate the total cost it incurred
through utilising the agents’ estimates, κ (ω |χ (x) ), and the
cost it would have incurred had it simply used its own prior
information, κ (ω |χ (xa) ).

The aggregator must then decide an amount to pay each
home agent, Pi. Agent i’s utility is then defined as follows:

Ui (x,xa,ω) = Pi (x,xa,ω)− C (αi, θi)− ωi · fr

and the aggregator’s utility is defined as:

Ua (x,xa,ω) = ω · fr − κ (ω|χ (x))−
∑
i∈N

Pi (x,xa,ω) (6)

Given that the agents are rational, they are able to strategise
over their space of reports in order to determine how pre-
cisely that they generate their estimate and then, whether
or not to truthfully report that estimate to the aggregator.
Indeed, even after an agent has paid to produce an estimate,
it might still gain a greater reward by misreporting. How-
ever, the aggregator is able to incentivise agents to behave
in certain ways by carefully designing the reward function,
Pi. In so doing, it wants to achieve two main goals: to
incentivise home agents to make precise estimates and to
incentivise agents to report those estimates truthfully. This
is a problem that is discussed in the next section.

3. NON-COOPERATIVE MECHANISMS
This section presents two mechanisms that allocate rewards
to agents for their information. A mechanism specifies a
transfer function, which defines the reward an agent receives
for a given reported estimate, x̂i, when an outcome, ωi, is
realised. Specifically, we consider three properties that are
desirable in the scenario presented earlier. First, the mecha-
nism should exhibit individual rationality. That is, in expec-
tation, all agents gain a positive utility from participating
in the mechanism. This is an essential requirement of any
mechanism designed for use within an aggregation service to
which customers may opt out – people will simply not use
the service if they expect to be worse off by so doing. Sec-
ond, the mechanism should be incentive compatible, which
means that an agent maximises its expected utility by truth-
fully reporting its estimate. This has obvious advantages in
the aggregation scenario described earlier – the aggregator
needs to know the real estimates the agents hold in order to
generate an accurate estimate of their aggregate future con-
sumption. Third, it should be budget balanced, which states
that the aggregator does not run into deficit after paying
the agents for their estimates. We consider a mechanism to
be budget balanced if the aggregator spends equal to or less
than it would have, had it only used its own estimates and
not elicited estimates from the home agents.

Given this, the next section discusses how the savings are
calculated in order to determine the aggregator’s budget.
Afterwards, the mechanisms that distribute this budget are
discussed. First to be discussed is the uniform mechanism;
a simple mechanism whereby the savings made by the aggre-
gator are equally divided amongst the home agents. Next,
a further mechanism named sum of others’ plus max is dis-



cussed, which uses the spherical scoring rule in order to de-
fine the proportion of the savings distributed to each agent.

3.1 Calculation of Savings
The budget the aggregator uses to reward the home agents
in the mechanisms presented here is a function of the total
savings made by the aggregator buying electricity using the
home agents’ information over its own (if the home agents’
information is more precise than the aggregator’s). For-
mally, when the agents consume ω, their aggregated reports
are x, and the aggregator’s aggregated prior information is
xa, the savings made by the aggregator are:

∆ (x,xa,ω) = κ (ω |χ (xa) )− κ (ω |χ (x) ) (7)

The aggregator may not necessarily decide to allocate the
whole amount of savings to the agents’ reward budget. In-
stead, it allocates a fraction 0 ≤ λ ≤ 1 to distribute, thereby
guaranteeing the aggregator a certain fraction of the savings.
However, the aggregator is still left with the problem of allo-
cating the λ savings to the agents such they are incentivised
to report precise estimates truthfully. The next sections are
devoted to describing two mechanisms. First, their formal
properties are discussed, then further examination of their
properties is performed using empirical evaluation.

3.2 Uniform Mechanism
The simplest mechanism presented in this paper simply di-
vides the savings made by the aggregator equally amongst
the agents. In this case, the reward given to each agent is:

PU
i (x,xa,ω, n) =

1

n
· λ ·∆ (x,xa,ω)

It is clear to see that the uniform mechanism is budget bal-
anced (i.e. it always distributes 100% of it’s allocated bud-
get) – the budget is equally split into n amounts, which are
then awarded to n agents, thus always distributing 100% of
the allocated budget. Further to this, Theorem 3.1 provides
a proof that shows the uniform mechanism to be Nash in-
centive compatible (that is, reporting truthfully is a Nash
equilibrium). Thus, under this mechanism, when all agents
are truthful, no single agent has incentive to misreport.

Theorem 3.1. The uniform mechanism is Nash incen-
tive compatible, i.e. truth telling is a Nash equilibrium.

Proof. The aggregator buys an amount of electricity for
the agents that minimises the total expected cost based on
the agents’ reported estimate. Clearly if all agents report
truthfully, one agent deviating will only cause a larger error
between the amount consumed and purchased, resulting in
less savings to be distributed to the agents and therefore
a lower utility for that agent. Therefore, when all agents
report truthfully, a single agent is unable to improve its ex-
pected utility by misreporting. However, note that truth
telling is not a dominant strategy; if an agent knows its
neighbour will misreport, the agent can obtain a better ex-
pected reward by also misreporting such that its error can-
cels out the error made by the neighbour.

Using this mechanism, all agents are rewarded equally ir-
respective of their actual contribution. An ideal mechanism
would reward the agents more fairly, by making greater pay-
ments to those agents whose estimates made the most signif-
icant increase in the aggregator’s savings. Furthermore, the

fact that truth telling is only a Nash equilibrium means that
agents can potentially expect to benefit from misreporting
their estimates if they believe other agents will do the same.
Therefore, a better solution is a mechanism that is dominant
strategy incentive compatible. That is, a mechanism where
an agent’s utility is maximised when reporting truthfully
regardless of its belief of the other agents’ actions. With
this in mind, we discuss next the sum of others’ plus max
mechanism (SOM), which uses strictly proper scoring rules
in order to achieve dominant strategy incentive compatibil-
ity. Strictly proper scoring rules are functions that take a
probabilistic estimate reported by an agent, and an outcome.
Their expected value is maximised only when an agent truth-
fully reports their estimates. SOM uses the spherical scoring
rule, which is discussed in the next section.

3.3 Spherical Scoring Rule
The mechanism in the next section is based on the spherical
scoring rule. For a given prediction of an event with mean
µ̂i, and precision θ̂i, and a realisation of that event, ωi, the
spherical rule is defined as follows:

S
(
ωi; µ̂i, θ̂i

)
=

N
(
ωi; µ̂i, θ̂i

)
√∫∞
−∞N

(
x; µ̂i, θ̂i

)2

dx

(8)

The spherical rule is one of three strictly proper scoring
rules often studied in literature – the other two being the
logarithmic, and quadratic scoring rules. The term strictly
proper means that the expected score awarded by the func-
tion is maximised exclusively when the agent truthfully re-
ports its estimate. The spherical rule was chosen over the
much simpler logarithmic rule because it has a strict lower
bound of 0, whereas the logarithmic rule is unbounded. As a
result, the use of the logarithmic scoring rule could theoret-
ically end with a customer becoming forever in debt to the
aggregation company after having received a score of −∞.
This is clearly unsatisfactory, and it could be argued that
this fact, no matter how rare its occurrence, could dissuade
users from ever joining the aggregation service.

Using scoring rules to distribute payments to agents in
continuous domains is non-trivial. This arises from the fact
that N (µ, θ) is unbounded as θ → ∞. Clearly, if a home
agent were to know exactly what it would consume in the
next time period, paying it an infinite amount is not ac-
ceptable to the aggregator. Therefore, the score must be
scaled in order to apply bounds. The next section discusses
two methods for achieving this, and introduces the main
contribution of this paper – the sum of others’ plus max
mechanism.

3.4 Sum of Others’ plus Max
As has been discussed, scoring rules are used to assign scores
to agents based on the accuracy and the precision of the esti-
mates the agents report to the centre. Naturally, agents who
report more precise estimates expect to get a higher score,
and remembering that the cost agents incur when generat-
ing their estimates is proportional to the precision of their
generated estimates, rewarding agents based on the score
they achieve seems to be a natural development. Consider-
ing that we would also like to fairly distribute the savings
to the agents in a way that is budget balanced, one method
of distributing the savings to the home agents might be to



scale the total savings by the fraction of the sum of all agents’
scores that the agent had contributed. We call this mecha-
nism the percentage contribution mechanism, where the re-
ward each agent receives is given by:

PP
i (x,xa,ω) =

S
(
ωi; µ̂i, θ̂i

)
∑
xj∈x S

(
ωj ; µ̂j , θ̂j

)λ ·∆ (x,xa,ω)

However, despite the fact that this might be intuitively
correct, the resulting payments are not incentive compati-
ble. Agents are in fact able to misreport the precision of
their belief in order to gain a higher reward by making their
belief seem more precise. In this section, the percentage con-
tribution mechanism is adapted to make the sum of others’
plus max (SOM) mechanism, which is incentive compatible,
but is only ex ante weakly budget balanced. That is, in
expectation, SOM distributes at most 100% of its budget.

This mechanism takes into account not only the spheri-
cal score (defined in Equation 8) achieved by the agent, but
also those achieved by the other agents in the system. Pay-
ments are then determined by multiplying those scores by
the savings made by the aggregator when using the reports
from the other agents in the system, and the aggregator’s
prior knowledge in place of the report from the agent who is
being rewarded. This is necessary in order to preserve incen-
tive compatibility. Furthermore, to ensure agent’s payments
never outweigh the savings made by the aggregator, it is nec-
essary to provide an upper bound on the precision of reports
accepted from agents, θmax. If any agent reports a precision
θ̂i > θmax, their spherical score will be calculated as though
θ̂i = θmax. Formally, the payment agent i obtains, given all
agents’ estimates is given by:

PS
i (x,xa,ω) =

S
(
ωi; µ̂i, θ̂i

)
· λ ·∆ (x−i ∪ {xa,i} ,xa,ω)

S (ωi;ωi, θmax) +
∑
xj∈x−i

S
(
ωj ; µ̂j , θ̂j

)
where x−i = x \ {x∗i }, and the term, S (ωi;ωi, θmax), repre-
sents the maximum score that can be achieved by an agent
– the score achieved when reporting the maximum possi-
ble precision, θmax, and reporting an estimate with mean
ωi when ωi actually does occur. It can be seen that by
using only the savings made by the other agents, the only
term that is dependent on the report from the agent being
rewarded is the scoring rule. Moreover, the spherical scor-
ing rule was specifically chosen due to it’s strict propriety,
and therefore these payments are incentive compatible, as is
shown in Theorem 3.2.

Theorem 3.2. SOM is dominant strategy incentive com-
patible, i.e. truth telling is a strictly dominant strategy.

Proof. The maximum score is a constant value set by
the mechanism designer. Furthermore, the agent’s report
is excluded from the calculation of the savings made. Ergo
the agent is unable to affect the savings used to calculate its
payment. Thus, the savings made by the other agents are
in effect a constant. Given that, SOM is simply an affine
transformation of the spherical scoring rule, which maintains
strict propriety and therefore incentive compatibility. The
fact that the score is strictly proper means that the expected
score is a unique maximum when an agent reports truthfully.
Thus, the expected reward an agent receives is also a unique
maximum when it reports truthfully. Therefore, the mech-
anism is strictly dominant incentive compatible.

In addition to truth-telling being a strictly dominant strat-
egy, the rewards to agents made by this rule are fairer than
those of the uniform mechanism in that the agents are di-
rectly compared with each other based upon their score.
The reward is simply a scaled fraction of the agents’ spher-
ical score over the sum of all other agents’ scores. Thus,
if an agent scores highly because it reported a precise esti-
mate, and the other agents score lower because of imprecise
reports, the first agent will receive a greater share of the
savings made. It is essential to divide the agent’s spherical
score by the sum of the other agents’ prescaled scores plus
the maximum score in order to maintain weak budget bal-
ance. Theorem 3.3 provides a proof of the fact that SOM is
ex ante weakly budget balanced.

Theorem 3.3. SOM is ex ante weakly budget balanced.

Proof. Let each agent, i, obtain the score Si, and ∆̄ (θ)
be the expected savings made when the agents’ reports pro-
duce an aggregate precision of θ. In SOM when each agent,
i’s, report has precision θi, the total expected payout is:

∑
∀i∈N

Si
Smax +

∑
∀j∈N\{i} Sj

· ∆̄

 ∑
∀j∈N\{i}

1

θj
+

1

θa,i

−1
and the aggregator’s total expected savings is

∆̄

((∑
∀i∈N

1

θi

)−1)

The sum of the fraction of scores is ≤ 1, and ∆̄(θ) is
strictly increasing with θ. Therefore, it is sufficient to prove: ∑

∀j∈N\{i}

1

θj
+

1

θa,i

−1

≤

(∑
∀i∈N

1

θi

)−1

∀i ∈ N

We start with the axiom,

θa,i ≤ θi

Adding θiθa,iγ > 0 to both sides gives:

θa,i + θiθa,iγ ≤ θi + θiθa,iγ

Which factorises to give:

θa,i (θiγ + 1) ≤ θi (θa,iγ + 1)

The bracketed expressions are strictly positive. Therefore,
it can be simplified to give:(

γ +
1

θa,i

)−1

≤
(
γ +

1

θi

)−1

Substituting γ for
∑
∀j∈N\{i}

1
θj

, we are left with

 ∑
∀j∈N\{i}

1

θj
+

1

θa,i

−1

≤

(∑
∀i∈N

1

θi

)−1

That is, the precision of the aggregate report made by the
aggregator when using its own information in place of agent
i’s is less than the precision of using all agents reports, when



each agent reports a precision greater than or equal to the
aggregator’s precision. Combined with the fact that the ex-
pected savings are strictly increasing with precision, and the
sum of fractions of the budget allocated to each agent is less
than or equal to one, this shows the sum of others plus max
mechanism is ex ante weakly budget balanced.

There are numerous advantages to using SOM over the
simple uniform mechanism presented earlier. Firstly, truth
telling strictly dominates all other strategies. As a result, re-
porting truthfully will always maximise the agent’s expected
reward, regardless of the other agents’ actions. This is not
the case in the uniform mechanism wherein truth telling is
only a Nash equilibrium. For example, if an agent were to
learn that its neighbour were to misreport its estimate, it too
could misreport in order to offset the other agent. However,
a disadvantage of SOM compared to the uniform mechanism
is that it is only ex ante weakly budget balanced – a weaker
concept than the strict budget balance exhibited by the uni-
form mechanism. The home agents might make small losses
when the other agents’ predictions are poor. However, in
expectation, home agents’ utilities will always be positive as
they are able to strategise over the precision the generate
in order to maximise their utility. This is further explained
with the aid of empirical evidence in Section 5.3.

4. THE SOCIAL WELFARE SOLUTION
While the design of the two previous mechanisms assumes
that the agents are non-cooperative – that is, they seek only
to maximise their own profit – the social welfare solution
assumes cooperation between the agents. In the social wel-
fare solution, agents ignore their own reward and instead
maximise the sum of all agents’ utilities within the system.
In the case shown in this paper, when maximising social
welfare, each agent maximises the following function:

U∗ (x) =

∫
· · ·
∫ ∞

0

∆ (x,xa,ω)

−
∑
∀i∈N

C (αi, θi) dω1, · · · , dωn
(9)

The social welfare solution is significant as it provides an
upper bound for the social welfare that can be achieved
within the system. This result can then be used in order
to ascertain the efficiency of any mechanism that works in
the scenario, where more efficient mechanisms are deemed
to be those whose social welfare is closer to that of the max-
imum social welfare. We use the social welfare result in the
next section in order to analyse the efficiency of the sum of
others plus max, and uniform mechanisms, and to discover
the properties that arise in a cooperative model.

The previous sections have introduced two new mecha-
nisms – the uniform mechanism and sum of others’ plus max
– and in doing so have discussed and proved some of the for-
mal properties of said mechanisms. The solution whereby
agents act cooperatively to maximise social welfare has also
been introduced. The next section uses empirical analysis
to further analyse emergent behaviour under equilibrium.

5. EMPIRICAL EVALUATION OF THE
MECHANISMS

Given the theoretical properties of the mechanisms discussed
in the previous sections, it is clear that agents will truth-
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Figure 1: The aggregated precision of the agents’
reports, versus the fraction of the savings to be dis-
tributed by the aggregator, λ.

fully report their information to the aggregator. However,
although rational agents will be truthful, they will strategise
over the actual generated precision of their estimate. There-
fore, to further analyse the properties of the mechanisms, we
must solve for the equilibrium precision of the agents.

Unfortunately, this equilibrium cannot be calculated, and
thus, iterated best response is used to computationally find
the home agents’ equilibrium strategies (the precisions of
their generated reports). To aid convergence to an equilib-
rium, a dynamic named partial best response is used [3].
Equilibrium is detected by measuring the variance of the
agents’ chosen strategies, and the algorithm is deemed to
have reached an equilibrium point when the variance of the
last 10 strategies chosen by each agent falls below a prede-
termined threshold (10−8 in our experiments).

Once the equilibria are found, the expected savings and
the agents’ expected rewards and utilities are analytically
calculated. Market values are set to f = 100, δb = 50,
and δs = 70. Agents’ costs are set to 0.01, 0.02, . . . , 0.1, and
kept constant throughout each simulation. The aggregator
is assumed to have prior information that allows it to make
estimates of each houses’ demand with precision θa = 2.

The remainder of this section discusses the results from
these simulations. In Section 5.1, the aggregate precision
of all agents’ reports are compared for the two mechanisms
and the social welfare solution. Next, Section 5.2 discusses
the efficiency of each mechanism, where efficiency is defined
in terms of a percentage of the social welfare achieved in the
cooperative solution. Finally, Section 5.3 discusses the risks
to the aggregator in using each mechanism.

5.1 Precision
In this section, the aggregated precisions of the agents’ re-
ports under the two mechanisms and the social welfare max-
imising case are analysed. Figure 1 shows the aggregated
precision of all agents’ reports against the fraction of the
savings the aggregator allocates for distribution. The fact
that the agents are playing unique equilibrium strategies
that maximise their utility functions means that there is
no error in the agents’ chosen strategies, and consequently
no error in the aggregated precision of the agents’ reports.
Thus, error bars have been omitted from the plot in Figure 1.

It can be seen from Figure 1 that in terms of aggregated



precision, SOM vastly outperforms the uniform mechanism
for values of λ > 0.425, obtaining an aggregated precision
which is up to four times the aggregated precision obtained
by the uniform mechanism. The step change in the SOM
precisions between λ = 0.4 and λ = 0.5 occurs because
lower values of λ are not incentivising the agents’ to pro-
duce estimates as their additional reward is outweighed by
their costs. Furthermore, steps can be seen in the uniform
plot as each agent becomes incentivised to produce a report.
The baseline at θ = 0.2 occurs when no agents are incen-
tivised to produce a report with θi > θa,i. Consequently,
the aggregated belief consists only of the aggregator’s prior
knowledge, thus θ = θa/n assuming θa = θa,i, ∀i ∈ N .

Figure 1 also shows the aggregated precision of the reports
made by the home agents under a cooperative, social welfare
maximising setting. In this setting, each agent’s strategy is
constant with respect to λ as the agents do not take into
account their own reward, as is shown in Equation 9.

Furthermore, note that it is not the absolute value of the
reward that is important in determining the strategy to be
adopted by the agents, but the gradient of the reward func-
tion with respect to the agents’ precision, θi. The absolute
value only becomes relevant if the agent has the choice be-
tween the mechanism that is in use. Agents will choose
a precision at which the gradient of the reward function,
dP/dθi equals the gradient of their cost function dCi/dθi, or
αi. Therefore, it may well be possible to construct a reward
function that encourages agents to generate yet more precise
estimates than they do with SOM. However, as we discuss
in the next section, SOM is already up to 77% efficient, and
therefore any increase in the precision generated by agents
will only produce marginally improved social welfare.

5.2 Efficiency
The mechanisms discussed in this paper do not ‘burn’ any
unallocated savings. That is, savings that are not distributed
to the home agents as payment are not simply discarded. In-
stead, any unallocated savings are returned to the aggrega-
tor to add to its profit. In this way, the mechanisms always
allocate 100% of their budget. However, under this model,
the budget for each mechanism is itself dependent on the
actions of the home agents. Consequently, each mechanism
will still result in a different social welfare. With this in
mind, in this paper, efficiency is defined as the social wel-
fare achieved by the mechanism expressed as a percentage
of the social welfare that is achieved when agents act coop-
eratively to maximise additional social welfare.

Figure 2 shows the sum of the home agents’ additional
utilities against the additional utility gained by the aggre-
gator in using each mechanism compared to using no mech-
anism for values of λ between 0.0 and 1.0. As before, the
agents’ behaviour in the social welfare solution is indepen-
dent of λ. It can be seen that SOM is more efficient than
the uniform mechanism in that it has points closer to the so-
cial welfare maximising solution. Furthermore, for any util-
ity received by the home agents, the aggregator’s additional
utility is greater under SOM than the uniform mechanism.

Having discussed the expected utilities that are obtained
by the agents and aggregator, we see that the aggregator
always expects to receive a greater utility when using SOM
over the uniform mechanism. However, observing samples of
individual rounds shows that there are occasions wherein the
aggregator makes a loss. The next section analyses the risk
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Figure 2: The additional utility of the aggregator
when using a mechanism as opposed to using no
mechanism against the sum of agents’ additional
utilities.

to the aggregator in using SOM compared to the benchmark.

5.3 Risk for the Aggregator
This section discusses the risk to the aggregator when us-
ing SOM and the uniform mechanism compared to using
no mechanism at all – i.e. the aggregator simply using its
own beliefs. There is always an element of risk for the ag-
gregator, which arises due to errors made when predicting
the demand of the home agents. It should be noted that
this work assumes that the agents’ beliefs are on average
accurate. Thus, on average, the savings made in using the
agents’ more precise information is positive. Nevertheless,
it is possible for savings on occasion to be negative, when
an agent is confident in its belief, but is incorrect.

However, there are a number of ways the aggregator can
mitigate such risk. For one, simply increasing the number of
agents being aggregated over decreases the risk to the aggre-
gator, as can be seen by the ‘no mechanism’ line in Figure 3.
The use of mechanisms further reduces the aggregator’s risk
by encouraging agents to produce more precise estimates.

The results shown in this section use the same experimen-
tal setup as above, with the retail price, arbitrarily set to
fr = f (note in a real situation, the aggregator would set
fr > f in order to gain some profit). In addition, the value
at risk is calculated through repeated simulation. In more
detail, once the agents’ strategies have been determined, the
simulation of the aggregator purchasing electricity using the
agents’ reports runs in full for 1000 rounds. In each round,
each house, i, is assigned a total consumption, ωi, sampled
from a uniform distribution over the range [30, 50]. The
agent’s own estimate of its consumption is then sampled
from a normal distribution around its consumption such that
µi ∼ N (ωi, θi), where θi is the precision chosen by agent i
in the equilibrium found through iterated best response as
described earlier. The same procedure is used to generate
the aggregator’s belief using θa. The aggregator pays each
agent their reward in accordance with the model in Section 2
and mechanisms in Section 3. After each round, the aggre-
gator’s utility is calculated (Equation 6). The value of the
aggregator’s utility at 5% risk is calculated by taking the ag-
gregator’s fifth percentile utility from the 1000 rounds. This
process is repeated 20 times, and the mean and standard
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error of the value at 5% risk are taken.
Risk can be further mitigated by the aggregator by ad-

justing λ, as shown in Figure 4. It can be seen that SOM
results in a greatly reduced risk to the aggregator for val-
ues of λ > 0.425 resulting from the high precision estimates
that SOM encourages agents to produce. For higher values
of λ, although the agents are still producing high precision
estimates, as shown in Figure 1, the aggregator is giving
away a larger portion of the savings to the agents, thereby
decreasing its utility. For values of λ < 0.425, as shown in
Figure 1, agents are not incentivised to produce reports, and
thus the risk to the aggregator is equal to the risk when no
mechanism is employed. The step changes in the ‘uniform’
line of Figure 4 arise due to agents individually becoming
incentivised to produce estimates for the aggregator.

An additional source of risk comes from the ex ante weakly
budget balanced nature of SOM; the mechanism is budget
balanced in expectation, but there may be instances wherein
the aggregator makes a loss. Furthermore, in situations
whereby the savings made by the aggregator are negative
– i.e. the agent’s estimates were less accurate than the ag-
gregator’s prior estimate – the fact that the mechanism is
ex ante, weakly budget balanced, means the aggregator will,
in expectation, regain at most λ of the loss made.

However, it is worth noting that at no point in Figures 3
and 4, is the aggregator worse off by using either mechanism
compared to using no mechanism at all. Furthermore, SOM,
for λ > 0.425, maximises the utility of the aggregator. Thus
a risk neutral aggregator, who is able to strategise over the
mechanism used, will always choose SOM, with λ > 0.425.

6. CONCLUSIONS
This paper discussed mechanism design in scenarios wherein
a centre has some imprecise information regarding a set of
values that, when aggregated, provide information it must
use to optimally procure goods at a cost. Each variable
has a single expert agent that is able, at a cost, to report
to the centre more precise information regarding the value.
Additionally, the expected cost incurred by the centre in-
creases with the precision of the information it uses to pro-
cure said goods. A dominant strategy incentive compatible
scoring rule-based mechanism named sum of others’ plus
max (SOM) was developed, which rewards agents from a
budget that is equal to the savings made by the centre in
using the agents’ information over its own.

SOM was compared to a simple mechanism whereby the
agents are paid by dividing the savings made equally among
the agents. It was shown that the sum of others plus max
mechanism increased social welfare compared to the uniform
mechanism, and that the social welfare achieved by the sum
of others plus max mechanism was 77% that of the optimal
solution. Empirical evidence was provided that shows that
SOM reduces the risk to the aggregator compared to using
a simple uniform mechanism or no mechanism at all.

Future work will investigate the combination of the sum of
others plus max mechanism with additional incentives. For
example, in the smart grid, demand smoothing is desirable
as it reduces the need for extraneous and costly standby
generation capacity on the grid. An additional incentive to
build into this mechanism would therefore be to reduce the
variance of the realised consumptions of each house, ωi, as
agents can potentially gain better payoffs by making their
consumptions unpredictable to the aggregator.
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