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ABSTRACT

There has been significant recent interest in computing effec-
tive strategies for playing large imperfect-information games.
Much prior work involves computing an approximate equi-
librium strategy in a smaller abstract game, then playing
this strategy in the full game (with the hope that it also
well approximates an equilibrium in the full game). In this
paper, we present a family of modifications to this approach
that work by constructing non-equilibrium strategies in the
abstract game, which are then played in the full game. Our
new procedures, called purification and thresholding, mod-
ify the action probabilities of an abstract equilibrium by
preferring the higher-probability actions. Using a variety of
domains, we show that these approaches lead to significantly
stronger play than the standard equilibrium approach. As
one example, our program that uses purification came in
first place in the two-player no-limit Texas Hold’em total
bankroll division of the 2010 Annual Computer Poker Com-
petition. Surprisingly, we also show that purification signif-
icantly improves performance (against the full equilibrium
strategy) in random 4 X 4 matrix games using random 3 X 3
abstractions. We present several additional results (both
theoretical and empirical). Overall, one can view these ap-
proaches as ways of achieving robustness against overfitting
one’s strategy to one’s lossy abstraction. Perhaps surpris-
ingly, the performance gains do not necessarily come at the
expense of worst-case exploitability.
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1. INTRODUCTION

Developing effective strategies for agents in multiagent
systems is an important and challenging problem. It has
received significant attention in recent years from several dif-
ferent communities—in part due to the competitions held at
top conferences (e.g, the computer poker, robo-soccer, and
trading agent competitions). As many domains are so large
that solving them directly (i.e., computing a Nash equilib-
rium or a solution according to some other relevant solution
concept) is computationally infeasible, some amount of ap-
proximation is necessary to produce agents.

Specifically, significant work has been done on computing
approximate game-theory-based strategies in large imperfect-
information games. This work typically follows a three-step
approach, which is depicted in Figure 1. First, an abstrac-
tion algorithm is run on the original game G to construct
a smaller game G’ which is strategically similar to G [1, 2,
3, 11]. Second, an equilibrium-finding algorithm is run on
G’ to compute an e-equilibrium ¢’ [6, 13]. Third, a reverse
mapping is applied to ¢’ to compute an approximate equilib-
rium o in the full game G [5, 10]. While most prior work has
focused on the first two steps of this approach, in this paper
we focus on the third. In particular, we propose first map-
ping the abstract approximate-equilibrium strategy profile
to a non-equilibrium strategy profile in the abstract game,
which we then map to a strategy profile in the full game.

Almost all prior work has used the trivial reverse mapping
in which o is the straightforward projection of ¢’ into G. In
other words, once the abstract game is solved, its solution
is just played directly in the full game. In this paper, we
show that applying more sophisticated reverse mappings can
lead to significant performance improvements—even if they
produce strategy profiles that are no longer equilibria in the
abstract game.

One of the key ideas that motivated our approach is that
the exact action probabilities of a mixed strategy equilib-
rium in an abstraction can exemplify overfitting to the par-
ticular abstraction used. (Our results confirm this.) Ide-
ally, we would like to extrapolate general principles from
the strategy rather than just use values that were finely
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Figure 1: General approach for solving large games.

tuned for a specific abstraction. This is akin to the clas-
sic example from machine learning, where we would prefer a
degree-one polynomial that fits the training data quite well
to a degree-hundred polynomial that may fit it slightly bet-
ter. (Subsequent to the appearance of the earlier versions
of our paper, others have also shown that overfitting strate-
gies to a particular abstraction is a very significant and real
problem in large imperfect-information games [7].)

We present a family of modifications to the standard ap-
proach that work by constructing non-equilibrium strategies
in the abstract game, which are then played in the full game.
Our new procedures, called purification and thresholding,
modify the action probabilities of an abstract equilibrium
by placing a preference on the higher-probability actions.
The main intuition behind our algorithms is that we should
ignore actions that are played with small probability in the
abstract equilibrium, as they are likely due to abstraction
coarseness, overfitting, or failure of the equilibrium-finding
algorithm to fully converge.

Using a variety of experimental domains, we show that our
new approach leads to significantly stronger play than the
standard abstraction/equilibrium approach. For example,
our program that uses purification won the two-player no-
limit Texas Hold’em total bankroll division of the 2010 An-
nual Computer Poker Competition (ACPC), held at AAAIL
Surprisingly, we also show that purification significantly im-
proves performance (against the full equilibrium strategy)
in random 4 X 4 matrix games using random 3 x 3 abstrac-
tions. We present additional results (both theoretical and
empirical), including: worst-case theoretical results, empiri-
cal and theoretical results on specific support properties for
which purification helps in matrix games, and experimen-
tal results in well-studied large imperfect-information games
(Leduc Hold’em and Texas Hold’em).

2. GAME THEORY BACKGROUND

In this section, we briefly review relevant definitions and
prior results from game theory and game solving.

2.1 Strategic-form games

The most basic game representation, and the standard
representation for simultaneous-move games, is the strategic
form. A strategic-form game (aka matrix game) consists of
a finite set of players NV, a space of pure strategies S; for each

player, and a utility function w; : x.S; — R for each player.
Here xS, denotes the space of strategy profiles—vectors of
pure strategies, one for each player.

The set of mized strategies of player i is the space of prob-
ability distributions over his pure strategy space S;. We will
denote this space by ;. Define the support of a mixed strat-
egy to be the set of pure strategies played with nonzero prob-
ability. If the sum of the payoffs of all players equals zero at
every strategy profile, then the game is called zero sum. In
this paper, we will be primarily concerned with two-player
zero-sum games; we will show that the new approaches lead
to performance improvements even in this class of games
where the equilibrium approach should be at its best. If the
players are following strategy profile o, we let o_; denote
the strategy taken by player i’s opponent, and we let X_;
denote the opponent’s entire mixed strategy space.

2.2 Extensive-form games

An extensive-form game is a general model of multiagent
decision making with potentially sequential and simultane-
ous actions and imperfect information. As with perfect-
information games, extensive-form games consist primarily
of a game tree; each non-terminal node has an associated
player (possibly chance) that makes the decision at that
node, and each terminal node has associated utilities for the
players. Additionally, game states are partitioned into in-
formation sets, where the player whose turn it is to move
cannot distinguish among the states in the same informa-
tion set. Therefore, in any given information set, a player
must choose actions with the same distribution at each state
contained in the information set. If no player forgets infor-
mation that he previously knew, we say that the game has
perfect recall. A (behavioral) strategy for player i, o; € 3,
is a function that assigns a probability distribution over all
actions at each information set belonging to 3.

2.3 Nash equilibria

Player i’s best response to o_; is any strategy in

’
arg max u;(o;,0—;).
UéEZi

A Nash equilibrium is a strategy profile o such that o; is a
best response to o_; for all i. An e-equilibrium is a strategy
profile in which each player achieves a payoff of within e of
his best response.

In two-player zero-sum games, we have the following result
which is known as the minimaz theorem:

v" = max min ui(01,02) = min max ui(o1,02).
01€X] 02€X o2€Yg 01 €Y
We refer to v* as the value of the game to player 1. Some-
times we will write v; as the value of the game to player 3.
It is worth noting that in two-player zero-sum games, any
equilibrium strategy for a player will guarantee an expected
payoff of at least the value of the game to that player.

All finite games have at least one Nash equilibrium. In
two-player zero-sum strategic-form games, a Nash equilib-
rium can be found efficiently by linear programming. In the
case of zero-sum extensive-form games with perfect recall,
there are efficient techniques for finding an e-equilibrium,
such as linear programming [8], generalizations of the exces-
sive gap technique [6], and counterfactual regret minimiza-
tion [13]. The latter two algorithms scale to games with
approximately 10'2 game tree states, while the best current



general-purpose linear programming technique (CPLEX’s
barrier method) scales to games with around 10® states.

2.4 Abstraction

Despite the tremendous progress in equilibrium-finding in
recent years, many interesting real-world games are so large
that even the best algorithms have no hope of computing
an equilibrium directly. The standard approach of dealing
with this is to apply an abstraction algorithm, which con-
structs a smaller game that is similar to the original game;
then the smaller game is solved, and its solution is mapped
to a strategy profile in the original game. The approach has
been applied to two-player Texas Hold’em poker, first with
a manually generated abstraction [1], and now with abstrac-
tion algorithms [2]. Many abstraction algorithms work by
coarsening the moves of chance, collapsing several informa-
tion sets of the original game into single information sets of
the abstracted game.

The game tree of two-player no-limit Texas Hold’em has
about 107! states (while that of two-player limit Texas Hold’
em has about 10'® states); so significant abstraction is nec-
essary.

3. PURIFICATION AND THRESHOLDING

Suppose we are playing a game A that is too large to solve
directly. As described in Section 2.4, the standard approach
would be to construct an abstract game A’, compute an
equilibrium ¢’ of A’, then play the strategy profile ¢ induced
by ¢’ in the full game A.

One possible problem with this approach is that the spe-
cific strategy profile ¢’ might be very finely tuned for the
abstract game A’, and it could perform arbitrarily poorly in
the full game (see the results in Section 5). Ideally we would
like to extrapolate the important features from ¢’ that will
generalize to the full game and avoid playing a strategy that
is overfit to the particular abstraction. This is one of the key
motivations for our new approaches, purification and thresh-
olding.

3.1 Purification

Let 0; be a mixed strategy for player i in a strategic-form
game, and let S = argmax; 0;(j), where j ranges over all
of player i’s pure strategies. Then we define the purification
pur(o;) of o; as follows:

. 0 : j¢85
purte) = { L1 JES
If o, plays a single pure strategy with highest probability,
then the purification will play that strategy with probabil-
ity 1. If there is a tie between several pure strategies of the
maximum probability played under o;, then the purification
will randomize equally between all maximal such strategies.
Thus the purification will usually be a pure strategy, and
will only be a mixed strategy in degenerate special cases
when several pure strategies are played with identical prob-
abilities.
If 0, is a behavioral strategy in an extensive-form game,
we define the purification similarly; at each information set
I, pur(o;) will play the purification of o; at I.

3.2 Thresholding

The effects of purification can be quite extreme in some
situations. For example, if o; plays action a with probability
0.51 and action b with probability 0.49, then b will never be
played after purification. We also consider a more relaxed
approach, called thresholding, that only eliminates actions
below a prescribed € to help alleviate this concern.

Thresholding works by setting all actions that have weight
below € to 0, then renormalizing the action probabilities.
Pseudocode is given below in Algorithm 1. One intuitive in-
terpretation of thresholding is that actions with probability
below € may just have been given positive probability due
to noise from the abstraction (or because an equilibrium-
finding algorithm had not yet taken those probabilities all
the way to zero), and really should not be played in the full
game. Additionally, low probability actions are often played
primarily to protect a player from being exploited, and this
may be an overstated concern against realistic opponents (as
discussed further in Section 4.2).

Algorithm 1 Threshold(o;, €)

for j =1 to |S| do

if 0;(j) < € then

oi(j) + 0

end if
end for
normalize(o;)
return o;

4. EVALUATION METRICS

In recent years, several different metrics have been used
to evaluate strategies in large games.

4.1 Empirical performance

The first metric, which is perhaps the most meaningful,
is empirical performance against other realistic strategies.
For example, in the ACPC, programs submitted from re-
searchers and hobbyists from all over the world compete
against one another. Empirical performance is the metric
we will be using in Section 8 when we assess our perfor-
mance in Texas Hold’em.

4.2 Worst-case exploitability

The worst-case exploitability of player i’s strategy o; is
the difference between the value of the game to player i and
the payoff when the opponent plays his best response to o;
(aka his nemesis strategy). Formally it is defined as follows:

expl(o;) = v; — g_l;nég_i u;i (03, 0-3).
Worst-case exploitability has recently been used to assess
strategies in several variants of poker [4, 7, 12].

Any equilibrium has zero exploitability, since it receives
payoff v; against its nemesis. So if our goal were to approxi-
mate an equilibrium of the full game, worst-case exploitabil-
ity would be a good metric to use, since it approaches zero
as the strategy approaches equilibrium.

Unfortunately, the worst-case exploitability metric has se-
veral drawbacks. First, it cannot be computed in very large
games (though very recent advancements have made it possi-
ble to compute full best responses offline in two-player limit
Texas Hold’em, which has about 10'® game states [7], and
we will be leveraging that algorithm in our experiments).



Second, exploitability is a worst-case metric that assumes
the opponent is able to optimally exploit us in the full game
(i-e., he knows our full strategy and is able to efficiently com-
pute a full best response in real time). In fact, it is quite
common in very large games for agents to simply play static,
fixed strategies the entire time, since the number of inter-
actions is generally tiny compared to the size of the game,
and it is usually quite difficult to learn to effectively exploit
opponents online. For example, in recent computer poker
competitions, almost all submitted programs simply play a
fixed strategy. In the 2010 ACPC, many of the entrants at-
tached summaries describing their algorithm. Of the 17 bots
for which summaries were included, 15 played fixed strate-
gies, while only 2 included some element of attempted ex-
ploitation. If the opponents are just playing a fixed strategy
and not trying to exploit us, then worst-case exploitability
is too pessimistic of an evaluation metric. Furthermore, if
the opponents have computational limitations and use ab-
stractions, then they will not be able to fully exploit us in
the full game.

4.3 Performance against full equilibrium

In this paper, we will also evaluate strategies based on per-
formance against equilibrium in the full game. The intuition
behind this metric is that in many large two-player zero-
sum games, the opponents are simply playing fixed strate-
gies that attempt to approximate an equilibrium of the full
game (using some abstraction). For example, most entrants
in the ACPC do this. Against such static opponents, worst-
case exploitability is not very significant, as the agents are
not generally adapting to exploit us.

This metric, like worst-case exploitability, is not feasible
to apply on very large games. However, we can still apply
it to smaller games as a means of comparing different so-
lution techniques. In particular, we will use this metric in
Sections 6 and 7 when presenting our experimental results
on random matrix games and Leduc Hold’em. This metric
has similarly been used on solvable problem sizes in the past
to compare abstraction algorithms [4].

5. THEORY: SELECTIVE SUPERIORITY

So which approach is best: purification, thresholding, or
the standard abstraction/equilibrium approach? It turns
out that using the performance against full equilibrium met-
ric, there exist games for which each technique can outper-
form each other. Thus, from a worst-case perspective, not
much can be said in terms of comparing the approaches.

Proposition 1 shows that, for any equilibrium-finding al-
gorithm, there exists a game and an abstraction such that
purification does arbitrarily better than the standard ap-
proach.

PROPOSITION 1. For any equilibrium-finding algorithms
A and A’, and for any k > 0, there erists a game A and an
abstraction A of A, such that

w1 (pur(o?), o2) > ui(oy, 02) + k,

where o’ is the equilibrium of A’ computed by algorithm A,
and o is the equilibrium of A computed by A.

Proor. Consider the game in Figure 2. Let A denote the
full game, and let A’ denote the abstraction in which player
2 (the column player) is restricted to only playing L or M,

L|M R
U|2|0|-3k-1
Djo|1 —1

Figure 2: Two-player zero-sum game used in the
proof of Proposition 1.

but the row player’s strategy space remains the same. Then
A’ has a unique equilibrium in which player 1 plays U with
probability %7 and player 2 plays L with probability % Since
this is the unique equilibrium, it must be the one output by
algorithm A’. Note that player 1’s purification pur(c}) of o’
is the pure strategy D.

Note that in the full game A, the unique equilibrium is
(D,R), which we denote by o. As before, since this equilib-
rium is unique it must be the one output by algorithm A.
Then we have

ul(a’l,@):%(—gk—1)+§(—1) - k-1
ui(pur(oy),02) = —1.

So u1 (07, 02) +k = —1, and therefore
w1 (pur(oy), 02) = uy (o1, 02) + k.

O

We can similarly show that purification can also do arbi-
trarily worse against the full equilibrium than standard un-
purified abstraction, and that both procedures can do arbi-
trarily better or worse than thresholding (using any thresh-
old cutoff). We can also show similar results using an arbi-
trary multiplicative (rather than additive) constant k.

6. RANDOM MATRIX GAMES

The first set of experiments we conduct to demonstrate
the power of purification is on random matrix games. This
is perhaps the most fundamental and easy to analyze class of
games, and is a natural starting point when analyzing new
algorithms.

6.1 Evaluation methodology

We study random 4 x 4 two-player zero-sum matrix games
with payoffs drawn uniformly at random from [-1,1]. We re-
peatedly generated random games and analyzed them using
the following procedure. First, we computed an equilibrium
of the full 4 x 4 game A; denote this strategy profile by of .
Next, we constructed an abstraction A’ of A by ignoring the
final row and column of A. In essence, A’ is a naive, random
abstraction of A, since there is nothing special about the
final row or column. As in A, we computed an equilibrium
o of A’. We then compared uy (o7, 0%') to ui(pur(ci'), o2’
to determine the effect of purification on performance of the
abstract equilibrium strategy for player 1 against the full
equilibrium strategy of player 2.

To solve the full and abstract games, we used two differ-
ent procedures. For our first set of experiments comparing
the overall performance of purified vs. unpurified abstract
equilibrium strategies, we used a standard algorithm involv-
ing solving a single linear program [8]. For our results on
supports, we used a custom support enumeration algorithm
(similar to the approach of Porter et al. [9]). We note that it



is possible that the specific algorithm used may have a sig-
nificant effect on the results (i.e., certain algorithms may be
more likely to select equilibria with specific properties when
several equilibria exist).

6.2 [Experimental results and theory

In our experiments on 4 x 4 random games, we performed
1.5 million trials; the results are given in Table 1. The first
row gives the average value of u; (pulr(Uf‘)7 of') over all trials,
while the second row gives the average value of u1 (o', o%).
We conclude that purified abstraction outperforms the stan-
dard unpurified abstraction approach using 95% confidence
intervals.

The next three rows of Table 1 report the number of trials
for which purification led to an increased, decreased, or un-
changed payoff of the abstract equilibrium strategy of player
1 against the full equilibrium strategy of player 2. While pu-
rification clearly improved performance more often than it
hurt performance (17.44% vs. 11.48%), for the overwhelm-
ing majority of cases it led to no change in performance
(71.08%). In particular, Proposition 2 gives two general sets
of conditions under which purification leads to no change in
performance.

PROPOSITION 2. Let A be a two-player zero-sum game,
and let A’ be an abstraction of A. Let o and o be equilibria
of A and A respectively. Then

A _F A\ _F
u1(o1, 02 ) = Ul(PUT((h )702 )
if either of the following conditions is met:

1. o is a pure strategy profile

2. support(oit) C support(cf)

Proor. If the first condition is met, then pur(af\) =of
and we are done. Now suppose the second condition is
true and let s,t € support(c{') be arbitrary. This im-
plies that s,t € support(cf) as well, which means that
u1(s,08) = u1(t,08), since a player is indifferent between
all pure strategies in his support at an equilibrium. Since
s and t were arbitrary, player 1 is also indifferent between
all strategies in support(af‘) when player 2 plays ¢4’. Since

purification will just select one strategy in support(ci'), we
are done. J

To understand our results further, we investigated whe-
ther they would vary for different supports of o' In partic-
ular, we kept separate tallies of the performance of pur(af‘)
and of* for each support of o¥’. We observed that pur(ci)
outperformed of' on many of the supports, while they per-
formed equally on some (and o' did not outperform pur(o{')
on any). These results are all statistically significant using
95% confidence intervals. A summary of the results from
these experiments is given in Observation 1.

OBSERVATION 1. In random 4 X 4 matriz games using
3 x 3 abstractions, pur(af‘) performs better than of' using
a 95% confidence interval for each support of of except for
supports satisfing one of the following conditions, in which
case neither pur(af) nor oit performs significantly better:

1. of is the pure strategy profile in which each player
plays his fourth pure strategy

2. of' is a mized strategy profile in which player 1’s sup-
port contains his fourth pure strategy, and player 2’s
support does not contain his fourth pure strategy.

To interpret Observation 1, consider the following exam-
ple. Suppose the support for player 1 includes his first three
pure strategies, while the support for player 2 includes his
final three pure strategies; denote this support profile by
S*. Now consider the set U of all games for which our
equilibrium-finding algorithm outputs an equilibrium profile
o with support profile S*. Since S* does not satisfy either
condition of Observation 1, this means that, in expectation
over the set of all games in U,

ul(pur(af),of) > ul(af,af)

(i-e., purification improves the performance of the abstracted
equilibrium strategy of player 1 against the full equilibrium
strategy of player 2).

We find it interesting that there is such a clear pattern
in the support structures for which pur(af‘) outperforms
o', We obtained identical results using 3 x 3 games with
2 x 2 abstractions. We did not experiment on games larger
than 4 x 4. While we presented experimental results that
are statistically significant at the 95% confidence interval,
rigorously proving that the results of Observation 1 hold
even on 4 X 4 games with 3 x 3 abstractions remains a chal-
lenging open problem. Resolving this problem would shed
some light on the underlying reasons behind the observed
performance improvements of purification in random ma-
trix games, which are quite surprising and unintuitive. In
addition, we conjecture that a more general theoretical re-
sult will hold for general matrix games with any size, using
any size random abstractions. Proving such a result could
have significant theoretical and practical implications.

7. LEDUC HOLD’EM

Leduc Hold’em is a simplified poker variant that has been
used in previous work to evaluate imperfect-information
game-playing techniques (e.g., [12]). Leduc Hold’em is large
enough that abstraction has a non-trivial impact, but un-
like larger games of interest (e.g., Texas Hold’em) it is small
enough that equilibrium solutions in the full game can be
quickly computed. That is, Leduc Hold’em allows for rapid
and thorough evaluation of game-playing techniques against
a variety of opponents, including an equilibrium opponent
or a best responder.

Prior to play, a deck of six cards containing two Jacks, two
Queens, and two Kings is shuffled and each player is dealt a
single private card. After a round of betting, a public card
is dealt face up for both players to see. If either player pairs
this card, he wins at showdown; otherwise the player with
the higher ranked card wins. For a complete description of
the betting, we refer the reader to Waugh et al. [12].

7.1 Experimental evaluation and setup

To evaluate the effects of purification and thresholding in
Leduc Hold’em, we compared the performance of a number
of abstract equilibrium strategies altered to varying degrees
by thresholding against a single equilibrium opponent av-
eraged over both positions. The performance of a strategy
(denoted EV for expected value) was measured in millibets
per hand (mb/h), where one thousand millibets is a small



u1 (pur(cf)), o) (purified average payoff)

—0.050987 £ 0.00042

u1 (041, 02") (unpurified average payoff)

—0.054905 + 0.00044

Number of games where purification led to improved performance

261569 (17.44%)

Number of games where purification led to worse performance

172164 (11.48%)

Number of games where purification led to no change in performance

1066267 (71.08%)

Table 1: Results for experiments on 1.5 million random 4 x 4 matrix games using random 3 x 3 abstractions.

The + given is the 95% confidence interval.

bet. As the equilibrium opponent is optimal, the best ob-
tainable performance is 0 mb/h. Note that the expected
value computations in this section are exact.

We used card abstractions mimicking those produced by
state-of-the-art abstraction techniques to create our abstract
equilibrium strategies. Specifically, we used the five Leduc
Hold’em card abstractions from prior work [12], denoted
JOK, JQ.K, J.QK, J.Q.K and full. The abstraction full de-
notes the null abstraction (i.e., the full unabstracted game).
The names of the remaining abstractions consist of groups of
cards separated by periods. All cards within a group are in-
distinguishable to the player prior to the flop. For example,
when a player using the JQ.K abstraction is dealt a card, he
will know only if that card is a king, or if it is not a king.
These abstractions can only distinguish pairs on the flop.
By pairing these five card abstractions, one abstraction per
player, we learned twenty four abstract equilibrium strate-
gies using linear programming techniques. For example, the
strategy J.Q.K-JQ.K denotes the strategy where our player
of interest uses the J.Q.K abstraction and he assumes his
opponent uses the J@Q.K abstraction.

7.2 Purification vs. no purification

In Table 2 we present the performance of the regular and
purified abstract equilibrium strategies against the equilib-
rium opponent. We notice that purification improves the
performance in all but 5 cases. In many cases this improve-
ment is quite substantial. In the cases where it does not
help, we notice that at least one of the players is using the
JQK card abstraction, the worst abstraction in our selection.
Prior to purification, the best abstract equilibrium strategy
loses at 43.8 mb/h to the equilibrium opponent. After pu-
rification, 14 of the 24 strategies perform better than the
best unpurified strategy, the best of which loses at only 1.86
mb/h. That is, only five of the strategies that were improved
by purification failed to surpass the best unpurified strategy.

7.3 Purification vs. thresholding

In Figure 3 we present the results of three abstract equi-
librium strategies thresholded to varying degrees against the
equilibrium opponent. We notice that, the higher the thresh-
old used the better the performance tends to be. Though
this trend is not monotonic, all the strategies that were im-
proved by purification obtained their maximum performance
when completely purified. Most strategies tended to improve
gradually as the threshold was increased, but this was not
the case for all strategies. As seen in the figure, the JQ.K-
JQ.K strategy spikes in performance between the thresholds
of 0.1 and 0.15.

From these experiments, we conclude that purification
tends to improve the performance of an abstract equilib-
rium strategy against an unadaptive equilibrium opponent
in Leduc Hold’em. Though thresholding is itself helpful, it

Strategy Base EV | Purified EV | Improvement
JQ.K-J.QK -119.46 -37.75 81.71
J.QK-full -115.63 -41.83 73.80
J.QK-J.Q.K -96.66 -27.35 69.31
JQ.K-J.Q.K -96.48 -28.76 67.71
JQ.K-full -99.30 -39.13 60.17
JQ.K-JQK -80.14 -24.50 55.65
JQ.K-JQ.K -59.97 -8.31 51.66
J.Q.K-J.QK -60.28 -13.97 46.31
J.Q.K-J.Q.K -46.23 -1.86 44.37
J.Q.K-JQ.K -44.61 -3.85 40.76
full-JQK -43.80 -10.95 32.85
J.QK-J.QK -96.60 -67.42 29.18
J.QK-JQK -95.69 -67.14 28.55
full-J.QK -52.94 -24.55 28.39
J.QK-JQ.K -77.86 -52.62 25.23
J.Q.K-full -68.10 -46.43 21.66
full-JQ.K -55.52 -36.38 19.14
full-J.Q.K -51.14 -40.32 10.82
JQK-J.QK -282.94 -279.44 3.50
JQK-full -273.87 -279.99 -6.12
JQK-J.Q.K -258.29 -279.99 -21.70
J.Q.K-JQK -156.35 -188.00 -31.65
JQK-JQK -386.89 -433.64 -46.75
JQK-JQ.K -274.69 -322.41 -47.72

Table 2: Effects of purification on performance of
abstract strategies against an equilibrium opponent
in mb/h.

appears that the improvement generally increases with the
threshold whenever thresholding improves a strategy, with
the biggest improvement achieved using full purification.

8. TEXAS HOLD’EM

In the 2010 Annual Computer Poker Competition, the
CMU team (Ganzfried, Gilpin, and Sandholm) submitted
bots that used both purification and thresholding to the
two-player no-limit Texas Hold’em division. We present
the results in Section 8.1. Next, in Section 8.2, we observe
how varying the amount of thresholding used effects the ex-
ploitabilities of two bots submitted to the two-player limit
Texas Hold’em division.

8.1 A champion no-limit Texas Hold’em
program

The two-player no-limit competition consists of two sub-
competitions with different scoring rules. In the instant-
runoff scoring rule, each pair of entrants plays against each
other, and the bot with the worst head-to-head record is
eliminated. This procedure is continued until only a sin-
gle bot remains. The other scoring rule is known as to-
tal bankroll. In this competition, all entrants play against
each other and are ranked in order of their total profits.
While both scoring metrics serve important purposes, the
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Figure 3: Effects of thresholding on performance of
abstract strategies against an equilibrium opponent
in mb/h.

total bankroll competition is considered by many to be more
realistic, as in many real-world multiagent settings the goal
of agents is to maximize total payoffs against a variety of
opponents.

We submitted bots to both competitions: Tartanian4-IRO
(IRO) to the instant-runoff competition and Tartanian4-
TBR (TBR) to the total bankroll competition. Both bots
use the same abstraction and equilibrium-finding algorithms.
They differ only in their reverse-mapping algorithms: IRO
uses thresholding with a threshold of 0.15 while TBR uses
purification. TRO finished third in the instant-runoff com-
petition, while TBR finished first in the total bankroll com-
petition.

Although the bots were scored only with respect to the
specific scoring rule and bots submitted to that scoring rule,
all bots were actually played against each other, enabling
us to compare the performances of TBR and IRO. Table 3
shows the performances of TBR and IRO against all of the
bots submitted to either metric in the 2010 two-player no-
limit Texas Hold’em competition.

One obvious observation is that TBR actually beat IRO
when they played head-to-head (at a rate of 80 milli big
blinds per hand). Furthermore, TBR performed better than
IRO against every single opponent except for one (c4tw.iro).
Even in the few matches that the bots lost, TBR lost at
a lower rate than IRO. Thus, even though TBR uses less
randomization and is perhaps more exploitable in the full
game, the opponents submitted to the competition were ei-
ther not trying or not able to find successful exploitations.
Additionally, TBR would have still won the total bankroll
competition even if IRO were also submitted.

These results show that purification can in fact yield a big
gain over thresholding (with a lower threshold) even against
a wide variety of realistic opponents in very large games.

8.2 Assessing worst-case exploitability in limit
Texas Hold’em
Despite the performance gains we have seen from purifi-
cation and thresholding, it is possible that these gains come
at the expense of worst-case exploitability (see Section 4.2).

Exploitabilities for several variants of a bot we submitted
to the two-player limit division of the 2010 ACPC (GS6.iro)
are given in Table 4; the exploitabilities were computed in
the full unabstracted game using a recently developed ap-
proach [7].

Interestingly, using no rounding at all produced the most
exploitable bot, while the least exploitable bot used an in-
termediate threshold of 0.15. There is a natural explana-
tion for this seemingly surprising phenomenon. If there is
too much thresholding, the resulting strategy does not have
enough randomization, so it signals too much to the oppo-
nent about the agent’s private information. On the other
hand, if there is too little thresholding, the strategy is over-
fit to the particular abstraction.

Hyperborean.iro was submitted by the University of Al-
berta to the competition; exploitabilities of its variants are
shown as well. Hyperborean’s exploitabilities increased
monotonically with the threshold, with no rounding pro-
ducing the least exploitable bot.

Exploitability Exploitability
Threshold of GS6 of Hyperborean
None 463.591 235.209
0.05 326.119 243.705
0.15 318.465 258.53
0.25 335.048 277.841
Purified 349.873 437.242

Table 4: Worst-case exploitabilities of several strate-
gies in two-player limit Texas Hold’em. Results are
in milli big blinds per hand. Bolded values indicate
the lowest exploitability achieved for each strategy.

These results show that it can be hard to predict the rela-
tionship between the amount of rounding and the worst-case
exploitability, and that it may depend heavily on the ab-
straction and/or equilibrium-finding algorithm used. While
exploitabilities for Hyperborean are more in line with what
one might intuitively expect, results from GS6 show that the
minimum exploitability can actually be produced by an in-
termediate threshold value. One possible explanation of this
difference is that thresholding and purification help more
when coarser abstractions (i.e., smaller abstract games rela-
tive to the full game) are used, while in finer-grained abstrac-
tions, they may not help as much, and may even hurt per-
formance.! The fact that the exploitability of Hyperborean
is smaller than that of GS6 suggests that it was computed
using a finer-grained abstraction.

9. CONCLUSIONS

We presented two new reverse-mapping algorithms for
large games: purification and thresholding. One can view
these approaches as ways of achieving robustness against
one’s own lossy abstraction. From a theoretical perspec-
tive, we proved that it is possible for each of these algo-
rithms to help (or hurt) arbitrarily over the standard ap-
proach, and that each can perform arbitrarily better than

Tt is worth noting that purification and thresholding cannot
help us against an equilibrium strategy if the abstraction is
lossless; but even if it is lossless the algorithms may still help
against actual (non-equilibrium) opponents.
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Hyperborean.iro | Hyperborean.tbr | PokerBotSLO | SartreNL 1RO TBR

IRO | 5334 £ 109 | 8431 £ 156 -248 £ 49

-364 £ 42

108 + 46 -42 1 38 -80 + 23

TBR | 4754 £ 107 | 8669 & 168 -122 £ 38

-220 £ 39

159 £+ 40 13 £33 | 80 £ 23

Table 3: Results from the 2010 Annual Computer Poker Competition for two-player no limit Texas Hold’em.
Values are in milli big blinds per hand (from the row player’s perspective) with 95% confidence intervals
shown. TRO and TBR both use the same abstraction and equilibrium-finding algorithms. The only difference
is that TRO uses thresholding with a threshold of 0.15 while TBR uses purification.

the other. However, in practice both purification and thresh-
olding seem to consistently help over a wide variety of do-
mains.

Our experiments on random matrix games show that, per-
haps surprisingly, purification helps even when random ab-
stractions are used. Our experiments on Leduc Hold’em
show that purification leads to improvements on most ab-
stractions, especially as the abstractions become more so-
phisticated. Additionally, we saw that thresholding gen-
erally helps as well, and its performance improves over-
all as the threshold cutoff increases, with optimal perfor-
mance usually achieved at full purification. We also saw
that purification outperformed thresholding with a lower
threshold cutoff in the Annual Computer Poker Competi-
tion against a wide variety of realistic opponents. In partic-
ular, our bot that won the 2010 two-player no-limit Texas
Hold’em bankroll competition used purification. Finally, we
saw that these performance gains do not necessarily come
at the expense of worst-case exploitability, and that inter-
mediate threshold values can actually produce the lowest
exploitability. There is a natural explanation for this seem-
ingly surprising phenomenon. If there is too much thresh-
olding, the resulting strategy does not have enough random-
ization, so it signals too much to the opponent about the
agent’s private information. On the other hand, if there is
too little thresholding, the strategy is overfit to the particu-
lar abstraction.

10. FUTURE RESEARCH

Our results open up many interesting avenues for future
work. In Section 6, we presented several concrete theoretical
open problems related to understanding the performance of
purification in random matrix games. In particular, larger
games (with different degrees of abstraction) should be stud-
ied, and perhaps general theorems can be proven to augment
our (statistically significant) empirical findings.

Future work should also investigate possible deeper con-
nections between purification, abstraction, and overfitting
from a learning-theoretic perspective. Is there a formal
sense in which purification and thresholding help dimin-
ish the effects of overfitting strategies to a particular ab-
straction? Is such overfitting more prone to occur with
coarser abstractions, or with some abstraction algorithms
more than others? Perhaps the results also depend cru-
cially on the equilibrium-finding algorithm used (especially
for games with many equilibria). A better understanding of
these phenomena could have significant practical and theo-
retical implications.

In addition, note that purification/thresholding is just one
family of modifications to the current abstraction/equili-
brium paradigm. Many other approaches are possible; for
example, rounding probabilities to intermediate values (ra-

ther than to 0), or randomizing equally between the k
highest-probability actions.
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