Metamodel-Based Metrics for Agent-Oriented
Methodologies

i . *
Noélie Bonjean
bonjean@irit.fr

Marie-Pierre Gleizes*
gleizes@irit.fr

ABSTRACT

A great number of methodologies has been already intro-
duced in the agent-oriented software engineering field. Re-
cently many of the authors of these methodologies also worked
on their fragmentation thus obtaining portions (often called
method or process fragments) that may be composed into
new methodologies. The great advancement in this field,
however does not correspond to equivalent results in the
evaluation of the methodologies and their fragments. It is,
for instance, difficult to select a fragment in the composition
of a new methodology and to predict the methodology’s re-
sulting features. This work introduces a suite of metrics
for evaluating and comparing entire methodologies but also
their composing fragments. The proposed metrics are based
on the multi-agent system metamodel. The metrics have
been applied to the ADELFE and PASSI methodologies,
results prove the usefulness of the proposed approach and
encourage further studies on the matter.

1. INTRODUCTION

The interest for the concept of agent as the composing ele-
ment of an autonomous system, capable of interacting with
other agents in order to satisfy its design objectives, has
grown since the 1980s. Nowadays, a great number of Agent
Oriented Methodologies' (AOM) have been proposed [1].
These methodologies focus on different aspects and, offering
different functionality with different levels of detail, address
a scale of Multi-Agent Systems (MAS). The diversity of ap-
proaches offers rich resources for developers to draw on, but

*Institut de Recherche en Informatique de Toulouse - IRIT
Université Paul Sabatier, Toulouse, France

JrDipartz’mento di Ingegneria Chimica Gestionale Informat-
ica Meccanica
Universita degli Studi di Palermo, Italy

iIstituto di Reti e Calcolo ad Alte Prestazioni, Consiglio

Nazionale delle Ricerche - ICAR/CNR
Palermo, Italy

n this paper we consider the term methodology and design
process as synonyms

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4-8, 2012, Valencia, Spain.

Copyright (©) 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

. T
Antonio Chella
antonio.chella@unipa.it

Frédéric Migeon *
migeon@irit.fr

. .1
Massimo Cossentino
cossentino@pa.icar.cnr.it

Valeria Seiditaf
valeria.seidita@unipa.it

can also be a hindrance to progress if their commonalities
and divergences are not readily understood. Moreover, an
attempt from the wide range of AOMs is to benefit from
different methodologies by combining their particular fea-
tures. Several methodologies have been already combined
before they were split up into fragments in order to adapt
and/or design new methodologies [16]. It is therefore nec-
essary to provide a way of comparison that would help to
choose the suited method. In the last few years, the evalu-
ation of MAS software engineering techniques has been one
of the most active areas of research and some comparison
frameworks have been proposed taking into account what
concepts are manipulated, notations used, and development
process or pragmatics adopted [2] [23]. Despite this, there
is no objective, complete and systematic way to evaluate
MAS development methods and tools. Besides, it is difficult
to select a fragment in the composition of a new methodol-
ogy and to predict the methodology’s resulting features [8].
In this work, we propose some metrics measuring relevant
features of AOM that deal with objective criteria for eval-
uating and comparing entire methodologies but also their
composing fragments.

All methods of evaluation are influenced by the same fac-
tors, some affecting the evaluation of the structural features
of the methodology itself, some others its enactment per-
formances. The evaluation of static aspects is mainly in-
fluenced by the appreciation of: the importance given to
designer’s experience (a huge availability of guidelines, for
instance, minimize that), the work to be done, the artefacts
to be produced. These elements correspond to the typi-
cal triangle stakeholder-activity-work product considered as
central by many design process composition and modelling
approaches (for instance SPEM [18]). As regards methodol-
ogy enactment, factors like problem complexity, designers’
experience/number and the development context are crucial.
All these variables are connected together. The study of all
the variables at the same time is far too complex. Different
approaches have proposed separate studies of some of these
variables, for instance [4][22][9][15][10].

In the proposed approach, we base the evaluation on the
assumption that the MAS metamodel (MMM hence after)
adopted in a methodology directly influences the three cru-
cial elements of the methodology (stakeholders, activities,
work products) and it is conversely influenced by them. As
a result, we think that some useful indications about the
methodology features may be obtained by the application of
metrics based on the MMM.

For this reason, this work starts analysing the metamodel

of the fragments obtained by the fragmentation of the method-
ology. Such fragments (sometimes addressed as process frag-
ments, method fragments or chunks) constitute the root con-
structs of the methodology itself and they have been ex-
tracted by considering a precise granularity criterion: each
group of activities (composing the fragment) should signifi-
cantly contribute to the production/refinement of one of the
main artefacts of the methodology (for instance, a diagram
or a set of diagrams of the same type). Following this as-
sumption, fragments obtained from different methodologies
are based on a similar level of effort (although with some ob-
vious differences among them) and produce results of similar
complexity (a work product like a diagram). The approach
is also based on some other assumptions we made: (1) The
fragments included in a possible loop of methodology process
are counted only one time. This ensures that the different
methodologies (and related fragments) can be fairly com-
pared. (2) Finally, in order to be comparable, some rules
have to be followed in the description of the fragment meta-
model. Such rules ensure that different methodologies (and
composing fragments) refer to metamodels described with a
comparable level of detail.

The proposed metrics are: fragment input (measuring
the dependency of a fragment on the others), fragment
output (measuring the complexity of the output work prod-
uct), fragment creative effort (measuring the complexity
of the design effort spent on the fragment), fragment free-
dom degree (measuring the degree of freedom offered to
the designer while working in the fragment activities). The
metrics have been applied to the ADELFE [20] and PASSI
[6] methodologies. The results have been used to validate
the proposed metrics.

The paper is organized as follows: details about the def-
inition of MAS metamodels and the process fragments are
introduced in section 2. In section 3, the proposed metrics
are defined specifying the evaluation criteria and the for-
mulas that allow obtaining quantitative results. Section 4
shows and discusses some results coming from the applica-
tion of the metrics to two methodologies. Some works are
related in section 5 before concluding with some prospects.

2. BACKGROUND

Before discussing the proposed metrics we describe all the
constructs used for their creation and their application. In
this section we first introduce the concept of MAS meta-
model and what is its importance in a design process, how
we model a design process using the IEEE FIPA styles [13]
also including the concept of fragments and finally which
diagrams are useful for applying the proposed metrics.

2.1 Multi-Agent System Metamodel

Metamodelling techniques lie in creating a set of concepts
used for describing the properties of models. In the same
way a model is an abstraction of real world’s elements, phe-
nomena, etc. , a metamodel is a further abstraction of a
model. A model is always into compliance with its meta-
model that rules the way in which a model has to be con-
structed.

Metamodelling is an essential foundation of Model Driven
Engineering (MDE) proposed by OMG? where the language
for describing metamodels is Meta Object Facility (MOF)

Zhttp://www.omg.org/index.htm

[17].

The traditional modelling infrastructure proposed by OMG
is made by four layers each one characterised by an in-
stance_of relationship with the above layer. The bottom
level is the level MO, it contains the user data and is called
the instance model. The system solving a specific problem
is that running on a platform, it represents the elements that
exist while the system runs on the real-world platform and
manages the user data. In this work, a system corresponds
to a MAS. The instance model is created by instantiating
what is held in the so called user model (level M1); level
M2 contains the model of information for instantiating the
M1 models and for this purpose it is called metamodel
layer. Finally level M3 contains the model information
for creating metamodels; hence the meta-metamodels that
is usually reported as MOF.

The MAS metamodel we consider for this work is the one
defined in [7]. It presents a multi-layer structure in the same
way of OMG and is composed of constructs. We define a con-
struct as a general term referring to one of the following en-
tities: elements, relationships, attributes and operations. We
therefore define a MAS Metamodel Construct (MMMC) as
one of the previously mentioned entity of the metamodel.

A MAS Metamodel Element (MMME) is an entity of
the metamodel (M2 level) that is instantiable into an entity
of the system model (M1 level). Examples of MMME are:
classes, use cases,...Such elements may be instantiated in
the corresponding model element.

A MAS Metamodel Relationship (MMMR) is the con-
struct used for representing the existence of a relationship
between two (or more) instances of MMMEs. For instance,
the aggregation relationship among two instances of a MMME
class is an instance of the MMMR association.

A MAS Metamodel Operation (MMMO) is a behavioural
feature of a classifier that specifies the name, type, parame-
ters, and constraints for invoking an associated behaviour.

A MAS Metamodel Attribute (MMMA) is a particular
kind of elements used for adding properties to MMMEs. A
MMMA is a structural feature and it relates an instance of
the class to a value or collection of values of the type of the
attribute. The attributes type is a MMME. It is worth to
note that several metamodels do not list any MMMA. This
is the consequence of the fact that, according to MMMA
definition, an attribute is a relationship between the class
and another element of the metamodel. It is a choice of
the designer to represent such relationship using attributes
or other strategies (an explicit relationship with the owned
element). In order to support all metamodelling style, MM-
MAs are included in the set of MMMCs supported by our
approach.

We claim that every design process is underpinned by a
system metamodel, therefore each time a designer is develop-
ing her/his MAS (s)he has at his disposal a set of elements,
relationships, attributes and operations (s)he can manage
for creating the system models; hence for drawing all the
work products composing the system model.

In order to provide means for understanding the metrics
presented in this work, in the following subsections we will
provide an overview on the modelling actions made on the
system metamodel constructs during design and the mutual
relationships between system metamodel and work product
by means of what we call wp_content diagram.

2.2 Modelling Actions

While composing a work product four different kinds of
action can be made on the metamodel constructs; the de-
signer may:

e Instantiate an element in the work product. This cor-
responds to create a new model element. This mod-
elling action is labelled Define (D).

e Instantiate a relationship in the work product. This
corresponds to create a new relationship among two
model elements according to what is permitted by the
metamodel. This modelling action is labelled Relates
(R).

e Refine an already defined element in the work prod-
uct. This corresponds to instantiate a new attribute
or operation. Refining an element corresponds to per-
forming the following modelling actions: Refine At-
tribute (RFA) or Refine Operation (RFO). We note
that in both cases it includes the quotation of that el-
ement.

e Use an already defined construct in the work prod-
uct. New work products often relate the new elements
to other elements that have been introduced in pre-
vious process activities and therefore reported in their
corresponding output work products. Reporting an al-
ready defined metamodel construct corresponds to per-
forming the following modelling actions: Quote (Q),
Quote Relationship (QR), Quote Attribute (QA)
or Quote Operation (QO).

2.3 Fragment and Relevant Diagrams

When we talk about “portion of work” we explicitly refer
to the way of representing design processes established by
IEEE FIPA [13] that founds on some underlying ideas: de-
sign process is a set of activities performed in order to reach
design goals and the whole design process can be divided in
phases which in turn are composed of activities and tasks.
Each portion of work is devoted to deliver work products, for
instance activity is devoted to produce a finer grained arte-
fact, one single work product like a diagram possibly com-
plemented by a text description whereas phase delivers ma-
jor artefacts, for instance requirements analysis documents.
Therefore design process is composed of portion of works to
be performed by stakeholders (or process role) in order to
deliver work products (models of the system). Each work
product represents a set of elements of the whole system
metamodel the design process underpins. Moreover a por-
tion of work is usually referred to as “fragment” [12][3][5][19].
The way to describe fragment is still a work in progress and
descends from the approved IEEE FIPA standard on process
documentation.

What is important now is that the system metamodel as-
sumes a very central role in designing and it is the most
important design process component enabling, among oth-
ers, tracking all the transformations and actions designer
does while producing a work product. Besides we have to
consider that design process can be seen as a sequence of
fragments. In order to calculate the metrics that we propose
in this paper it is important to have a look to two important
diagrams used in the documentation of design process, hence
of each fragment composing it. They are the Work Product
Content diagram and the System Metamodel diagram.

13
| 2 Deployment Configuration
Keys
g SMM Element
Agent Code
&
S8
Composite WPKind
D=Define,
R=Relate,
. —Quot
Node Network Connection Q=Quote
(a)
«MVME=> | 2 <<MMMR>>
Agent_Code —— Communicate
<<MMVR>> <eMVVR>>
Move_to Deployed_on
<<MMME>> <<MMMR>> <<VIMME=>
Node Connect [—— Network Connection
2 1 1 1

(b)

Figure 1: An Example of the Workproduct Content
Diagram and of MAS metamodel diagram

The first is a specific kind of diagram (see [7] for more de-
tails) devoted to collect all the metamodel constructs that
are managed during the design process enactment and are
also reported in the work product. It represents the rela-
tionships between each work product produced during the
design process and all the constructs of the metamodel that
are here drawn. An example is given in Fig.1.(a) showing
the elements and the relationships between them. They are
footnoted with a specific label that represents the kinds of
action made on it. The labels correspond to the modelling
actions presented previously (cf. 2.2). In addition, the pack-
age with an icon on the left uppermost corner points out the
work product and its kind (see [21] for the complete list and
an explanation on work product kinds).

The second diagram is the MAS Metamodel diagram that
shows all the system metamodel constructs that are man-
aged by the designer in using a specific design process. This
also includes all the constructs that are accepted as external
inputs of the overall process whereas in the work product
content diagram only the constructs reported in the work
product are shown. Fig.1.(b) shows the MAS Metamodel of
the Communication Ontology Description of PASSI.

3. FRAGMENT METRICS

As opposed to object-oriented methodologies, there has
not been much work in comparing agent-oriented method-
ologies because of the intrinsic features in different MASs
and their application context. There is therefore a real dif-
ficult in evaluating them. The following section presents a
set of criteria based on the agent-oriented metamodel of each
process fragment. Actually, four metrics are defined: frag-
ment input, fragment output, fragment creative effort and
fragment freedom degree.

3.1 Fragment Input

The Fragment Input (FI) is an architectural metric. It
represents the input data required by a fragment i.e. a kind
of constraints representing a guard condition. It measures
the dependency of a fragment to another in a method. Ac-
tually, the input of a fragment is the number of its imme-
diately needed constructs. High fragment input identifies
fragments with a relevant dependency on other portions of
the design process. Besides, a low fragment input is desir-
able for relating fragments because the probability to find
needed constructs is higher. Thus, a fragment can be more
reused, which is usually a good objective. For instance, it is
common to find fragments with a low FI at the beginning of
the process while this number is often higher going on inside
the lyfe-cicle.

Let F be all fragments from a design process and Iy be the
set of constructs required by the fragment f. We calculate:

VfeFFI(f) = Iyl

Usually, the fragment input shows the most specific frag-
ments of a process, i.e. the fragments that are related each
other by tight dependency relationships.

3.2 Fragment Output

The Fragment Output (FO) measures the work product
complexity of the output constructs. Actually, work product
complexity represents the complexity in reading and under-
standing a work product. We think this is mainly affected
by two numbers: the number of different types of MMMC
that can be represented in the work product (according to
what specified in the process) and the number of instances of
these MMMC actually represented in a specific work prod-
uct. This latter number belongs to the M1 level of repre-
sentation and therefore it is out of the scope of our study.
The previous number is composed by the number of the dif-
ferent MMMC that, in the specific work product, may be
represented, whatever action the designer performs on them
in the fragment.

Let F be all fragments from a design process and Oy be
the set of constructs in the fragment f. The constructs can
be instantiated or quoted or refined. We calculate:

Vf e F,FO(f) =[Oy

The fragment output shows the most complex fragments
of the process. Actually, the more components are outputted
in a fragment the more complex is to understand the frag-
ment.

3.3 Fragment Creative Effort

The Fragment Creative Effort (FCE) is a part of the com-
plexity design effort. Actually, the complexity design effort
depends on the specific problem, the skills of the designers
and the used design process. The problem complexity is in-
conveniently informal and heterogeneous and it is treated
implicitly by folding it into the solution design in software
engineering approach. Because some engineers are multi-
disciplined, process design is divided into different phases.
Process design however, is not a formula exercise and as a
engineer in any discipline, once the designer has familiarized
her/himself with these skills, (s)he will be able to develop
her/his own system. Therefore, the skills and knowledge of

an engineer influence the design effort of the produced sys-
tem. Measuring this influence is a complex task that will
be studied later. In this first method evaluation, we do not
take into account the designer profile, we suppose a unique
user. Finally, the analysing method and more specifically
the meta-model provides a part of the complexity design ef-
fort. Therefore, the fragment creative effort measures the
effort done by the design in performing the definition of the
portion of system related to a specific fragment. This effort
is related uniquely to the introduction of new elements, re-
lationships, attributes and operations in the system model.

The fragment creative effort is measured for each frag-
ment. It is the number of defined or related or refined con-
structs in a fragment. Let F be all fragments from a method
and Dy be the set of defined or related or refined constructs
in the fragment f, then:

Vf e F,FCE(f) = |Dy|

The fragment creative effort shows the most complex frag-
ments of the method in term of design. This metric is
strongly related to the fragment output but while the FCE
addresses the creative part of the work, the FO measures
the complexity of the whole resulting work product. In
other words, no contribution to FCE comes, for instance,
from constructs reported unchanged from previous portions
of work, but these constructs are counted in the FO. As a
consequence, this formula expresses the relationship between
the two:

Vf e F,FO(f) > FCE(f)

3.4 Fragment Freedom Degree

The Fragment Freedom Degree (FFD) represents the de-
gree of freedom granted to designer for a fragment. It is
calculated by the ratio of the fragment creative effort over
the fragment input. This metric enables to define for a frag-
ment if the introduction of the new constructs is strongly
conditioned or not. In a method, high fragment freedom de-
gree is ideally required in the first fragments of the method.
In fact, these fragments usually imply designers’ own mind
and creativity. Then, the fragment freedom degree of the
following fragments progressively decreases until to obtain a
low fragment freedom degree for the last fragments. Actu-
ally, the designer is generally strongly conditioned at the end
of the process because during the life-cycle, (s)he is guided
in order to converge towards a well defined system.

Let F be all fragments from a design process, then:

Vfe F,FFD(f)=FCE(f)/FI(f)

The fragment creative effort shows the process structure.
The ideal process structure might present a high value of
FFD at the beginning of the process and a progressive decade
of it to a low ration.

4. EXPERIMENTAL RESULTS

Currently, these metrics are evaluate on several Agent-
Oriented Methodologies: ADELFE, PASSI, INGENIAS [14]
and TROPOS [11]. In this section we present the results
obtained for every fragment and gathered by ADELFE and
PASSI. We also study the results comparatively for the two
methods. This experiment enables us to give an analysis on
the intrinsic relevancy of the metrics in subsection 4.1. We

(a) Fragment Input (b) Fragment Qutput

\ RD: Requirement Description
0 —\ . ‘\\ //\ FR:Finalize Requirement
ED: Environment Definition

—
" v ECD: UseCase Definition
[l UIP: Ul Prototyping

DA: Domain Analysis
Method Fragments Method Fragments VAA: Verify AMAS Adequacy
Al: Agentldentification

Number of Constructs
o
(=}
o
Number of Constructs

FP
AE
Arl

BI
RD

FR
ED

)
)

ArD

o = o oo =
gS5cgaw g 9558 <% =

A
NCSD

(c) Fragment Creative Effort (d) Fragment Freedom Degree EIN: Entity Interaction Study
25 e - S
£ ° ArD: Architecture Definition
g 20 e 5T ILD: Interaction Language
z 34 Definition
£ 15 2
E o £ AgD: Agent Definition
5 § 2 NCSD: Non Cooperative Situation
T S E Definition
A — S e S 0 : =il e e | FP:Fast Prototyping
EEB@%E%;EE@%@&%EE EEBE%E;;EE@%E&%:?E AE: Architecture Extraction
= = Al: Architecture Implementation
Method Fragments Method Fragments Bl: Behavior Implementatl‘on
Figure 2: Evaluation of ADELFE
see in subsection 4.2 how process evaluation and fragment design or implementation fragments. The PASSI curve re-
evaluation become both possible but are quite different. Fi- veals an interesting confirmation of these considerations, for
nally, we discuss the metrics and the factors that could im- instance in the presence of the maximum value for the Single
pact their results. Agent Structure Definition fragment which is quite intuitive
for an AOSE design process.
4.1 Maetric Relevancy The FCE metric also reveals itself to be a very relevant

indicator. For ADELFE, three peaks are distinctly drawn
above the average value (which is of five constructs) on the
FCE plot (cf. Fig.2.(c)). These three peaks correspond to
the definition of the most important constructs in ADELFE
where the highest efforts are provided to define the environ-
ment (Environment Definition fragment), the cooperative
agent behaviour (Agent Definition fragment) and the archi-
tecture (Architecture Extraction fragment). We will address
this discussion in a following subsection. In PASSI, we can
note low values of creative effort (cf. Fig.3.(c)) in the Single
Agent Behaviour Description, in the Code Reuse and in the
Code Production. We were expecting to find these values
because these fragments are in the implementation phase of
the design process so, because of the nature of PASSI that
commits a great effort and a lot of work in the design phase,
all the information needed for defining the implementation
constructs can be inferred from the previous phase without
spending too much effort. Besides another result we imag-
ined is that regarding the Code Production and Code Reuse
creative effort, although these two fragments presents the
same value of FO and both the two deals with code con-
cerns, Code Reuse has a higher creative effort. During Code
Reuse, the designer analyses and then reuses patterns of
agent and this activity is obviously more demanding than
simply writing code on the base of previously drawn struc-
tural and behavioural diagrams.

With our experimentation on ADELFE and PASSI, we
found these metrics very relevant to show the complexity
and the specificity of evaluated methodologies.

It is firstly important to measure the indicators’ intrinsic
quality and see what kind of correlated analysis they enable.
As mentioned in section 3.1, FI gives an idea of the depen-
dencies of each fragment one with another. Therefore, it
is natural to find in Fig.2.(a) that higher values are at the
ended fragments. It shows their specificity in the ADELFE
process and that they will probably induce a difficult reuse.
In the same way, for PASSI, we can see in Fig.3.(a) that
the first and the fifth fragments (Domain Requirement De-
scription and Domain Ontological Description) present the
lowest values. This is explained by the fact that both analyse
the problem domain in terms of the requirements it provides
(the first) and of its ontological representation (the second);
for this reason, the designer faces a kind of work which is
not constrained by other metamodel constructs but it is the
result of her/his own observation and reasoning.

Concerning the FO metric, the high values correspond to
fragments deliverying heavy weight models of the system.
Usually they correspond to the most significant fragments
in the process. The usefulness of the fragment low value
within the process might be reappraisal. In the ADELFE re-
sults in Fig.2.(b), the greatest values are obtained for Agent
Definition and Non Cooperative Situation Definition which
indeed are the most significant activities in ADELFE. It is
also interesting to note that all fragments settled in the de-
sign phase and in the implementation phase (from Architec-
ture Definition to Behaviour Implementation) have a rather
important value except for Interaction Language Definition
fragment and Fast Prototyping fragment. They are two sin-
gularities comparatively with the surrounding fragments. It
clearly shows the lack in the metamodel of elements to take
these activities into account with as much quality as other

(a) Fragment Input (b) Fragment Output
25 20
£ £
; 20 g i /\
Z N\ 2 =
S AN AN g N2
S 0 = S~ / \ // \ DRD: Domain Requirement
= = 10 ~ Description
SV = ——— :
2 S / Y 2 - Ald: Agent Identification
Z 0 S _— :) Z . o :) RId:Roll(eslden;tiﬂcation
T5: Tasks Specification
0T T Y o000 0000 W OB T Y o000 Qo000 oe 8 P
Fg==" 88 %" § g 2 2 vee F=="28°%¢ g g 2 ' v e e DOD: Domain Ontology
Description
Method Fragment Method Fragment COD: Communication
Ontological Description
(c) Fragment Creative Effort (d) Fragment Freedom Degree RD: Roles Description
o ® s PD: Protocol Description
E ij H j B MASD: Multi Agent Structure
2. g, Definition
5 10 2 MABD: Multi Agent Behaviar
5 2T g 4 Description
5 ° g’ SASD:Single Agent Structure
£ . £ N — o Definition
E 0 T 0 SABD: Single Agent Behavior
o0 Z 8 VY o000 0o000xo @ o 2T 2T Y o o000Q000sy @ Description
E 2 - 0 £ 4a H oan ad da T Zz E F OQ £ a8 o a n oa O T A
& =< = S R & < = I ERE CR: Code Reuse
CP: Code Production
Method Fragment Method Fragment DC: Deployment Configuration

Figure 3: Evaluation of PASSI

4.2 Process Evaluation vs. Fragment Evalua-
tion

As we saw in the previous subsection, the metrics that are
proposed in this paper are of a good accuracy to evaluate
fragment intrinsic characteristics but the correlated metric
values are also of high interest for every single fragment.

A high value of FI is often accompanied by a high value
of FCE and of FO, because the more constructs one has to
design, and the more constructs are needed, the more is the
effort spent in doing the design activity. This general rule
is however not always respected, for instance for the Agent
Identification fragment of PASSI. Although the FI and FO
values are rather high, the FCE is rather low, particularly
in the PASSI context, because of the fact that this portion
of work only requires to group use cases in order to identify
agents. All the information is already present in the previous
fragment with which, in fact, there is a tight dependency also
shown by the value of FI.

As the figures show, the metrics give also information on
the global method characteristics. Some singularity points
can be observed or comparative values of metrics can only
be explained by a global view of the process. Let us illus-
trate this with some examples. The first one is about the
singularities that were already mentioned on some ADELFE
fragments that have very low values compared to their neigh-
bourhood. The second one is for FI and FFD values of
the Domain Ontological Description fragment in PASST (cf.
Fig.3.(a)(d)). As it can be seen, they are offbeat with the
rest of the curve; this is because this fragment is not well po-
sitioned in the PASST design process. This can be seen above
all from the FFD where we expected to have a decreasing
trend for the reasons said before. This result confirms what
we thought about the position of this fragment and validate
the accuracy of the proposed metrics. A last example is ob-
served on the FFD curve for ADELFE (cf. Fig.2.(d)). As
expected, the FFD flatten out at a low level during the re-
quirement analysis phase (ended by the UI Prototyping frag-
ment). However the FFD has a slight rise during the Agent

Identification fragment and the Agent Definition fragment.
Actually, the Agent Identification fragment aims at finding
what agents will be considered in the system and the Agent
Definition fragment aims to define the behaviour: skills, ap-
titudes, an interaction language, a world representation, etc.
for every agent previously identified. In these fragments, de-
signers have a high responsibility in the choice they make.
As the figure shows, they have high freedom degree with lit-
tle constructs already defined to guide them or to constraint
them. All these examples find explanation in the relative
values of the fragments of a same process rather than in the
individual value of each one.

4.3 Discussion

A first difficulty occurring while comparing several method-
ologies is the lack of normalization. ADELFE is defined with
17 fragments while PASSI only contains 15 ones. And of
course, they do not address the same phases with the same
granularity. For this reason, we were obliged to normalize
the curves in order to present ADELFE and PASSI with
comparable values (cf. Fig.4). This was done by aligning
fragments according to analysis, design and implementation
phases. This alignment may also be needed on the Y axis
that is the number of constructs. Obviously, the more con-
structs the metamodel contains, the higher the values will
be in the metrics (except for FFD which is a ratio, natu-
rally). This factor, which can be called the granularity of
the metamodel, may happen when methods are using Model-
Driven Development. In that case, metamodels are very big
with plenty of details needed to tackle with accuracy re-
quired by model transformation algorithms. For this rea-
son, it is important to normalize also the granularity with
which a process is described and therefore the level of ab-
straction. None of the metrics takes the presence/adoption
of Computer-Aided Software Engineering (CASE) tools into
account. However, tools for guiding the engineer during the
design are an advantage that should be evaluated by metrics.
We will discuss about that in the following section.

(a) Fragment Input (b) Fragment Output
40 35
w Iﬂ j 2]
g 3 QT 30 &l
E I\ B 7\
z 1\ g
= 25 =]’ A‘
S [TN S
s N S 5 [NEAVA
g 5 AN A
g i N AV/ = Y P e — A\
< 10 | 2 = NV AN
5 5 7\ X\ N s s
= |/” T~ % W B = rl_\/ = —
0
Analysis Phase Design Phase Implementation Phase Analysis Phase Design Phase Implementation Phase
—=-ADELFE ——PASSI —=—ADELFE ——PASSI
(c) Fragment Creative Effort (d) Fragment Freedom Degree
25 9
OE 8
= 20 ! g,
E 4 \
z 2 e
s 15 a . \
g g, 0\
© s 4
= 10 =
@ g 3
E 5 /. =z
=
= W W 1
0 o 2
Analysis Phase Design Phase Implementation Phase Analysis Phase Design Phase Implementation Phase
—=~ADELFE —+—PASSI —=ADELFE ——PASSI

Figure 4: Comparison of ADELFE and PASSI

S. RELATED WORKS

Recently several AOM have been proposed. Thus far,
however, software designers have not embraced any single
methodology. In order to develop better solutions, design-
ers need to understand advantages and limitations of exist-
ing methodologies. Therefore some works focus their efforts
on the analysis of methodologies.

Cernuzzi’s approach uses goal-question-metric to deter-
mine what factors are important to measure for comparing
methods [4]. A qualitative analysis followed by a quan-
titative rating is proposed. Sturm and Shehory [22] de-
velop a catalog of criteria for feature-based analysis of AOSE
methodologies. Agent-Based Characteristics and Software-
Engineering Criteria are differenciated. Their set of crite-
ria is suitable to show the drawbacks of methodologies and
therefore gives suggestions for further development. The
above described approach compares the methodologies by a
screening of the criteria. Dam and Winikoff [9] divided their
found criteria into four dimensions to examine: (1) concepts
and properties, (2) notations and modeling, (3) process, and
(4) pragmatics. During the methodology evaluation, the
correctness of a notation and the referenced characteristics
is difficult to judge. The survey approach proposed here
successfully reflects it. Moreover, based on both software
engineering process principles and agent characteristics, Lin
et al. [15] approach determines whether criteria have been
met by the method and provides answers as statements for
comparison from questions at the detailed level concerning
logical relationships among these criteria.

The main lack of these approaches is that they only evalu-
ate methodologies and do not take into account the portions
which compose them. Currently, there is no tool that im-
plements and simplifies the evaluation of the entire method
process and their fragments.

6. CONCLUSIONS AND FUTURE WORKS

Despite all papers related to this topic there is no general

and commonly adopted evaluation process of method. There
is a fundamental need to have evaluation process in order to
get a measurement of comparing completed activities of a
method. In this paper, four objective dynamic metrics have
been defined. These metrics enable analysing and compar-
ing methods process and their fragment. Based on MAS
metamodel, for each method fragment, particular numbers
of constructs from the modelling actions performed on them
are measured. Each measure enables to show some specifici-
ties of the fragments or some particularities of the method
process. In order to illustrated the metrics, quantitative re-
sults of the agent-oriented method evaluation have been pre-
sented. This example usage illustrated how to derive method
process features from the method fragment metamodels.

Future improvements to the presented metrics may result
from an examination whether it is useful to consider different
kinds of actions in workflow activity: (i) GUI action which
is an activity performed by the designer using a GUI; (ii)
automated action which is an activity performed by the tool
to create a new constructs e.g. a model transformation; (iii)
user action which is an activity not supported by a tool such
as using a blackboard.

Currently, these metrics are basically used in a work of
designed processes from self-combining method fragments.
They enable the designed process evaluation at two levels:
the evaluation of similar fragments and the evaluation of
different processes.

7. REFERENCES

[1] F. Bergenti, M.P. Gleizes, and F. Zambonelli.
Methodologies And Software Engineering For Agent
Systems: The Agent-oriented Software Engineering
Handbook. Kluwer Academic Pub, 2004.

[2] Carole Bernon, Marie-Pierre Gleizes, Gauthier Picard,
and Pierre Glize. The Adelfe Methodology for an
Intranet System Design. In International
Bi-Conferenystems (AOIS-2002) at CAice Workshop
on Agent-Oriented Information SSE’02 (AOIS - SSE),

[11]

[12]

[13]

[14]

[15]

Toronto, Ontario, Canada, 27-28 may 2002, page (on
line), http://ceur-ws.org, May 2002. CEUR Workshop
Proceedings.

S. Brinkkemper, R.J. Welke, and K. Lyytinen. Method
Engineering: Principles of Method Construction and
Tool Support. Springer, 1996.

Luca Cernuzzi, Gustavo Rossi, and La Plata. On the
evaluation of agent oriented modeling methods. In In
Proceedings of Agent Oriented Methodology Workshop,
pages 21-30, 2002.

M. Cossentino, S. Gaglio, A. Garro, and V. Seidita.
Method fragments for agent design methodologies:
from standardisation to research. International
Journal of Agent-Oriented Software Engineering
(IJAOSE), 1(1):91-121, 2007.

M. Cossentino and V. Seidita. Passi2 - going towards
maturity of the passi process. Technical Report
ICAR-CNR, (09-02), 20009.

M. Cossentino and V. Seidita. Metamodeling:
Representing and modeling system knowledge in
design processes. Technical Report 11-02, Technical
Report ICAR-CNR, 29 July 2011.

Massimo Cossentino, Marie-Pierre Gleizes, Ambra
Molesini, and Andrea Omicini. Process Engineering
and AOSE (regular paper). In Marie-Pierre Gleizes
and Jorge Gomez-Sanz, editors, Workshop on Agent
Oriented Software Engineering (AOSE), TORONTO -
Canada, 10/05/2010-11/05/2010, number 6038 in
LNCS, pages 180-190, http://www.springerlink.com,
2011. Springer.

Khanh Dam and Michael Winikoff. Comparing
agent-oriented methodologies. In Paolo Giorgini, Brian
Henderson-Sellers, and Michael Winikoff, editors,
Agent-Oriented Information Systems, volume 3030 of
Lecture Notes in Computer Science, pages 78-93.
Springer Berlin / Heidelberg, 2004.

Ivan Garcia-Magarino, Massimo Cossentino, and
Valeria Seidita. A metrics suite for evaluating
agent-oriented architectures. In Proceedings of the
2010 ACM Symposium on Applied Computing, SAC
’10, pages 912-919, New York, NY, USA, 2010. ACM.
Paolo Giorgini, Manuel Kolp, John Mylopoulos, and
Jaelson Castro. Tropos: A requirements-driven
methodology for agent-oriented software. chapter II,
pages 20-45.

AF Harmsen, S. Brinkkemper, and H. Oei. Situational
method engineering for information system projects.
In Methods and Associated Tools for the Information
Systems Life Cycle, Proceedings of the IFIP WGS. 1
Working Conference CRIS194, pages 169-194, 1994.
IEEE Foundation for Intelligent Physical Agents.
Design Process Documentation Template, Document
number XC00097A-Ezperimental, 2011.

INGENIAS. Home page.
http://grasia.fdi.ucm.es/ingenias/metamodel/.
Chia-En Lin, Krishna M. Kavi, Frederick T. Sheldon,
Kris M. Daley, and Robert K. Abercrombie. A
methodology to evaluate agent oriented software
engineering techniques. In Proceedings of the 40th
Annual Hawaii International Conference on System
Sciences, HICSS 07, page 60, Washington, DC, USA,
2007. IEEE Computer Society.

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

Mirko Morandini, Frédéric Migeon, Marie-Pierre
Gleizes, Christine Maurel, Loris Penserini, and Anna
Perini. A goal-oriented approach for modelling
self-organising mas. In Huib Aldewereld, Virginia
Dignum, and Gauthier Picard, editors, Engineering
Societies in the Agents World X, volume 5881 of
Lecture Notes in Computer Science, pages 33—48.
Springer Berlin / Heidelberg, 2009.

Object Management Group. Meta Object Facility
(MOF) Specification.
http://doc.omg.org/formal/02-04-03, 2003.

OMG. Object Management Group. Software &
Software Process Engineering Metamodel. version 2.0.
Document number: formal/2008-04-01. 2008, 2008.

J. Ralyté. Towards situational methods for
information systems development: engineering
reusable method chunks. Procs. 13th Int. Conf. on
Information Systems Development. Advances in
Theory, Practice and Education, pages 271-282, 2004.
Sylvain Rougemaille, Jean-Paul Arcangeli,
Marie-Pierre Gleizes, and Frédéric Migeon. ADELFE
Design, AMAS-ML in Action. In International
Workshop on Engineering Societies in the Agents
World (ESAW), Saint-Etienne,
24/09/2008-26,/09/2008, page (electronic medium),
http://www.springerlink.com/, 2008. Springer-Verlag.
V. Seidita, M. Cossentino, and S. Gaglio. A repository
of fragments for agent systems design. Proc. Of the
Workshop on Objects and Agents (WOAO06), 2006.
Arnon Sturm and Onn Shehory. A framework for
evaluating agent-oriented methodologies. In Proc. of
the Int. Bi-Conference Workshop on Agent-Oriented
Information Systems, AOIS 2003, volume 3030 of
LNCS, pages 94-109, 2003.

Quynh-Nhu N. Tran and Graham C. Low.
Comparison of Ten Agent-Oriented Methodologies,
chapter XII, pages 341-367. 2005.

