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ABSTRACT
Autonomous agents typically have several goals they are pursuing
simultaneously. Even if the goals themselves are not necessarily
inconsistent, choices made about how to pursue each of these goals
may well result in a set of intentions which are conflicting. A ra-
tional autonomous agent should be able to reason about and mod-
ify its set of intentions to take account of such issues. This paper
presents the semantics of some preferences regarding modified sets
of intentions. We look at the possibility of simply deleting some
intention(s) but more importantly we also look at the possibility of
modifying intentions, such that the goals will still be achieved but
in a different way.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Intelligent Agents

General Terms
Theory

Keywords
BDI, Logic-based approaches and methods, Formal models of
agency, Modeling the dynamics of MAS

1. INTRODUCTION
BDI (Belief, Desire, Intention) systems (for an overview, see

Bordini et al. [1]) are a popular approach to modelling and imple-
menting agent systems. It is well accepted and reflected in the theo-
retical underpinnings of BDI systems (e.g., Rao and Georgeff [14])
that rational agents should not intend to pursue a goal that they
believe is impossible to achieve. Similarly, we believe that an
agent should not have a set of intentions, which taken together are
unachievable. Such situations can readily arise as new goals are
committed to, with new intentions instantiated, but without rea-
soning about how the independent intentions interact. Intention
reconsideration—i.e., revisiting the commitments to planned activ-
ity held by an agent—is considered an important notion in BDI
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agent conceptual frameworks (e.g., Bratman [2] and Bratman et
al. [3]). Intention revision is a central component of this process.

In this paper, we explore the semantics of the kinds of prefer-
ences that should guide the reasoning of an autonomous agent that
is revising its intentions for some reason. Our focus is to provide
a principled semantics for evaluating the different options for re-
vising an existing intention set. The most straightforward way to
revise an intention set is to drop one or more intentions. However,
this will lead to lack of achievement of the associated goal(s). A
preferred but more complex option is to modify one or more inten-
tions (i.e., modify how we intend to achieve the associated goals)
to obtain a non-conflicting intention set.

As an example, consider a purchasing agent with an intention to
purchase a laptop and another intention to purchase a printer. If the
agent is made aware that funds are insufficient for both purchases,
then it may drop one intention such that the other is achievable.
However, if it is possible to modify its current intentions, for exam-
ple by changing its choice of laptop to be a cheaper model so that
both intentions can be satisfied, this would be a preferred revision.

We consider three basic principles in defining our semantics:
the first is environmental tolerance—we prefer a set of intentions
which can succeed in more environments; the second is a maxi-
mal cardinality principle—keep as many top-level goals as possi-
ble; and the third is a minimal modification principle—if we must
change the means chosen to achieve a goal (i.e., an intention), we
prefer to change it as little as possible. These principles necessarily
interact and we have to make particular choices as to which should
dominate as we develop the semantics. However, minor modifica-
tions would allow the relationships to be changed.

Our long term goal is to incorporate rules into the execution en-
gine of BDI agent programming languages to support principled
intention revision. In doing this, we must choose between a quan-
titative framework—requiring costs associated with actions and re-
wards with goals, as well as perhaps probability distributions—and
a qualitative one. The former would offer more flexibility, but re-
quires the programmer to provide required quantities and measures.
As typical BDI programming languages generally lack facilities for
specifying such things as costs, rewards and probability distribu-
tions, we choose the qualitative approach. Consequently, we base
our framework on the CAN family of languages [17] as this maps
well to languages used in a number of BDI agent development plat-
forms [1], but also has been extended to include advanced reason-
ing techniques, such as planning and reasoning about goals.

We stress that we are presenting here a semantics for how agents
ought to revise their intentions, and not an implementation. How-
ever, in future work, we plan to develop an implementation that is
both faithful to the semantics and computationally viable.
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Figure 1: A typical BDI-style architecture [17].

In the following sections, we first present the basic constructs
of the CAN language. We then provide the semantics for revising
intention sets using only deletion, followed by the semantics when
we allow modification of individual intentions. We finish with a
discussion of related work, as well as some further issues to be
addressed in the future.

2. AGENT PROGRAMMING IN THE CAN
FRAMEWORK

BDI agent-oriented programming is based on formal com-
putational models, such as the ones proposed by Cohen and
Levesque [4] and Rao and Georgeff [14], and the philosophical
work of Bratman [2] and Dennett [6], using mental attitudes, such
as beliefs, desires, goals, plans and intentions. Practically, BDI
agent systems enable abstract plans written by programmers to be
combined and used in real-time, in a way that is both flexible and
robust. The CAN (Conceptual Agent Notation) family of BDI lan-
guages [17] are AGENTSPEAK-like languages with a semantics cap-
turing typical BDI systems (for an overview, see Bordini et al. [1]).

A typical BDI system (see Figure 1) responds to events1by se-
lecting a plan from the system’s know-how information for execu-
tion. The execution of a plan may, in turn, post new subgoal events
to be achieved.

In the CAN language, there are three types of atoms: events (de-
noted by e), basic beliefs (denoted by b), and actions (denoted by
act). A propositional language LB is formed in the usual manner
using the basic beliefs as atoms. We will use ψ, possibly with dec-
orations, to denote a sentence of LB .

In CAN, a BDI agent is specified by an initial belief base B, a
plan library Π, and an action description library Λ. B is a model
of the agent’s initial beliefs about the world. It is a set of belief
atoms that the agent holds to be true. We use B |= ψ to denote that
the sentence ψ is true in belief base B. This is defined in the usual
manner.

An action description library Λ encodes the effects of primitive
actions. It is a set of STRIPS-style operators of the form: act : ψ ←
Φ+; Φ−, one for each action atom in the domain. Here, ψ is the
precondition of the action, and is restricted to be a conjunction of
belief literals. Φ+ and Φ− are sets of belief atoms, and correspond
to STRIPS-style add and delete lists, respectively. Note that we
assume all actions are deterministic.

1In CAN, there is no distinction between events and goals, and we
sometimes refer to them as event-goals.

2.1 Plan Library
The plan library, Π, encodes the operational information of the

domain via plan rules of the form e : ψ ← P , where e is an
event, ψ is the context condition, andP is the plan-body program—
P is a reasonable strategy for resolving event e when condition
ψ is believed to be true. Plan-body programs are built from the
following constructs, which we call the user program language:2

act primitive action
+b, −b add/delete a belief atom
?ψ test for a condition
!e post an event-goal
P1;P2 sequence

A program that only contains constructs from the user program lan-
guage is called a user program.

In the full program language, there are two additional constructs
used internally for defining the semantics of programs (i.e., they
are not used in the programs in the plan library):

nil the empty (terminating) program
P . e :Lψ1 : P1, . . . , ψn : PnM attempt P to achieve e

In the last construct, P is a program, e is an event-goal, and:

Lψ1 : P1, . . . , ψn : PnM

is a set of alternative guarded plans relevant to e. The semantics for
this construct is that an execution for P is attempted, and only if P
fails, an alternate plan whose context condition is satisfied, say P1,
is selected for execution. In that case, the construct may transition
to: P1 . e :Lψ2 : P2, . . . , ψn : PnM.3

For example:4

!Buy(pc, shop) . Get(pc) :LisOnline : !Buy(pc,web),
isOffline : !Buy(pc,mailOrder)M

could be the intention of a purchasing agent to attempt to purchase
a laptop from the shop, and if that fails to fall back to achieving
the goal Get(pc) either via the Web, if the agent is online, or by
mail-order, if the agent is offline. There are standard ways to ax-
iomatise a programming language such as the one presented here
(see, e.g, Hennessy [10]), and we assume such an axiomatisation
without presenting the details here. The language we use for this
axiomatisation and for expressing properties of our framework is
second-order, since we will be quantifying over functions, e.g., en-
vironments (which are defined below). We also assume we have an
axiomatisation of finite sets, and omit the details here.

2.2 Intention Base
The intention base, Γ, of an agent contains the programs that

the agent has already committed to for handling previously posted
events. Formally, it is a set of programs in the full program lan-
guage.5 It is an element of the semantics of the CAN language,
described below, but we present it separately since it is central to
the framework described here; it is the intention base of an agent
that is revised. We illustrate the intention base with an example.
2Note that the CAN language also contains a concurrency construct
and allows variables in context conditions, but we omit those here
for simplicity.
3Note that this is a variant of the CAN language, where . and e :
L∆M are treated as separate constructs.
4As noted above, the version of CAN we consider here is proposi-
tional. However, we will sometimes use atoms with parentheses as
syntactic sugar, e.g., Buy(pc, shop).
5In CAN, an intention is actually a pair containing an identifier
(e.g., a natural number) and a program, however we suppress the
identifier for simplicity.



Get(pc)

Buy(pc, shop)

→
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Go(sony)

≤ $1700

Go(lenovo)

≤ $1000

Pay

Buy(pc,web)

≤ $800

...

Get(printer)

Buy(printer,web)

(≥ $300) ∧ (≤ $500)
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Figure 2: An example goal-plan hierarchy. Plans are represented with
rectangles; goals are represented with rounded rectangles. Arcs with
an arrow between them represent sequential composition. Arcs with
no arrow represent alternate plans for their parent goal. The second
annotation on plans states how much it will end up costing given the set
of possible environments.

EXAMPLE 1. Consider a purchasing agent with two intentions:
one to achieve the goal of purchasing a laptop and another to
achieve the goal of buying a printer. Figure 2 outlines the avail-
able plans in the library for achieving these goals. Assume Γ =
{I1, I2}, where:

I1 = [(Go(sony) � Order :Lψ1 : Go(lenovo)M); !Pay]�
Get(pc) :Lψ2 : Buy(pc,web)M;

I2 = !Get(printer).

That is, the agent has already started addressing the task of buying
a laptop and has chosen to buy a Sony. However, should it fail
to buy a Sony, it may alternatively try to buy a Lenovo (if context
condition ψ1 holds, e.g., the Lenovo store is open) or even fall back
to acquiring a laptop on the Web (if conditionψ2 applies, e.g., it can
access the Internet).

2.3 Semantics
As with most agent programming languages, the Plotkin-

style operational semantics of CAN closely follows Rao and
Georgeff’s [15] abstract interpreter for rational agents, and is de-
fined using a so-called BDI agent configuration C of the form
〈Π,Λ,B,A,Γ〉, where components Π,Λ,B, and Γ (resp.) are the
plan library, action library, belief base and intention base (resp.), as
described above, and A is the sequence of actions executed so far.
A transition relation C −→E C′ on agent configurations is then
used to state that a single step in executing agent configuration C
yields configuration C′ within an environment E . We represent an
environment as a function E : Confs 7→ 2Events, where Confs is the
set of all possible agent configurations and Events is the set of all
possible external events in the domain, i.e., programs of the form:
+b, −b, and !e. That is, an environment determines which external
actions occur at each step in the execution of an agent system. We
further require that environments are consistent in the sense that
at most one of +b and −b are in E(C), for any belief atom b and
configuration C. For example, given a configuration C and an en-
vironment E , E(C) might contain a belief update that the price of
Lenovo laptops have dropped 30% (e.g., due to a sale). Finally, a
BDI executionE of an agent C0 = 〈Π,Λ0,B0,A0,Γ0〉 in an envi-
ronment E is a, possibly infinite, sequence of agent configurations
C0 · C1 · · · such that Ci −→E Ci+1, for all i ≥ 0.

Given an intention I ∈ Γ0 and an execution E (w.r.t. an envi-
ronment E), it is possible to determine whether the intention I has
successfully executed (i.e., it has evolved to the empty program,
nil), failed, or can continue to execute. In general, an intention
fails if it becomes blocked, that is, it cannot execute further in the

current configuration (for example, if an action does not meet its
precondition or a test step is believed false), and it cannot be “re-
covered” via the default failure handling mechanism of re-trying
different alternatives for active (sub)goals. We refer to Sardina and
Padgham [17] for full details on the semantics of the language.

In this paper, we focus mainly on the last component of config-
uration C = 〈Π,Λ,B,A,Γ〉, namely, the intention base Γ. It will
be notationally convenient to separate this component out from the
rest of the configuration. We therefore define the diminished config-
uration C− to be a configuration with the intention base argument
omitted, i.e., C− = 〈Π,Λ,B,A〉. Where confusion does not arise,
we will simply refer to these as configurations. 〈C−,Γ〉 will be
used to denote the (full) configuration that has Γ as its last compo-
nent, and whose other components are as in C−.

3. REVISION BY DROPPING INTEN-
TIONS

Our aim is to characterise which possible intention bases Γ∗

qualify as acceptable intention revisions for a given intention base
Γ that the agent deems to be in need of reconsideration. We specify
a semantics for when a new intention base counts as an appropriate
revision of the current intentions. In future work, we plan to inves-
tigate an implementation that could be used in actual BDI systems
which would be faithful to this ideal. We are currently agnostic
on when and why a given intention base ought to be revised. This
could happen, for example, when a new belief or intention is added,
or when the agent determines there may be a negative interaction or
conflict between intentions. One way to achieve a similar result to
revising intentions would be to simply execute the intentions and
the ones that end up being blocked would be dropped automati-
cally from the intention set. However, executing intentions could
consume valuable resources that could be saved by revising the in-
tention set at appropriate times. In this section, we focus on the
revision of intention sets by simply abandoning one or more cur-
rent intentions.

One of the dimensions we use for comparing intention sets con-
sists of the environments in which the intention set can be suc-
cessfully executed. However, which intention sets can be success-
fully executed in an environment depends on how smart the agent
is about the choices it has to make during an execution, e.g., about
which plans to select and intentions to execute at which times. A
smart agent, e.g., one who can plan ahead to make the right deci-
sions, might be able to execute reliably a given intention set. On
the other hand, a dumb agent—e.g., one who does not plan ahead,
but rather chooses an intention to execute according to a fixed rule
such as round-robin—might not be able to execute successfully the
same intention set reliably. So, the definition of a successful ex-
ecution depends on the agent under consideration. In the inter-
est of generality—so that our framework can apply to a variety of
agents—we take the successful execution of a set of intentions Γ
in a configuration C− and an environment E , Success(Γ, C−, E),
to be a primitive of our framework, and we leave it undefined. We
only make the assumption that the empty set of intentions always
executes successfully, since there is nothing to execute.

AXIOM 1 (SUCCESS).

∀C−, E . Success(∅, C−, E).

Let S denote this axiom together with the axioms for finite sets.
For example, let us return to our purchasing agent described in

Example 1. Suppose the agent’s budget is $1700 and that the set
of possible environments are those described in Figure 2 with the



second annotation in plans (e.g., buying a computer on the web will
cost no more than $800). In this case, the agent may be unable to
successfully execute (both) its intentions I1 and I2 (in environments
where buying a Sony and a printer costs over $1700) and hence
one purchase may eventually fail (e.g., at time of payment for the
printer, if the computer is purchased for $1500). The question then
is: can the agent revise Γ to a more “robust” set of intentions?6

The various dimensions in qualitative frameworks, such as the
one we have chosen, are often incomparable, and therefore, they
cannot be readily combined. Consequently, decisions must be
made as to which dimensions take precedence. In our frame-
work, one dimension for comparison consists of the environments
in which an intention set can be successfully executed (environ-
mental tolerance), and another is the cardinality of the intention
set.7 In this paper, we give precedence to environmental tolerance.
However, the framework could easily be adapted so that cardinality
gets precedence. Having environmental tolerance dominate cardi-
nality means the agent is cautious in that it would prefer to drop an
intention to gain more certainty that the intention set will be suc-
cessfully executed. Alternatively, giving precedence to cardinal-
ity would model a bold agent that believes things will “work out”
(with respect to the environment), and prefers to maintain more of
its intentions. Both can lead to counterintuitive results in particular
examples, but this is inherent in qualitative frameworks that contain
incomparable dimensions.

At a minimum, once the agent has decided to revise its inten-
tions, the revised intention set should be executable in some en-
vironment. We prefer intention sets that are executable in more
environments. Of these preferred sets, we choose the sets that have
higher cardinality, i.e., retain more intentions from the original set.

We define the revision of an intention set in three stages. First,
we define what it means for an intention base to be maximal in
terms of environmental tolerance. Amongst the maximal bases, the
revision candidates are those that have some chance of success. We
then say that the revision sets are the largest candidate sets.

3.1 Definition of a Maximal Set
We say that a set of intentions Γ dominates another set Γ′ in

a configuration C−, if the agent can successfully execute Γ in a
superset of the environments in which it successfully executes Γ′

in C−. Formally:

DEFINITION 2 (DOMINATES).

Dom(Γ,Γ′, C−)
def
=

∀E . Success(Γ′, C−, E) ⊃ Success(Γ, C−, E).

We then define the set of maximal options in terms of dominance.
A set of intentions Γ is maximal with respect to a set Γ in config-
uration C−, if Γ is a subset of Γ and it dominates any nonempty
subset of Γ that dominates it. The empty intention base needs to
be ruled out for comparison as it (trivially) dominates every inten-
tion set—the empty set of intentions always executes successfully.
We want to allow the possibility of the agent abandoning all its in-
tentions, if no subsets of its intentions have any chance of success,
however, we also want this to be the only condition under which
the agent drops all of its intentions.

6Note that in our example, the order of the selection of plans has
already been fixed, and the order of execution of intentions is irrel-
evant, therefore the exact definition of Success is not important.
7Later on, we will introduce a minimal modification dimension.

DEFINITION 3 (MAXIMAL).

Max(Γ,Γ, C−)
def
=

Γ ⊆ Γ ∧ [∀Γ′.Γ′ ⊆ Γ ∧ Γ′ 6= ∅ ⊃
(Dom(Γ′,Γ, C−) ⊃ Dom(Γ,Γ′, C−))].

Observe here that the empty set is indeed maximal, but other op-
tions can be maximal as well.

3.2 Definition of a Revision Set
For an intention base to be a revision candidate of Γ, it must be

a maximal subset of Γ, but also possible in the sense that the in-
tentions can be achieved in at least one environment. Note that the
second constraint does not follow from maximality: if no nonempty
subset of Γ succeeds, then every subset will be considered maxi-
mal. Formally, we define Cand(·, ·, ·) as follows:

DEFINITION 4 (REVISION CANDIDATE).

Cand(Γ,Γ, C−)
def
= Max(Γ,Γ, C−) ∧ Poss(Γ, C−),where

Poss(Γ, C−)
def
= ∃E . Success(Γ, C−, E).

Finally, an intention revision Γ∗ of an intention base Γ is defined
to be a largest candidate set:

DEFINITION 5 (REVISION).

REV(Γ∗,Γ, C−)
def
=

Cand(Γ∗,Γ, C−) ∧ ∀Γ′.Cand(Γ′,Γ, C−) ⊃ |Γ′| ≤ |Γ∗|.

In Example 1, there are two possible revisions: Γ1 = {I1}, and
Γ2 = {I2}, i.e., the agent drops either one of its intentions. These
sets dominate Γ = {I1, I2} because they terminate in strictly more
environments than Γ does (i.e., all environments where Sony +
printer cost > $1700).

3.3 Properties
We now turn to some properties of these definitions.8 Firstly, a

(possibly empty) revision set always exists:

PROPOSITION 6.

S |= ∀Γ, C−.∃Γ∗.REV(Γ∗,Γ, C−).

Secondly, consider the (optimal) case in which it is possible to se-
lect a (nonempty) fully robust set of intentions, i.e., a set of inten-
tions that can be fully executed in every environment. In that case,
any revision will be fully robust:

PROPOSITION 7.

S |= ∀Γ, C−.
(∃Γ′.Γ′ ⊆ Γ ∧ Γ′ 6= ∅ ∧ SuccessAlways(Γ′, C−)) ⊃

(∀Γ∗.REV(Γ∗,Γ, C−) ⊃ SuccessAlways(Γ∗, C−)),

where SuccessAlways(Γ, C−)
def
= ∀E . Success(Γ, C−, E).

The empty set of intentions can always be achieved in any config-
uration. However, we want the agent to drop all its intentions only
if there is no other choice, i.e., when none of the other subsets of Γ
have any chance of success. Indeed, we can show that the revision
of a set Γ is the empty set iff no nonempty subset of Γ is possible.

PROPOSITION 8.

S |= ∀Γ, C−.[∀Γ′.Γ′ ⊆ Γ ∧ Γ′ 6= ∅ ⊃ ¬Poss(Γ′, C−)] ≡
[∀Γ∗.REV(Γ∗,Γ, C−) ⊃ Γ∗ = ∅].

8All propositions in this paper were verified with the PVS Verifi-
cation System [12].



This proposition shows that given a set Γ that has no chance of
success, although we cannot guarantee the success of a revision
of Γ, any non-empty revision of Γ will at least have some chance
of success. Furthermore, a revision of Γ will only be empty if no
nonempty subset of Γ has any chance of success.

We close by noting that with the method for revision considered
here, the only choice is to drop current intentions altogether. In the
context of BDI agent systems, where goals can be achieved in mul-
tiple ways, one can envision more sophisticated accounts of revi-
sion so as to avoid resorting to such drastic decisions. We consider
one such account in the next section.

4. REVISION BY MODIFICATION
In the previous section, we considered resolving conflicting in-

tentions by dropping some. However, BDI agents often have var-
ious alternative plans for achieving goals. Instead of dropping an
intention altogether, another option is to see if adopting other alter-
natives resolves the conflict. This option, which we call intention
modification is preferable because it can lead to the achievement of
more of the agent’s goals.

Consider again our purchasing agent from Example 1 with the
two intentions to buy a computer and a printer. Instead of dropping
one of its intentions, the agent can consider modifying its intention
to buy a computer by changing the method of achieving the event-
goal Order to the plan Go(lenovo), or indeed by changing the means
to achieve the top-level event-goal Get(pc) to the plan Buy(pc,web).
Either of these changes will result in the successful execution of
both intentions, as the total cost in any possible environment will
be below the available funds of $1700.

The definition of revision by modifying intentions is more in-
volved than the definition of revision by dropping intentions. First,
we must define what we mean by modifying an intention. We mod-
ify an intention by selecting an alternate plan to achieve the in-
tention or a subintention. This only makes sense for what we call
active goals of the intention, which are the (sub)goals of the inten-
tion for which a plan has already been selected to achieve the goal.
If P ′ is a modification of P , then we call P ′ an alternate of P .
Then, we define the alternate subset relation which holds between
two intention sets Γ′ and Γ, if every element of Γ′ is an alternate of
an element of Γ. With this definition in hand, we define a cardinal
revision of an intention set Γ in a similar fashion to the definition
of revision in previous section, except we replace subset with al-
ternate subset. This gives us a largest, maximal set in the space of
alternate subsets of Γ, rather than in the space of subsets of Γ, as
before. We define what it means to be a “least modification” of an
intention, and generalise that definition to hold over sets of inten-
tions, which we call setwise closeness. Finally, we define a revision
of an intention set Γ∗ to be a cardinal revision of Γ∗ that is maximal
with respect to setwise closeness. Although the formal framework
in this section is more complicated than the previous one, concep-
tually the differences are simple: 1) the candidate sets for a revision
of Γ are taken from the set of alternate subsets of Γ rather than the
set of subsets of Γ; and 2) we add an extra dimension to compare
the revision candidates for Γ, namely, minimal modification of the
elements of Γ.

4.1 Definition of Alternate Subset
To define revision by modification, we must first define what we

mean by a modification. We take a modification to be a different
choice of a plan to achieve the intention or a subgoal of the in-
tention. Formally, we say that P ′ is an alternate of a program P
relative to a belief base B, P ;B P

′ if P ′ can be obtained from
P by changing the way some (sub)goal in P is to be achieved. We

define this as a set of recursive axioms, with three cases depending
on the structure of P .9

AXIOM 2 (ALTERNATE OF A PROGRAM).

(P1;P2) ;B P
′ ≡ ∃P ∗.P1 ;B P

∗ ∧ P ′ = (P ∗;P2);

P1 � e :L∆M ;B P ′ ≡
(∃P ∗.P1 ;B P

∗ ∧ P ′ = (P ∗ � e :L∆M)) ∨
∃ψ, P. ψ :P ∈ ∆ ∧ B |= ψ ∧ P ′ = (P � e :L∆ \ {ψ :P M});

P1 ;B P2 ≡ P1 = P2, otherwise.

In other words, if the program is a sequence P1;P2, then we re-
cursively look for alternates in P1. We do not need to consider
alternates in P2, since while the agent may have started executing
P1, and therefore may have generated alternative plans to achieve
its (sub)goals, this would not yet be the case for P2. If the program
is of the form P1 � e : L∆M, then we recursively look for alternates
in P1 (first disjunct), but we also allow other choices of programs
in ∆ to achieve e, provided their context conditions are satisfied
by B (second disjunct). In this case, P1 is dropped as a means to
achieve e. Note that when P1 is dropped, all subgoals of P1 are
automatically dropped as well. For all other program constructs,
the only alternate is the program itself.

EXAMPLE 9. In Example 1, the alternates to I1 are I1 itself
(;B is reflexive), and assuming ψ1 and ψ2 are satisfied:

I ′1 =
(
(Go(lenovo) � Order :L M); !Pay

)
�

Get(pc) :Lψ2 : Buy(pc,web)M;
I ′′1 = Buy(pc,web) � Get(pc) :L M.

The basic idea for revision by modification is that, given a set of
intentions Γ to revise, we consider not just subsets of Γ, but also for
each subset of Γ, we replace the elements of the subset by each of
their alternates and consider the resulting sets as well. From these
sets, we choose the ones with greatest environmental tolerance that
are possible, and among those, the ones that are largest in size.
From the remaining sets, we take the ones with the least changes to
the elements of Γ to be the revisions of Γ. The aim in minimising
the changes to the intentions is, as far as possible, to retain the work
already done by the agent to achieve the associated goal.

Given the definition of an alternate of a program, we can now
define the alternate subset relation (Γ′ vB Γ), which holds if ev-
ery element of Γ′ is an alternate of an element of Γ, and no two
elements of Γ′ are alternates of the same element of Γ:

DEFINITION 10 (ALTERNATE SUBSET).

Γ′ vB Γ
def
= (∀I ′ ∈ Γ′.∃I ∈ Γ.I ;B I

′) ∧
∀I ′1, I ′2 ∈ Γ′.∀I ∈ Γ.I ;B I

′
1 ∧ I ;B I

′
2 ⊃ I ′1 = I ′2.

4.2 Definition of Cardinal Revision
In considering intention modifications, we only consider alterna-

tives of active goals in each intention structure.10 An active goal is
the event-goal e in a program of the form P � e : L∆M, where e is
the active goal and ∆ is a set of guarded plans.11

The goal-program trace of a program P is a finite sequence of
pairs of the form (e, L∆M), consisting of an active goal e, and its
alternate guarded plans L∆M, and is defined as follows. We treat
this recursive definition as an axiom:
9We adopt the convention that unbound variables are universally
quantified in the widest scope.

10All other goals are either completed, or not yet expanded so the
alternatives are unknown.

11Note that this definition is different from the one given in [17],
where the whole program was considered the active goal.



AXIOM 3 (GOAL-PROGRAM TRACE).

Trace(P )=

 Trace(P1) if P =P1;P2

(e, L∆M) · Trace(P1) if P =P1 � e :L∆M
ε otherwise,

where the operator · is sequence concatenation and ε is the empty
sequence. Note that we assume P has been evolved from a user
program using the transition rules for CAN. For such programs, it
can be shown that if P is of the form P1;P2 (case 1), none of the
goals in P2 are active yet. Therefore, we only have to consider the
goal-program trace of P1. For example, the goal-program trace of
intention I1 in Example 1 is:

(Get(pc), Lψ2 : Buy(pc,web)M)·(Order, Lψ1 : Go(lenovo)M).

DEFINITION 11. Let Σ denote the set of axioms consisting of
Axioms 1–3, along with the axioms defining the language of CAN,
and the axiomatisation of finite sets.

Note that the framework in the previous section was independent of
the agent language used, therefore we did not need the axioms for
the language of CAN. However, revision by modification is framed
in terms of the constructs of the CAN language. This is evident, for
example, in Axiom 2. However, it would not be difficult to adapt
the definitions to other agent languages.

We assume that each intention in the intention base has a differ-
ent top-level goal. For Γ vB Γ∗, this allows us to uniquely identify
the subset of Γ∗ whose alternate is Γ. The semantics of the CAN
language ensures that an intention I in the intention base can only
be of the form !e, or P . e : L∆M. We formally define the top-level
goal of an intention as follows:

DEFINITION 12 (TOP-LEVEL GOAL).

TLG(I)
def
= e,when I = !e, or Trace(I) = (e, L∆M) · . . .

Note that the trace of !e is ε, so the second case does not apply to
intentions of the form !e. We say that a set of intentions is distinct,
if the top-level goals of its members are all different:

DEFINITION 13 (DISTINCT INTENTION SET).

Distinct(Γ)
def
= ∀I, I ′ ∈ Γ.I 6= I ′ ⊃ TLG(I) 6= TLG(I ′).

Next, we update the definitions Max and Cand from the previous
section by substituting subset with alternate subset (vB). Let CB

−
denote the belief base component of C−. We define:

DEFINITION 14 (MAXIMAL INTENTION SET).

Max+(Γ,Γ, C−)
def
= Γ vCB

−
Γ ∧ [∀Γ′.Γ′ vCB

−
Γ ∧ Γ′ 6= ∅ ⊃

(Dom(Γ′,Γ, C−) ⊃ Dom(Γ,Γ′, C−))].

DEFINITION 15 (CANDIDATE INTENTION SET).

Cand+(Γ,Γ, C−)
def
= Max+(Γ,Γ, C−) ∧ Poss(Γ, C−).

In deciding which candidate sets are better than others, we now
have two dimensions to consider. In the previous section, we chose
the candidate sets with the largest cardinality. This amounts to pre-
ferring to keep top-level goals. As we will see below, for revision
by modification, we will also prefer sets whose intentions have un-
dergone the least degree of modification. For the moment, we use
an intermediate predicate, REVCARD+ to capture the former pref-
erence. We say that Γ∗ is a cardinal revision of Γ in C−, if Γ∗ is a
candidate for revision and is no smaller than all other candidates.

DEFINITION 16 (CARDINAL REVISION).

REVCARD+(Γ∗,Γ, C−)
def
=

Cand+(Γ∗,Γ, C−)∧∀Γ′.Cand+(Γ′,Γ, C−)⊃|Γ′| ≤ |Γ∗|.

As one would expect, a cardinal revision always exists:

PROPOSITION 17.

Σ |= ∀Γ, C−.Distinct(Γ) ⊃ ∃Γ∗.REVCARD+(Γ∗,Γ, C−).

4.3 Definition of Revision by Modification
Now, we formally specify what it means to be a “least modifica-

tion” of an intention. Given belief base B, and programs P , P1 and
P2 such that P ;B P1 and P ;B P2, we say that P1 is closer
than P2 to P (i.e., P1 �P P2), if the following holds (as standard,
| · | denotes the length of a sequence):

DEFINITION 18 (CLOSER).

P1 �P P2
def
=

| Trace(P1)| ≥ | Trace(P2)| ∧ (P2 = P ⊃ P1 = P ).

In other words, P1 is closer to P than P2 if, basically, no more
goals have been dropped in P1 than in P2 (with respect to P ). If no
goals have been dropped in either, then P2 is closer to P than P1,
if P2 is identical to P , but P1 is not (because in P1, an alternate
plan has been chosen to achieve the last subgoal). We capture that
case via the second conjunct. For example, using the intentions
in Examples 1 and 9, it can be seen that I ′1 �I1 I

′′
1 ∧ I ′′1 6�I1 I

′
1,

since | Trace(I ′1)| > | Trace(I ′′1 )|; I ′1 is strictly closer to I1 than I ′′1 .
To verify that �P is intuitively correct, we show that the length of
the Trace of an alternate P ′ of a program P is not greater than the
length of the Trace of P itself.

PROPOSITION 19.

Σ |= ∀B, P, P ′.P ;B P
′ ⊃ | Trace(P )| ≥ | Trace(P ′)|.

This property holds because an alternate P ′ of P can have dropped
goals but not added any.

For our definition of revision by modification, we must gener-
alise �P to apply to two alternate subsets of the set Γ of intentions
to be revised. We only compare sets that consist of alternates of the
same subset of Γ. If Γ′ vB Γ, then the elements of Γ′ are each
alternates of the elements of a subset of Γ, which we call the core
of Γ′ with respect to Γ and B. Formally, given Γ′ vB Γ:

DEFINITION 20 (CORE OF AN INTENTION SET).

core(B,Γ,Γ′) def
= {P ∈ Γ|∃P ′ ∈ Γ′.P ;B P

′}.

Note that if Γ is distinct, then Γ′ is guaranteed to be the same size
as core(B,Γ,Γ′), for any B.

For alternate subsets Γ1 and Γ2 of Γ that share the same core,
we say that Γ1 is setwise closer to Γ than Γ2, if for every I ∈ Γ,
I’s alternate in Γ1 is closer to I than its alternate in Γ2:

DEFINITION 21 (SETWISE CLOSER).

Γ1 �B,Γ Γ2
def
=

if Γ1 vB Γ ∧ Γ2 vB Γ ∧ core(B,Γ,Γ1) = core(B,Γ,Γ2)
then ∀I ∈ Γ, I1 ∈ Γ1, I2 ∈ Γ2.I ;B I1 ∧ I ;B I2 ⊃

I1 �I I2
else FALSE ,

where if A then B else C def
= (A ⊃ B) ∧ (¬A ⊃ C).



Finally, we say that Γ∗ is a modification revision of Γ in C−,
if Γ∗ is a cardinal revision and is maximal with respect to setwise
closeness:

DEFINITION 22 (MODIFICATION REVISION).

REV+(Γ∗,Γ, C−)
def
= REVCARD+(Γ∗,Γ, C−) ∧

∀Γ′.REVCARD+(Γ′,Γ, C−) ⊃
(Γ′ �CB

− ,Γ Γ∗ ⊃ Γ∗ �CB
− ,Γ Γ′).

4.4 Properties
We can show that (the appropriate reformulations of) the propo-

sitions in the previous section hold for REV+ as well.
A (possibly empty) modification revision set of a distinct set Γ

always exists.

PROPOSITION 23.

Σ |= ∀Γ, C−.Distinct(Γ) ⊃ ∃Γ∗.REV+(Γ∗,Γ, C−).

If there exists a fully robust subset of a distinct set Γ, then the
modification revision set will be fully robust.

PROPOSITION 24.

Σ |= ∀Γ, C−.Distinct(Γ) ∧
(∃Γ′.Γ′ vCB

−
Γ ∧ Γ′ 6= ∅ ∧ SuccessAlways(Γ′, C−)) ⊃

(∀Γ∗.REV+(Γ∗,Γ, C−) ⊃ SuccessAlways(Γ∗, C−)).

The modification revision of a distinct set Γ is the empty set iff
no nonempty subset of Γ is possible.

PROPOSITION 25.

Σ |= ∀Γ, C−.Distinct(Γ) ⊃
[∀Γ′.Γ′ vCB

−
Γ ∧ Γ′ 6= ∅ ⊃ ¬Poss(Γ′, C−)] ≡

[∀Γ∗.REV+(Γ∗,Γ, C−) ⊃ Γ∗ = ∅].

Let us return to our purchasing agent example, as described in
Examples 1 and 9, and in Figure 2. As there is $1700 available, the
(best) revision is obtained by dropping the goal of buying a Sony
and adopting the goal of buying a Lenovo (for achieving event-goal
Order), that is, the only modification revision is Γ∗ = {I ′1, I2}.
Observe that while intention base Γ′ = {I ′′1 , I2} can be consid-
ered for revision, it involves higher-level modifications to inten-
tions than Γ∗ does. That is, let B be the agent’s current belief base,
then I ′1 �I I

′′
1 ∧I ′′1 6�I I

′, and therefore Γ∗ �B,Γ Γ′∧Γ′ 6�B,Γ Γ∗,
which means that Γ′ does not qualify as an acceptable revision set.
However, if the agent were to believe there was only $1400 avail-
able, then intention I1 would have to be modified higher up in its
hierarchy of goals, and the only revision would indeed be Γ′. Ob-
serve that in both cases, though, dropping any of the intentions, as
in the previous section, would not qualify as acceptable revisions:
there is something less drastic that can be done.

5. RELATED WORK
The problem of revising intentions, especially within formal BDI

frameworks, has received surprisingly little attention. Rao and
Georgeff [16] extend their seminal BDI logic to resolve a specific
paradox that arises when intentions are dropped but do not con-
sider the general problem. Wobcke [19] considers the effects on
intentions when beliefs are revised; he uses a version of epistemic
entrenchment [7], effectively requiring a quantitative measure of
the priority of each intention. To our knowledge, Wobcke was the
first to apply ideas from belief revision [7] to the problem of re-
vising intentions. However, his framework, and in particular his
representation of plans, is restrictive.

More recently, Grant et al. [8] present a detailed investiga-
tion of the general problem of intention revision. They propose
postulates for the revision of BDI structures; a BDI structure
〈B,D, I, v, (c, C)〉 is a representation of the current mental state
of an agent (similar to what we call a configuration), where v com-
putes the “value” in achieving a desire and c assigns a “cost” to
performing actions in the domain C (which includes all actions the
agent may intend) that are used to achieve goals. Each intention
in I is represented as a plan instance or “recipe” a → g, where
a is an action to perform and g is the goal (i.e., proposition) that
would be achieved by successful execution of a. Grant et al. are
specifically interested in BDI structures that are “rational” (are not
internally inconsistent) and that maximise “benefit” (the total value
of its current goals minus the cost of the actions to achieve them).12

Grant et al. propose postulates for the various cases of adding
and deleting a belief, desire or intention, and for the cases of mod-
ifying value and cost functions; each of these cases may result in a
new BDI structure. Their main requirements for the resulting BDI
structure are: (i) the rationality condition; (ii) that any change to
the intention set is minimal (in that it overlaps as much as possible
with the intention set in the original BDI structure); and (iii) that
the candidate revisions are maximal in benefit.

While our aims have many similarities to those of Grant et al.,
we have taken an orthogonal approach by considering intention re-
vision within the rich CAN framework. In particular, this frame-
work allows us to reason about complex plans or recipes to be used
to achieve goals, and the environments in which they can be suc-
cessfully performed, allowing us to revise to intention sets that are
maximally likely to be successful. The rich plan representation, in-
cluding subgoals, available in the CAN language also allows us to
consider the possibility of revising to a new intention by consid-
ering alternative execution paths to achieve a goal or subgoal. In
particular, use of the CAN framework better bridges the gap be-
tween abstract theoretical framework and the standard execution
model of BDI agent systems [1, 13]. It also allows us to reason ex-
plicitly about revising to sets of maximally robust intentions, and
impose our minimal modification condition.

Van der Hoek et al. [18] define a powerful framework for de-
scribing and reasoning about BDI mental states, and a correspond-
ing account for revising intentions. Their ultimate goal is to incor-
porate the dynamics of intentions into a framework for reasoning
about mental states; as such, they have similar aims to ours. Their
formal framework is very rich; however, their approach to the ac-
tual intention revision is very algorithmic, which is an issue that
Grant et al. [8] specifically attempt to address. Further, the model
presented in Van der Hoek et al. does not address two of our main
concerns: their intention-removal step does not seem to account for
mutually conflicting intentions; and they do not enforce minimal
modification of intentions.

Finally, Icard et al. [11] also consider how belief revision im-
pacts intention revision; they also tightly intertwine the revision
of beliefs and intention sets. They provide postulates for revising
both sets of intentions and beliefs. However, this is under a simple
model of plans, in particular, non-hierarchical plans; hence, they
are not able to capture a notion of minimal plan modification such
as the one presented here.

Most of the other frameworks discussed here examine the rela-
tionship between beliefs, goals and intentions, which is something

12In a follow-up paper, Grant et al. [9] extend this framework to the
multi-agent case, to model a different problem, that of how agents
use knowledge of each others’ intentions to coordinate behaviour.
Since this work is only tangentially related to ours, we will not
discuss it further here.



which we do not address. The reason we do not address this is-
sue is that although the interplay between these mental attitudes
is theoretically interesting, we do not see it playing a role in cur-
rently implemented systems. For example, in the CAN framework,
as well as in many implemented agent systems, goals are simply
labels with no propositional meaning. Similarly, while beliefs do
have propositional content in CAN, the language in which beliefs
are framed does not admit beliefs about the future. Since goals
and intentions are future-oriented, in the absence of beliefs about
the future, the relationship between beliefs on the one hand, and
goals and intentions on the other is not very interesting. There are
implemented systems (e.g., [5]) that have goals with propositional
content, however, as far as we are aware, there are no implemented
systems that allow explicit beliefs about the future.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have addressed an important aspect of agent

reasoning—intention revision. Intention revision is central, since
an agent typically pursues multiple tasks, adopting intentions to
achieve them. These intentions may conflict with each other, due
to resource limitations, for example. In the event of such conflicts
the agent ought to resolve them in a rational manner.

We have defined a framework for the revision of sets of inten-
tions that mutually conflict. We have presented two approaches.
The first is to revise the set of intentions by dropping one or more
intentions to attain a non-conflicting set, and the other is to modify
the current intentions so that they may be achieved by alternative
means to obtain a non-conflicting set of intentions.

Our theory of intention revision is embedded in a powerful for-
mal framework for the representation of goals, programs, and the
environments under which they are executed. This framework al-
lows us to specify rich criteria for appropriate revised sets of inten-
tions to satisfy: robustness (guaranteed success in maximal number
of environments), minimal reduction on dropping an intention (i.e.,
preserving maximal number of top-level intentions), and minimal
change to the means of achieving an intention.

Future work includes extending our model to include further fea-
tures of Grant et al.’s framework, i.e., adding new intentions, rep-
resenting costs of action and value of achieving goals. In such
an account, we would expect to be able to demonstrate satisfac-
tion of their postulates within our much richer framework of goals
and plans, providing a clear specification of intention revision be-
haviour for BDI agent programming models. Our ultimate aim is
a model of the complete intention reconsideration problem, includ-
ing intention selection, opportunistic merging, and revision; and its
application to the design of such processes in practical agent pro-
gramming frameworks. In this paper, we presented a semantics
for intention revision and future work also involves developing an
implementation that is faithful to these semantics but also compu-
tationally feasible.
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