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ABSTRACT
This paper describes a multi-robot collision avoidance sys-
tem based on the velocity obstacle paradigm. In contrast
to previous approaches, we alleviate the strong requirement
for perfect sensing (i.e. global positioning) using Adaptive
Monte-Carlo Localization on a per-agent level. While such
methods as Optimal Reciprocal Collision Avoidance guaran-
tee local collision-free motion for a large number of robots,
given perfect knowledge of positions and speeds, a realis-
tic implementation requires further extensions to deal with
inaccurate localization and message passing delays. The pre-
sented algorithm bounds the error introduced by localization
and combines the computation for collision-free motion with
localization uncertainty. We provide an open source imple-
mentation using the Robot Operating System (ROS). The
system is tested and evaluated with up to eight robots in
simulation and on four differential drive robots in a real-
world situation.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Experimentation

Keywords
multi-robot systems, optimal reciprocal collision avoidance,
adaptive monte-carlo localization, robot operating system

1. INTRODUCTION
Local collision avoidance is the task of steering free of col-

lisions with static and dynamic obstacles, while following a

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

global plan to navigate towards a goal location. Figure 1
shows a configuration of two robots on collision course. The
task of the algorithm is to avoid collision with a minimal
deviation of the preferred path. Thus, local collision avoid-
ance differs from motion planning, global path planning and
local path planning. In motion planning the environment
of the robot is assumed to be deterministic and known in
advance, thus allowing to plan a complete path to the goal.
Global path planners usually operate on a static map and
find either the minimum cost plan (e.g. using A* or Di-
jkstra’s algorithm) or any valid plan (e.g. sample based
planners). Local path planners, such as Trajectory Rollout
and Dynamic Window Approaches (DWA), perform forward
simulations for a set of velocity commands; each resulting
trajectory is scored based on proximity to the goal location
and a cost map built from current sensor data. In principle
this allows to stay clear of dynamical obstacles; however, in
multi-robot settings two problems arise:

1. Robots are not merely dynamic obstacles; each robot
itself is a pro-active agent taking actions to avoid col-
lisions. Neglecting this might lead to oscillations and
thus highly inefficient trajectories or even collisions.

2. The sensor source (e.g. laser range finder) is usually
mounted on top of the robot’s base to allow for a max-
imal unoccluded viewing angle. In a system with ho-
mogenous robots this implies that there is very little
surface area that can be picked up by the sensors of
other robots and thus prevents the robots from observ-
ing each other.

Local collision avoidance addresses these challenges and is
an important building block in any robot navigation sys-
tem targeted at multi-robot systems. Although robot lo-
calization is a requirement for collision avoidance, most ap-
proaches assume perfect sensing and positioning and avoid
local methods by using global positioning via an overhead
tracking camera - or are purely simulation based. Neverthe-
less, to be able to correctly perform local collision avoidance
in a realistic environment, a robot needs a reliable position
estimation without the help of external tools.
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Figure 1: A workspace configuration with two
robots Ri and Rj on collision course.

Our approach uses Optimal Reciprocal Collision Avoid-
ance (ORCA) and the extension to non-holonomic robots
(NH-ORCA) [1] in combination with Adaptive Monte-Carlo
Localization (AMCL) [3].This effectively alleviates the need
for global positioning by decentralized localization on a per-
agent level. We provide a solution that is situated in be-
tween centralized motion planning for multi-robot systems
and communication-free individual navigation. While ac-
tions will remain to be computed independently for each
robot, information about position and velocity is shared us-
ing local inter-robot communication. This keeps the com-
munication overhead limited while avoiding problems like
robot-robot detection. The resulting algorithm is imple-
mented in the open source Robot Operating System (ROS),
which provides hardware abstraction and message-passing.
Our experiments in simulation and on a physical system il-
lustrate the feasibility and efficiency of the approach.

The remainder of the paper is structured as follows. Sec-
tion 2 provides background information about ORCA, NH-
ORCA, AMCL and ROS. Section 3 discusses key challenges
in applying velocity-based collision avoidance to real-world
robotic scenarios, leading to the proposed approach. In Sec-
tion 4, we introduce our novel method to incorporate local-
ization uncertainty. Experimental results are presented in
Section 5. The paper concludes with a brief discussion and
highlights future directions of this work in Section 6.

2. BACKGROUND
In this section, we will concisely describe the collision

avoidance algorithms ORCA and NH-ORCA and the Adap-
tive Monte Carlo Localization (AMCL) method. Addition-
ally, the Robot Operating System (ROS) will be introduced.

2.1 Optimal Reciprocal Collision Avoidance
Our work is based on the principle of Optimal Recip-

rocal Collision Avoidance (ORCA) introduced by van den
Berg et al. [10], an extension of Reciprocal Velocity Ob-
stacles (RVO) [11]. ORCA is a velocity-based approach [2]
to achieve collision avoidance in multi-agent systems taking
into account the motions of other agents. For simplicity, the
two dimensional case is assumed, but the formulations can
be extended into the third dimension.

ORCA describes a control policy were each agent selects
a collision-free velocity from the two dimensional velocity
space in x and y direction. This implies that a holonomic
robot is assumed in the original formulation, since the robot
has to be able to accelerate into every direction regardless of
its current state. However, the movement model of a non-
holonomic robot can be incorporated by limiting the velocity
space accordingly, see Section 2.2.
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Figure 2: Creating velocity obstacles and ORCA
half-planes based on the workspace configuration
shown in Figure 1. (a) Translating the situation
into velocity space and the resulting velocity obsta-
cle for Ri, assuming a static obstacle. (b) Truncating
the velocity obstacle (VO) for time frame τ . Every
velocity that is allowed will be collision-free for at
least time τ . (c) Translating the VO according to
the other robot’s velocity vj. Velocity vi points into
the translated VO, hence Ri is on collision course.
(d) Creating an ORCA half plane for Ri. Vector u is
the minimal vector to add to vi to be outside of the
VO. The perpendicular line to u at vi+cu is the set of
velocities that is closest to vi and avoiding collisions
for c ≥ 1. For c = 1

2
the robot Ri assumes that Rj will

take care of the other half of the collision avoidance.

Let us assume a workspace configuration with two robots
on a collision course as shown in Figure 1. If the position
of agent Rj is known to Ri, a region in the robot’s velocity
space can be calculated which is leading to a collision under
current velocities and is thus unsafe. If we assume disc-
shaped robots, which are not moving, the region of non-
allowed velocities is bounded by the half-lines emanating
from the origin, tangent to a disk at the relative position of
the two agents with the combined radius of the two robots
as in Figure 2(a). These unsafe regions are called velocity
obstacles (VO). Taking a velocity in direction of the other
agent will not immediately result in a collision, hence the
VO can be bounded by a given time frame τ , leading to a
truncated cone. Taking a velocity which is now available
again will be collision free for at least the given time frame,
see Figure 2(b). If we now assume that both agents are mov-
ing, the VO has to be translated into the direction the speed
of Rj as shown in Figure 2(c). Now, robot Ri’s velocity vec-
tor vi points into the VO, thus we know that Ri and Rj are
on collision course. Each agent computes a VO for each of
the other agents. If all agents at any given time step select



velocities outside of the VOs, the trajectories are guaranteed
to be collision free. However, oscillations can still occur [11].

To overcome the problem of oscillations and to enable effi-
cient calculation for safe velocities, Optimal Reciprocal Colli-
sion Avoidance (ORCA) was introduced by van den Berg et
al. [10]. Instead of velocity obstacles, agents independently
compute half-planes of collision-free velocities for each other
agent as shown in Figure 2(d). The half planes are selected
to be as close to the desired goal velocity as possible. Thus,
they are parallel lines to either one of the two legs of the VO.
If we assume reciprocal collision avoidance, the line can be
slightly insight the VO, assuming that the other robot will
take care of the other half of the collision avoidance. The
intersection of all half planes is the set of collision free veloc-
ities. The optimal velocity from this set can be calculated
by solving a linear program minimizing the distance to the
desired goal velocity.

Though each agent selects a new velocity independently, a
distributed implementation of ORCA on a physical system
of mobile robots requires perfect sensing of the shape, posi-
tion and velocities of other robots. A variant of the original
RVO called Hybrid Reciprocal Velocity Obstacles (HRVO) is
presented in [7]. This extension takes uncertainty of move-
ment and sensing into account; however, it uses global po-
sitioning via an overhead camera and does not incorporate
the ORCA formulation.

2.2 Kinematic constraints
As mentioned above, the original formulation of ORCA is

based on holonomic robots, which can accelerate into any di-
rection from every state. However, differential drive robots
with only two motorized wheels are much more common
due to their lower price point. To incorporate the differen-
tial drive constraints, Kluge et al. introduced a method to
calculate the effective center of a differential drive robot [5].
The effective center represents a translation of the center of
rotation to a point that can virtually move into all directions.
It can be incorporated in the ORCA formulation by virtually
enlarging the robots’ radii prior to the calculations. These
adaptations provide additional maneuverability to handle
the differential drive constraints. ORCA-DD [8] extends this
idea and enlarges the robot to twice the radius of the origi-
nal size to ensure collision free and smooth paths for robots
under differential constraints. The effective center is then
located on the circumference of the robot at the center of
the extended radius. However, this quadruples the virtual
size of the robot, which can result in problems in narrow
corridors or unstructured environments.

Another method to handle non-holonomic robot kinemat-
ics has been introduced by Alonso-Mora et al [1]: NH-ORCA
is the generalized version of ORCA for any non-holonomic
robot. The underlying idea is that any robot can track a
holonomic speed vector with a certain tracking error ε. This
error depends on the direction and length of the holonomic
velocity, i.e. a differential drive robot can drive along an arc
and then along a straight line which is close to a holonomic
vector in that direction. A set of allowed holonomic veloci-
ties is calculated based on the current speed and a maximum
tracking error ε. Resulting constraints are added to the lin-
ear program in the ORCA formulation. To allow smooth
and collision free navigation, the virtual robot radii have to
be increased by the tracking error ε, since the robots do not
track the desired holonomic velocity exactly. Additionally,

in dense configuration with many robots, turn in-place can
be included by adapting the allowed tracking error ε dy-
namically depending on the current state (i.e. proximitiy
to other robots and current velocities). The set of allowed
holonomic velocities can be calculated for any possible an-
gle and error. However, any further constraint in the linear
program slows down the computation, thus the feasible set
can be approximated by a polygon.

NH-ORCA is preferred over ORCA-DD, since the virtual
increase of the robots’ radii is only by a size of ε instead of
doubling the radii.

2.3 Adaptive Monte-Carlo Localization
The localization method employed in our work is based

on sampling and importance based resampling of particles,
in which each particle represents a possible pose and orien-
tation of the robot. More specifically, we use the adaptive
monte-carlo localization method, which dynamically adapts
the number of particles [3]. Monte-Carlo Localization (also
known as a particle filter), is a widely applied localization
method in the field of mobile robotics. It can be general-
ized in an initialization phase and two iteratively repeated
subsequent phases, the prediction and the update phase.

In the initialization phase, a particle filter generates a
number of samples N , which are uniformly distributed over
the whole map of possible positions. In the 2.5D case, every
particle si has a x- and y-value and a rotation si = (x̂, ŷ, θ̂).
The particles are usually initialized in such a way, that only
valid positions are taken into account, i.e. they cannot be
outside of the map or within walls.

The first iterative step is the prediction phase, in which
the particles of the previous population are moved based
on the motion model of the robot, i.e. the odometry. Af-
terwards, in the update phase, the particles are weighted
according to the likelihood of the robot’s measurement for
each particle. Given this weighted set of particles the new
population is resampled in such a way that the new samples
are selected according to the weighted distribution of parti-
cles in the old population. In the following, the two phases
are explained in further detail.

Prediction phase: After each movement, the position of
each particle is updated according to the belief of the agent.
More specifically, if the robot has moved forward 10 cm,
each particle is moved 10 cm into the direction of its ro-
tation. If the robot rotates, the particles are rotated ac-
cordingly. Thus, if a holonomic robot moves from state
xk = (xk, yk, θk) to xk+1 = (xk+1, yk+1, θk+1), the parti-
cles are translated by:

 x̂k+1

ŷk+1

θ̂k+1

 =

x̂k + ρcos(θ̂k + ∆θ)

ŷk + ρsin(θ̂k + ∆θ)

θ̂k + ∆θ

 (1)

Where ρ =
√

∆x2 + ∆y2 and ∆θ = θk − θk+1. However,
both ρ and ∆θ are corrupted by noise due to errors in actu-
ators and odometry. Hence, the more accurate the robot’s
motion model is, the better the performance of the predic-
tion phase. For non-holonomic robots, the update equations
can be changed accordingly [9].

Update phase: After a sensor update, the expected mea-
surement for each particle is calculated. This means, mea-
sured sensor values are compared with the world view that



is expected if the robot would be at the position of the par-
ticle (i.e. by a laser scan matcher). The new weight (wik) is
the probability of the actual sensor measurement (zk) given
the particles position (sik) at time k as shown below:

wik+1 = p(zk|sik) (2)

As w is a probability distribution, the weight for each par-
ticle is re-normalized after each update:

wik =
wik∑
i w

i
k

(3)

The resampling can be done in linear time as described in [9].
After resampling, all the weights are reset to the uniform
weight of 1/N .

Resampling and variable sample set size: Particle
filters only need a large N to correctly identify the posi-
tion when the initial state is unknown. However, when the
present localization is quite accurate already, less particles
are needed to keep track of the position changes. Hence,
the number of samples can be changed adaptively depend-
ing on the position uncertainty. We use the approach of
KLD-sampling, which determines the minimum number of
samples needed, such that with probability 1 − δ the error
between the true posterior and the sample-based approxima-
tion is less than ε. The number of samples can be calculated
as:

n =
1

2ε
χ2
k−1,1−δ (4)

This can be approximated using the Wilson-Hilferty trans-
formation as:

n =
k − 1

2ε

{
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

}
(5)

where k is the number of bins of the discrete distribution

from which the particles are sampled. For further details we
refer to [4].

Kidnapped robot and false localization: A common
problem occurs if there are several locations which are rep-
resented similar according to the sensor values. For example
two hallways, which have only one door on the right. In
these cases, it happens that the robot localizes itself at the
wrong position. Furthermore, the robot can be moved by an
external force, like a human. To incorporate sudden changes
or wrong localizations, a fraction of particles can be moved
to a random location. This increases the robustness of the
system.

In our work, AMCL is not used for global localization,
but rather initialized with a location guess that is within the
vicinity of the true position. This enables us to use AMCL
for an accurate position tracking without having multiple
possible clusters in ambiguous cases.

2.4 Robot Operating System (ROS)
The NH-ORCA and the AMCL algorithms are imple-

mented in the framework of the open source Robot Oper-
ating System (ROS) [6]. ROS provides many useful tools,
hardware abstraction and a message passing system between
nodes. Nodes are self contained modules that run indepen-
dently and communicate which each other over so called top-
ics using a one-to-many subscriber model and the TCP/IP

protocol. Naturally this is of great importance when work-
ing with distributed systems. In addition, the modularity
enables to easily create various configurations for different
settings; to run our system on ROS-enabled robots, only
the parameters need to be adapted according to the robot’s
motion and sensor model.1.

3. PROBLEM DESCRIPTION
AND APPROACH

We propose a system that builds upon the two main com-
ponents introduced in Section 2, i.e. NH-ORCA and AMCL,
to provide collision free motion in a real-world system of
robots. In this section we will revisit the assumptions com-
monly made by all velocity-based collision avoidance algo-
rithms and motivate our choice for per agent-based localiza-
tion in combination with position and velocity information
sharing using inter-robot communication. Furthermore, we
will point out the necessary addition of sensor uncertainty,
leading to our proposed algorithm Collision Avoidance with
Localization Uncertainty (CALU) explained in more detail
in Section 4.

3.1 Problem description
ORCA (and all its variants) does not require any inter-

robot negotiation to find optimal collision free motion tra-
jectories and is hence in principal fully distributed. However,
all methods require perfect information about the positions,
velocities and shapes of all other robots. In order to pre-
serve the distributed nature of this approach, robots need to
be able to accurately identify other robots using on-board
sensors; furthermore, positions and velocities have to be de-
duced from the same data. The list of typical sensors for
mobile robots includes stereo cameras, laser range finders
and lately 3D image sensors (e.g. Microsoft Kinect). These
sensors deliver large data-streams that require considerable
computational power to process even for the detection and
classification of static obstacles.

The computational requirement is not the only problem
when considering robot-robot detection. As low-end laser
range finders (e.g. Hokuyo URG-04LX) become widely avail-
able even for mobile robotic projects on a small budget, they
are the preferred sensor choice due to their high accuracy,
resolution and field of view. However, the laser range finder
is usually mounted on top of the robot’s base to allow for
a maximal unoccluded viewing angle. In a system with ho-
mogenous robots that means that there is very little surface
area that can be picked up by the sensors of other robots
and thus prevents the robots from observing each other.

Even though the laser range finder provides a high ac-
curacy in the readings, the localization and tracking of the
robot using AMCL will in general have the tendency to dif-
fer to some extent from the true position of the robot. If
the size of the localization and tracking error is in the order
of magnitude of the robots radius, collisions are bound to
happen.

Previous approaches have worked around these problems
by providing global positioning to all robots based on an
overhead tracking camera. Such a system is not distributed
since a host computer connected to the camera needs to
process the sensor data and communicate with all robots to

1For more information see: http://www.ros.org/.



Figure 3: CALU with four robots. ROS visualiza-
tion tool RVIZ is used to show the trajectories and
localization particles of four robots.

provide position and velocity data. If this machine fails the
system breaks.

3.2 Approach
We propose to utilize agent-based localization and inter-

robot communication to provide a system that is more re-
alistic in real-world scenarios (i.e. without the need for ex-
ternal positioning data) and also more robust (i.e. single
component failure does not lead to system failure). Our ap-
proach, called Collision Avoidance with Localization Uncer-
tainty (CALU), results in a fully decentralized system that
uses local communication to share robot state information
in order to ensure smooth collision free motion; an example
for 4 robots is shown in Figure 3. Below we describe the
four key components of this approach.

Platform: The robots are assumed to be differential drive
robots. Required sensors are a laser range finder and wheel
odometry. For simplicity we assume a circular footprint;
other shapes can be approximated by the circumscribed ra-
dius. In order to connect the different subsystems, including
device drivers and software modules, we use ROS (see Sec-
tion 2.4).

Sensor processing and localization: Each robot inte-
grates wheel odometry data which is in turn used to drive
the motion model of AMCL (see Section 2.3), hence tracking
the pose of the robot. Laser range finder scans are used in
the update phase of AMCL. The uncertainty of the current
localization, i.e. the spread and weight of the particles, is
taken into account for the calculation of collision free veloc-
ities as will be explained in further detail in Section 4. We
assume a prior static map that is used for localization and
available to all robots, thus providing a consistent global
coordinate frame.

Inter-robot communication: Each robot broadcasts its
position and velocity information in the global coordinate
frame on a common ROS topic. Each robot also subscribes
to the same topic and caches position and velocity data of
all other robots. Message delays are taken into account and
positions are forward integrated in time according to the
motion model of robots using the last known position and
velocity information.

Collision avoidance: NH-ORCA (see Section 2.2) is used
to compute optimal collision free velocities according to the
aggregated position and velocity data of all surrounding
robots. As a last step we incorporate localization uncer-
tainty in the NH-ORCA computation as detailed in Sec-
tion 4. The allowed tracking error is scaled depending on
current speed of the robot.

4. LOCALIZATION UNCERTAINTY
The key idea of CALU is to bound the error introduced

by localization. To derive this bound, we revisit the particle
filter described in Section 2.3.

Let xk = (x, y, θ) be the state of the system. The posterior
filtered density distribution p(xk|z1:k) can be approximated
as:

p(xk|z1:k) ≈
N∑
i=1

wik δ
(
xk − sik

)
(6)

where δ(·) is the Dirac delta measure. We recall that a par-

ticle state at time k is captured by sik = (x̂ik, ŷ
i
k, θ̂

i
k). In the

limit N →∞, Equation 6 approaches the real posterior den-
sity distribution. We can define the mean µ = (µx, µy, µθ)
of the distribution accordingly:

µx =
∑
i

wik x̂
i
k (7)

µy =
∑
i

wik ŷ
i
k (8)

µθ = atan2

(∑
i

wik sin(θ̂ik),
∑
i

wik cos(θ̂
i
k)

)
(9)

The mean gives the current position estimate of the robot.
However, the estimate is likely to be noisy and we have to
take this uncertainty into account in order to ensure collision
free motion. The probability of the robot residing within a
certain area A at time k is:

p(xk ∈ A|z1:k) =

∫
A
p(x|z1:k)dx (10)

We can rewrite (10) using (6) as follows:

p(xk ∈ A|z1:k) ≈
∑

∀i:sik∈A

wik δ
(
xk − sik

)
(11)

From (11) we see that for any given ε ∈ [0, 1) there is an A
such that:

p(xk ∈ A|z1:k) ≥ 1− ε (12)

Given sufficient samples, the localization uncertainty is thus
bounded and we can guarantee that the robot is located
within area A with probability 1− ε.

ORCA as well as NH-ORCA assume disc-shaped robots
to make calculations tractable. If a robot radius is inflated
by d, the center point of the robot can in turn be translated
by a maximum distance of d from its original position while
the resulting disc still circumscribes the entire robot. We
next derive d such that (12) holds.

We define a subset S ⊂ {s1, . . . , sN} with

dS = max
(x,y,θ)∈S

(
(x− µx)2 + (y − µy)2

)
(13)

the maximal distance to the mean. Furthermore, we define:

S : S ∈ S iff p(xk ∈ S|z1:k) ≥ 1− ε



# of GT NH-ORCA NH-ORCA CALU CALU
robots σ = 0.0m σ = 0.2m σ = 0.0m σ = 0.2m

2 0 0 0 0 0
4 0 0 62 (11) 0 0
6 0 7 (4) 85 (11) 0 0
8 0 17 (5) 391 (35) 0 1 (1)

loc. – 0.064 0.127 0.061 0.117
error ± 0.009 ± 0.028 ± 0.011 ± 0.043

Table 1: Resulting collisions with various settings
summed over 50 runs. The number in brackets
shows the number of runs in which the collisions
occurred. AMCL is either initialized with a perfect
guess or initial guesses sampled from a two dimen-
sional normal distribution (σx = σy = 0.2m) centered
around the ground truth position.

There is a minimal subset S∗ ∈ S such that (12) holds and
the maximal distance to the mean is minimized:

S∗ = arg min
S∈S

dS (14)

Thus, if the robot radius is inflated by d = dS∗ the resulting
disc circumscribes the entire robot with a probability of 1−ε.

The implementation of this computation is straightfor-
ward and efficient. An implementation of AMCL as ex-
plained in Section 2.3 commonly tracks particles in a k-d
tree structure. The algorithm localizes the node closest to
the mean µ and subsequently increases the radius d while
adding particles that fall into the radius to the set S∗ and
accumulating the weight sum until the threshold 1 − ε is
reached.

5. EXPERIMENTS AND RESULTS
This section presents experiments and results of the pro-

posed system. We have evaluated our approach in simula-
tion using Stage [12] and in a real-world setting.

5.1 Simulation experiments
Simulation allows us to investigate the system performance

when using localization in comparison to ground truth po-
sitioning with perfect information. For evaluation we have
chosen seven different scenarios, using two to eight robots.
In each setting, the robots where located on a circle (equally
spaced) with a radius of 1.8 meter and the goals located on
the antipodal positions, i.e. each robot’s shortest path is
through the center of the circle. The goal is assumed to be
reached, when the robots center is within a 0.1 meter radius
of the true goal.

Configurations: Each scenario is tested with three differ-
ent configurations for localization:

Ground Truth (GT): Each robot gets perfect position and
velocity information through the simulation environment.

AMCL with σ = 0.0m: Each robot starts AMCL initialized
with the exact pose. The pose cloud is initialized with gaus-
sian noise in x and y direction with σ = 0.0m.

AMCL with σ = 0.2m: Each robot starts AMCL initialized
with initial guesses sampled from a 2-dimensional normal
distribution (σx = σy = 0.2m) centered around the ground
truth position.
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Figure 4: Typical robot trajectories observed for dif-
ferent numbers of robots when comparing ground
truth (GT) to CALU.

All three settings were tested using NH-ORCA and CALU
for collision avoidance. When using ground truth both al-
gorithms are essentially the same leading to a total of five
different configurations.

Performance indices: We measure several performance
indices: a) number of collisions, b) time to complete run, c)
distance travelled, d) localization error and e) jerk cost. The
jerk cost measures the smoothness of a path and is defined
as:

Jerklin =
1

2

∫
...
x(t) dt , Jerkang =

1

2

∫
...
θ (t) dt ,

where x is the two dimensional position vector and θ the
robot’s heading.

System: Experiments were run on a single machine with
a quad core 3.07 GHz Intel i7 processor and 6GB of mem-
ory. Each setting was repeated 50 times and results were
averaged.

The results of the simulation experiments are summarized
in Table 1. We can observe that the number of collisions
using the original NH-ORCA rises immensely depending on
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Figure 5: Total time (top) and distance travelled
(bottom) metric for CALU and ground truth (GT)
averaged over 50 simulations runs.

the localization error and the number of robots. Up to a
total of 391 collisions in 35 runs. CALU stayed collision free;
except for a single run, in which only one collision occurred.
Therefore, for the further discussion NH-ORCA is excluded
since it can not be seen as a realistic obstacle avoidance
method without our adaptations. This leads us to further
compare CALU and GT. To stay as realistic as possible, we
focus on runs with CALU and an initial guess corrupted by
gaussian noise. In reality, this will also be the case, since
it is almost impossible to determine the real position of a
robot on a map. Thus, when speaking of CALU in the
coming paragraphs, it is referring to CALU with a noisy
initial guess.

Some typical trajectories with ground truth (GT) and
CALU that we observed during the simulation runs are pre-
sented in Figure 4. For up to seven robots the resulting
trajectories are usually smooth. In the setting with eight
robots, the relatively small area gets very crowded and there
is hardly any space to maneuver, see Figure 4(f). Likewise,
we can observe that using CALU generally results in larger
arcs that are farther away than when using GT. This can
be explained by the inflated radius when using CALU due
to the sensor uncertainty.

As expected, the runtime and distance travelled increased
for more robots as presented in Figure 5. CALU generally
uses more time and travels longer than GT. This is also re-
flected in the average jerk costs, see Figure 6. Interestingly,
CALU uses a lot more angular jerk than GT already for two
and three robots, while GT increases a lot at first and then
stabilizes below the CALU amounts. We assume that the
large jerk costs already for only a few robots are due to the
inflated radii based on the localization uncertainty. Espe-
cially right after initialization, the localization uncertainty
is very large, since the particles are scattered more widely
thus inflating the radius by a larger factor. This only stabi-
lizes after a couple of update steps using the feedback from
the odometry and the laser measurements.

5.2 Real-world experiments
In addition to simulation runs, we have investigated the

performance of CALU in real-word settings up to four dif-
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Figure 6: Linear and angular jerk costs for ground
truth (GT) and CALU averaged over 50 simulation
runs.

ferential drive Turtlebots2. The robots are based on the
iRobots Create platform and have a diameter of 33.5 cm.
In addition to the usual sensors, they are equipped with a
Hokuyo URG laser-range finder to enable better localization
in large spaces. All computation is performed on-board on a
Intel Atom D525 1.8GHz dual core CPU netbook. Commu-
nication between the robots is realized via a 2.4 GHz WiFi
link. Before set up the robots are driven remotely to their
initial positions and AMCL is initialized with an approxi-
mated initial guess.

Figure 7 shows the trajectories of an example run of the
four robots using CALU. The initial positions are approx-
imately 3.5 meters apart; the goal location are set to the
diagonally opposing start locations. The system success-
fully avoids collision and produces smooth paths; except for
a small jump in the localization that can be observed in the
path of robot starting in the upper right corner.

Additionally, we tested a realistic setting of two robots in a
narrow hallway. Each robot wants to get to the other side of
the hallway; thus having to pass the other robot. Figure 8
shows the setup and the resulting paths using CALU. To
overcome that the robots drive into the walls, two ORCA
lines where added to the robots. Adding these additional
lines automatically, based on the map and sensor data, is
topic of future work as described in the next section. The
resulting paths are very close, but still collision free.

6. CONCLUSIONS
While the proposed approach works well in many cases,

there are some limitations that we need to address. If the
workspace gets more and more crowded with multiple robots,
the resulting paths are not always smooth. (NH-)ORCA
computes an optimal velocity that is collision free and clos-
est to the desired velocity. However, in our experiments the
desired velocity points always straight to the goal. Without
a planning algorithm that plans multiple waypoints around
fixed obstacles (and motionless robots) there can occur sit-
uations where the resulting velocity would be zero.

Differential drive robots can not follow the ORCA veloc-
ities directly and always have to turn on the spot or track
an arc to accomplish the desired change of direction. In
crowded situations, robots do have to turn on the spot in
order to avoid collisions, while in open space collision avoid-

2For more information see: http://turtlebot.com.



Figure 7: Real-world collision avoidance with four
differential drive robots using CALU.

ance between only a few robots smoother arc tracking is
desired. This is accomplished by the dynamic adaptation of
the error bound depending on the speed.

If the size of the localization error is in the magnitude of
the robot radius, collisions are bound to happen and this is
shown in the results with NH-ORCA. This is resolved by in-
troducing CALU and adapting the robots radii according to
the localization uncertainty reported by AMCL. However,
the combination of the dynamically adapting error bound
and the inflation due to uncertainty might lead to oscilla-
tions, since previously free path become blocked and free
again depending on the other agents’ radii. To overcome this
the radius scaling can be filtered. Additionally, the AMCL
localization can jump and combined with delays in commu-
nication this can lead to collisions. An Extended Kalman
Filter could be a possible solution to this problem.

In future work we will investigate these idea and fur-
thermore extend our experiments to different scenarios, i.e.
larger map, various start and goal location configurations
and uncontrolled moving obstacles like humans. Addition-
ally, we will examine the possibility of how to implement
the presented algorithm as part of a global and local plan-
ner that will take the map and static obstacles obtained from
the sensor data into account.
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