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ABSTRACT

Several reputation models have been introduced to deal tivith
problem of biased reputation providers. Most of these nwodis-
count or discard biased information received from the rafpon
providers, and most of them are not appropriate when a lasge p
ulation of information providers are biased or dishonest.this
paper, we present a probabilistic approach for reputatiodeting,
the Probabilistic Reputation model (PRep). PRep modelpa-re
tation provider's behavior, and uses this model to re-pritrthe
reported information, thus making use of the entire repurate-
ports effectively, even if they are biased. The re-intaigtedata
is combined with the agent’s direct experiences to detenaim
overall level of trust in the third-party agent. We show tR&ep
significantly outperforms two state-of-the-art trust apgutation
models—HAPTIC and TRAVOS—and improves the overall pay-
off in a game-theoretic environment.
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General Terms
Human Factors, Design, Experimentation
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1. INTRODUCTION

Researchers have used reputation to model the trustwesthin
of individuals in online markets, such as eBay, Amazon, aad Y

hoo [2, 4, 7]. eBay’s tremendous success as an online auction

site stems largely from its powerful yet simple reputatigatem,
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perception depends directly on the reputation reportéesacter-
istics, such as their level of uncertainty, whether theytaased or
realistic, and/or cultural biases they may have. Differeputation
characteristics can be dominant in specific domains. Fanpla
the buyers’ behavior in eBay can be modeled as biased towards
ing positive or negative reviews. In reality, eBay’s feeclbforum
has been observed to be surprisingly positive: among atigst
provided in eBay’s feedback forum, 99% are positive [2, 7].

Avoiding unfair ratings while obtaining unbiased and hdnes
views and ratings has been shown to be problematic and eafiyem
hard to achieve [2]. Researchers in this area have expldffeceaht
solutions to this problem. Some have tried to solve it by iifign
ing unbiased reviews and using models that discount or iitbe
biased information [10, 12, 13]. Another proposed appraac¢h
define a measure of review helpfulness, and identify thefllelp-
views among a set of candidate reviews [3]. These approdeips
to reduce the effect of biased and non-realistic reviewd,thare-
fore highlight unbiased information that can be used foridec
making. However, these proposed models are also throwirg aw
data by filtering, discounting, and discarding, despiteftioe that
reviews are costly and in general not easily obtainable. ithad
ally, some products have few reviews, providing too littltalto
identify the fair reviews and discount the rest [3].

We propose the Probabilistic Reputation (PRep) model, @lnov
solution grounded in probabilistic modeling that learres téview-
ers’ behavior using Bayesian learning and then adjustsréagews
or ratings, as opposed to finding the unbiased reviews acdrdis
ing the rest. In the PRep framework, an agent first gatheosnrd-
tion about a target agent through both direct interactioitls that
target and a reviewer’s report about the target. Then, ihkethe
reporting agent’s behavior by comparing these two souicesie-
ports and direct experiences). After the learning phaserigptete,
the PRep agent can interpret other reports about othert$argm-
ing from the same report provider. As a result of this intetation,
it uses the entire report effectively, even if the reportvidter is

Feedback Forum [7]. The importance of reputation systems in biased (i.e., even if its reports are based on faulty peimepbr on

Internet-mediated service provision has been widely neizegl
by researchers in various disciplines, such as multi-aggstems,
economics, and information systems [4].

In the literature, reputation has been referred mostly ¢oatty
gregation of people’s opinion about one person. In this pape
use reputation as the perception of one person (or agenty ahe
other person’s behavior, intention, or reliability of see: This
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dishonest reporting).
The key benefits of PRep are:
e The PRep reputation mechanism uses biased information as
well as unbiased information; it therefore benefits from all
available data.

e PRep agents obtain a tailored view of the reviewer (or re-
porter) according to their own behavior and preferences, re
sulting in customized aggregation of reviews.

e PRep is still effective in cases with very few observations o
reviews. Most current models are unable to find usable feed-
back or generate a meaningful reputation level when only a
few ratings are available [3].



In this paper, we describe our approach and its applicatioa i
game-theoretic environment. Our experimental resultsvsihat
PRep is able to learn the reporting behavior of a report peayi
and consequently to interpret other reports of that proyidsult-
ing in better decision making and higher payoffs in its fatinter-
actions. Also, our results show that PRep identifies othents)
trustworthiness faster and more accurately than two othée-f-
the-art trust and reputation models (TRAVOS and HAPTICgrev
when reported information is biased.

2. RELATED WORK

Reputation has been widely studied [2, 4, 7, 8]. Severalteepu
tion models and mechanisms have been proposed in the Uiterat
to deal with the problem of biased and unfair ratings.

The BRS [13] and TRAVOS [10] approaches construct Bayesian
models, using the number of satisfactory and unsatisfadtber-
actions with the sellers as ratings, and then use outliecten or
relevance analysis to filter out unreliable ratings. A dragkoof
these approaches is that a significant amount of informatiap
be considered unreliable, and therefore discarded or wliged.
BLADE [6] uses a Bayesian model reputation framework. In-con
trastto BRS and TRAVOS, itdoes not discard all unreliabligss;
rather, it learns an evaluation function for advisors whovjate
ratings close to their direct experience. Therefore, BLAQ#Y
performs well if the advisors are extremely honest or exélgm
dishonest. For example, BLADE discounts the ratings evénef
advisor provides 70% honest reports. In the real world,saigiare
not purely good or bad and could have various levels of hgnest

Vogiatzis et al. [11] proposed a probabilistic trust andutep
tion model that focuses on modeling service providers wizse
havior is not static with time. Their model does not work wiall
the presence of biased advisors. Additionally, Vogiaszisodel
and TRAVOS both assume that there has been a history of tatera
tions between the agent (i.e, the reputation requestera aedvice
provider. Noorian et al. [5] categorize an advisor’s “unfaiss” be-
havior into two groups: intentional and unintentional. iFimeodel,
Prob-Cog, uses a two-layer filtering approach to detect apliel-
ify unfair advisors. Prob-Cog mainly targets and filtersaiisors
who are intentionally biased. Their model does not perforefl w
when there is a large population of intentionally unfairiadvs.

—> Direct Experience

..... > Reported Experience

Target |

-~
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about Target|

TargetS

Figure 1: Basic scenario. Requester stands for Reputation &
quester, Reporter stands for Reputation Reporter, and Targts
are agents that Requester would like to know about.

advisor, if it has previously observed the advisor’s betwavi his
allows PRep agents to form a view about service providers tha
have very few reviews and ratings or for whom the majorityhef t
reviews is biased. Other reputation models do not work gffely

in such cases.

3. THE PREP MODEL

In this section, we explain our reputation mechanism, PRep,
which is based on probabilistic modeling and Bayesian lagtn
PRep has two main steps: learning the reporter's behavemtigs
3.3) and interpreting the later reports coming from thabregy for
use in decision making (Section 3.4).

Figure 1 explains our model using a two-step scenario ifrglv
a reputationrRequester, a reputation (review or opiniorfreporter
(advisor), and severdargets (service providers). In this scenario,
Requester is new to a society of agents, but Reporter hasibbeen
this society for some time and has had direct interactiotis s@v-
eral agents (Targetl, Target2, Target3, etc.). Requestestiarts to
interact with Targetl directly, then asks Reporter for samfrma-
tion about Targetl. By comparing its own direct experiemcthé
reported experience of Targetl, Requester learns Rejsagpprt-
ing behavior. At this point, Requester can interpret aaglieports
from Reporter about other agents (e.g., Target2) and cathisse-

Zhang and Cohen [15] proposed a personalized approach 1o han formation to interact more effectively with those agentst\that

dle unfair ratings. They use private and public reputatidorima-
tion to evaluate the trustworthiness of advisors. Theyresdt the
credibility of advisors using a time window to calculate theency
of ratings, and then estimate the trustworthiness of advisased
on the ratings. Their model does not interpret unfair ratings
a result, when the proportion of unfair ratings increades ttust-
worthiness of advisors decreases; this results in thersyslying
heavily on private reputation (i.e., agent’s direct expeces). Yu
and Singh [14] measure how much the advisor’s rating deviate
from the consumer’s experience. Their model identifies \teu
advisors, and discards deceptive advisors.

Another area of research is focused on sentiment analysis an
review helpfulness. For example, Kim et. al. [3] propose éhoe
for automatically determining the quality of reviews. These re-
gression to rank different sets of reviews on Amazon.corsgtha
on their helpfulness. They do not customize the reviewsdase
a user’s experiences or preferences. Also, since many gtoder
ceive very few reviews, their approach is not helpful forrsuases.

In contrast to these mentioned models, PRep uses and castmi
reviews (or reports) even when they are biased. Without prter-
actions with a service provider, a PRep agent can form a viiewta
the service provider by requesting and interpreting theiopiof an

Targetl does not know that Requester is new and has requepted
utation information from Reporter. This assumption preserar-
getl from deliberately misleading the Reporter in order islead
the Requester. Also, Reporter does not know whether Regjuest
has already interacted with Targetl. The latter assumptievents
Reporter from deliberately misleading Requester aboutjiert-
ing behavior.

Trust and reputation have generally been modeled usingdwicss:
direct and reported experiences. PRep interprets repenstpé-
riences in its reputation model and uses a direct-expezidnist
model to evaluate the trustworthiness of agents. In thiepape
use HAPTIC [9] as the trust model. However, PRep is geneml an
can be combined with other existing direct-experienced tnaslels.

3.1 Direct-Experience Trust Model

Harsanyi Agents Pursuing Trust in Integrity and Competence
(HAPTIC), a trust-based decision framework, is among thede-
isting models with a strong theoretical basis: HAPTIC isugrded
in game theory and probabilistic modeling. It has been shihah
HAPTIC agents are able to learn other agents’ behaviorahigli
using direct experiences. One shortcoming of HAPTIC is that
does not support reported experiences.



The HAPTIC model allows an agent to predict a partner's ac-
tions and use these predictions to decide whether or naigbttrat
partner. The key insight in HAPTIC is that it separately nede
trust using two components gbmpetence andintegrity. Compe-
tence is modeled as the probability that a given agent withtie
to execute an action in a particular situation. Integritgrisagent’s
attitude towards honoring its commitments (or equivaleat the
agent’s belief in a discount factor), and is affected by theepived

ML m.: Game variable multipliers
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\ R:A sequence of cooperations
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probability of future interactions. This distinction isaisl when R raA seiuence of chang}ed el ot
an agent defects. It is important for the other agent to stded cooperations ‘C’, and defects ‘D’

whether the defection was due to the incompetence of an hones
agent, or was the result of cheating by a competent agentavith
integrity. HAPTIC identifies a discrete set of player typgsnoted
by ©, and maps each agent's competence and integjtitya value
from this set. A HAPTIC agent observes the behavior of other o ) )
agents and estimates their competence and integrity, testhis [5]. A realistic Reporter always reports truthful inforraat, corre-

Figure 2: Report generation from a game between Reporter
and Target.

data for decision making in future interactions with eacérig sponding directly to the experiences that it has had in tisé\pith

HAPTIC has been applied to a modified two-player Iterates-Pri ~ Other agents. A pessimistic Reporter underestimates agents’
oner's Dilemma (IPD), in which the payoff matrix in each raotis behavior, and an optimistic Reporter overestimates otgents’
scaled using a random multiplier. As a result, the payoffeedi behavior. T_he level of optimism (c_)r pessimism) is modeledaby
from one round to the next. HAPTIC assumes that agents knew th Ordered pairw = (wopt, wpess), which may be based on the Re-
current round’s multiplier before selecting their actiowéth vari- porter's innate characteristic or could depend on Repsriteren-
able payoffs, a failure due to low competence can be disishgd tives for hqnesty/dlshonesty. Specifically, V\(lth probmjl)lb.).opt,
from a failure that results from low integrity. An honest bt Reporter will change some of the Defect actions of the tdrget
competent agent defects randomly, irrespective of the fhagy Cooperates inits reports. Similarly,.; defines the probability of
contrast, a cheating agent shows a pattern in its defectimsgs changing Cooperate actions into Defects. For optimisporters,
correlated with the expected payoffs. A HAPTIC agent coraput ~ “opt '€presents the degree of optimism (probability dba— ¢
expected payoffs (as defined in the classic Prisoner’s Dilampay- “flip"), and wyes is zero. Likewise, for pessimistic reporterg.s
off matrix) and decides rationally whether to cooperate efiedt. is the degree of pessimism, and,. is zero.

Equation 1 defines, a threshold for cooperation and defection. If ~ Figure 2 shows how a reportis generated in an IPD environment
the agent's integrity is greater thanit will cooperate; otherwise, it~ @nd how it will be changed by different reporters. We denbe t
will defect. § can be computed for each agent and each game using@ctual result of the series of games between Reporter agétlas
the current round’s payoff multipliem, the average payofil, and R. Ris a sequence of Cooperate and Defect actions by Target in

the estimates of the payoffs of the four possible outcorm%sst the Series of games played with Reporter. Th_e mterat_:tlndsra-
porting process are as follows. Target makes its decisiassdon

R, andT).! 1 . 4> 1O bt
§=—" (1) its competence and integrity, and the payoff multipliem of each
Zég:%) +1 game, as modeled in HAPTIC. When Reporter wants to suBmit
A learning HAPTIC player considers the outcome of each round {0 Requester, it will first chang# to R’ based on its typey, and
as either a Success (expected action) or a Failure (unexpact then deliverR’ to Requester. For exampleifis 30% optimistic,

tion), based on its hypothesis about that agent's type.atiter ~ then Reporter will change each Defect @) to a Cooperate (in
games between two agents allow HAPTIC players to reducesthe s 12') With probability 0.3 (Figure 2).

of probable types being considered. The HAPTIC learninghott In the real world, a Reporter could have various perceptions
uses observations of agent behavior to estimate the congested of interacting with different targets, based on its relasioip with
integrity for each agent. those targets, e.g., as a collaborator or competitor. Hiengever,
we assume that Reporter has the same perception of playdifvith
3.2 Types of Reporters ferent Targets, so its reporting behavior will be the samedcious
One of the dominant recognized reviewer behaviors (indgdi ~ 1argets. Since HAPTIC assumes that agents know the curidnt m
eBay’s Feedback Forum) is being positively or negativehsbd. ~ tiplier of the round, we maintain this assumption here: girts
In the real world, some reviewers are realistic (and honésth- know the multipliers of the games. We intend to relax bothefe

fully providing the requested information, reviews, oestOthers assumptions in our future work.
tend to hide people’s defects because they are afraid diateda )
[7], they are hopeful of getting a good rate in return [1],layt gain 3.3 Leamn Reporter S Type
personal or economic rewards or incentives by doing sol cBtit We now explain how Requester learns Reporter’s type usiyg®an
ers may change the results with pessimism, because theysre p model averaging by comparing direct and reported expeg&nc
simistic people by nature, or because they want to ruin a etimp ~ Consider our basic scenario, shown in Figure 1, in which Rstgu
tor's reputation and discredit them. Note that reportingatieely and Reporter have played separately with Targetl. Suppage t
about a service can be completely realistic and not pestimifs Requester asks Reporter for some information about Tardyel
the service was actually bad. denote the actual results of the play between Reporter amgf{la

To address the consequences of these behaviors in the méy wo by 2, and between Requester and TargetZbyReporter changes
we model the behavior of reporters in PRep as being potbntial the true resultsR, based on its typey, to R’ for reporting to Re-

biased. We define the reporters’ behavior using three typabs- quester. . .
tic, optimistic, andpessimistic, similar to Noorian et al.’s approach We define a set of discrete reporter typs, Each typeu; € Q

'R, T, S, and P are the standard PD payoffs from the payoff matri 2Using a discrete set of possible agent types is simpler a8l le



is a pair of valuesw,pt, wpess). Realistic agents are modeled by
w = (0, 0). The probability of a type hypothesis is denoted by
P(w;). Requester has also learned a probability distributiom ove
the possible player types for Targetl, which are denote@ byhe
probability of each player type is denoted By#,).

To find the probability of each type of Reporter, given thautess
R’ and D, i.e., P(w;|R’, D) for each Reporter typey;, we use
Bayesian model averaging over all possible Targetl types,

P(wi|R',D)= > P(wi|R,D,0;) x P(6;|R,D).
0;€0

@)

The second termP(0;|R’, D), is the probability of Targetl's type
being 0;, given R’ and D. In this case,D, the direct experi-
ence, is more reliable thaR’, the reported experience. There-
fore, PRep conditiong; only on D, and this term is simplified as
P(6;]D), which is Requester’s probability distribution of Targst1l
type, learned using the HAPTIC model.

The firstterm,P(w;|R’, D, 6;), is the probability of a Reporter’s
type, given Targetl's typé;, R, and D. Sincew; is condition-
ally independent of the results of Requester and Targeldys(p)
givend; andR’, this term can be simplified t8(w;|R’, 8;). Using
Bayes's rule, we can rewrite this term as:

gy - PR 05wi) x P(wi)
P(wi|R,0;) = PR 5;) .

We assume a uniform prior on the Reporter's type,Fa;) is
just the reciprocal of the number of defined types for Reporte
(P(wi) = ﬁ). Also, P(R',6;) is a normalizing factor, so we
only need to comput®(R’, 6,|w;). Using the definition of condi-
tional probability, this term can be rewritten as:

P(R’,Bj\wi) = P(R’|9j,wi) X P(6J|wz) (4)
Sinced; andw; are independent, the second term in Equation 4
is P(0;), a prior uniform distribution over the player types. The

expected value oP(R'|0;,w;) is defined by a weighted sum over
all possible values oR:

®

E(P(R'|0j,w:)) = Y P(R'|R,0;,w:) x P(R|0;,w;).
R
Since computing this full expectation is computationalgry ex-
pensive, one can instead approxim&gR’|;,w;) using the max-
imum likelihood value forR. Denoting the most likehyR as R*,
this maximum likelihood can be written and expanded as:

where Rt are all the cooperates artl, are all the defects in the
report. Since each round played is assumed to be indepeafient

the others, the probabilities of the observed defects andarates
in the report are independent of each other, yielding:

®)

P(R¢, Rp|R",0;,w;) = P(Rp|R*,0;,wi) x P(Rp|R",05,w;).

(7
Each term in Equation 7 represents a series of i.i.d. (inoisgpet
and identically distributed) observations from a Berniaditribu-
tion, so a binomial distribution can be used to compute trezail/
probability of each reporter type. The first binomial is thelp
ability of observing a certain number of optimistic flipse(i. the
case where the intentioR* of Targetl is Defect and the report of
that round,R’, is Cooperate). The second binomial likelihood is
the probability of seeing the observed number of pessimibfis
in the report. (when the intentioR* is Cooperate, but is reported

computationally expensive than modeling agent types witbra
tinuous variable. We experimented with a continuous versiod
the results are very close to what we obtain with discrete set

as a Defect iR’). The expected success rate for the first binomial
is the number oD — C flips over total number of Cooperates in
the results R, that would be expected from a reporter with type
w;. Similarly, the expected success rate for the second baldmi
the number ofC — D flips over R},. Note that a success in this
context is a “flip”: that is, when Reporter changes a Coopei@at
Defect, or vice versa. We multiply these two binomial likelods

to computeP (R'|w;, §;) in Equation 7. By averaging over all pos-
sible Targetl types, Requester can calculate the protyatiileach
type of Reporter (Equation 2).

In more complicated environments, the Requester may haire mu
tiple reports from the same Reporter. In this case, we figghléhe
Reporter’s behavior in each set of reports, and then useghteei
averaging function over all possible Reporter types, fa.N re-
ports. In fact, to estimate the credibility of the learnedn each
transaction, we use the length of each report, i.e., the purob
rounds for which two agents interacted with each other i eano:

S0 P(wi| R}, Dy) x length(RY)
ijzl length(R;)
(8)

wherelength(Rj) is the number of interactions reported iy.
Note that as the number of rounds increases, the statigamsie
more accurate, leading to better results (see Section 4).

3.4 Report Interpretation

In the previous subsection, Requester learned Reporgpes tn
this section, the maximum likelihood of the possible Reparipes
(i.e., P(w;|R', D)) will be used to interpret the reported results for
new Targets. We illustrate how agents can use this interfioetto
learn the player types (competence and integrity) of otaegets
with whom they have not previously interacted.

After learning Reporter’s type, Requester asks Reporteinfo
formation about Target2, and uses its learned knowledgeesf R
porter’s type to interpret the reported results (which aneaded by
R3). Without loss of generality, we explain how to interpre¢ th
reports when Reporter’s type is optimistic. Recall tha: rep-
resents the probability of optimistic flips in the report angl.,,
represents the probability of pessimistic flips in the répblsing
Equation 9, an “interpret” function estimates the total a@mof
Cooperatesdpuntr, in the actual result$:) using countgy
as the total number of reported Cooperates in the sequBhce
length(R2) as the number of rounds in the play, ang,:. The
difference betweenountr,. andcountp, . isthe number of Co-
operates that should be changed back to Defects to produe mo
accurate results, and saving the resulRas

)

P(w;|R}, D1, ..,Ry,Dn) =

countpy = Countr,e +wi_opt X (length(R2) — countr, ). (9)

Requester now plays back the new resuRg;—generating an
action as it would do if it were actually playing with Targetand
uses HAPTIC to updaté(d,) for each possible Target2 player
type,8; = (C, I). This distribution will continue to be updated in
the online learning process between Requester and Targkéed
they start their direct interactions. This knowledge wiltiease
Requester’s overall and mean payoff.

4. EXPERIMENTS

In this section, we present our experimental results. Weavsho
the performance of the learning and report interpretatimmo-
nents of PRep. We also compare the overall performance gb,PRe
HAPTIC, and TRAVOS in terms of learning accuracy and payoffs



— Direct Experience ====3 Reported Experience

Figure 3: Stepl and Step2 of basic scenario. Req is Requester
Rep is Reporter; T1 & T2 are Targets.

As an overview, in the first two experiments, Expl and Exp2,
we evaluate PRep’s learning and interpretation componeats
spectively. In the third experiment, Exp3, we compare PRip w
HAPTIC, and verify the results with a t-test. Finally, in Expa

4.2 Expl: PRep Learning

In our first experiment, we show the performance of PRepisilea
ing component for different reporter types. We compare iherg
Reporter type distribution with the learned distributiowlaneasure
the accuracy of the learned Reporter types.

Design: We evaluate PRep in two steps, shown in Figure 3 (which
follows our basic scenario presented in Figure 1). In thé $iep,
PRep learnsv; in the second step, it uses the learnetb inter-
pret the reports in its successive plays. In step one, Resuasd
Reporter each plag0 rounds with Targetl. Then, Requester asks
Reporter about its experience with Targetl. Reporter atevke
actual resultsR, to R’ based on its typey, and passes the report,
R’, to Requester. Requester then learns the Reporter’s dype,
given R’ and R (using the approach described in Section 3.3). In

TRAVOS Requester competes with a PRep Requester in finding step two, Reporter play30 rounds with Target2 (results R»).

Targetl’s behavior. We compare their mean error in finding Ta
getl’s behavior and the mean and cumulative game payoffs.

4.1 Simulation Parameters

Distribution of Reporter Types: In these experiments, the re-
porter type is chosen randomly using either a uniform diation
or a capped Gaussian distribution. These functions randgem-
erate numbers in the range (-0.7, 0.7), based on the typestof-di
bution. A negative number represents a pessimistic reperfes-
itive number is an optimistic reporter; and zero is reaistWe de-
fine the Gaussian distribution function with zero mean angez-s
ified variance. Various demographics of realistic, pessiiiand
optimistic agents will be achieved by changing the variaofcéne
Gaussian function.

PRep represents the set of possible reporters using atdisete
of types (opt, wpess). Fifteen reporter types are considered by
PRep: (0.1, 0), (0.2, 0)..(0.7,0) as optimistic reportgresy; (0,
0.1), (0, 0.2),..(0,0.7) as pessimistic reporter typest @ 0) as
a realistic reporter type. The uncertainty associated wihre-
porter’s type is described by a multinomial probabilitytdisution
over these possible types. Learningwpbccurs by updating this
probability distribution based on the observed behaviahat re-
porter after each reporting interaction.

Agent Strategies: Requester and Reporter are HAPTIC agents
that have competence and integfitJargets are selected from clas-
sic strategies from the IPD literature in our experiment&L®&,
ALLD, TFT, and TFTT. An ALLC Target always cooperates in its
play with any opponent. An ALLD Target always defects. A TFT
(Tit-for-Tat) initially cooperates and then copies its nterpart’s
action from the previous round. A TFTT (Tit-for-Two-Tat)ex is
forgiving and defects only if the opponent agent has defewtice
in a row. We also use two variable-payoff strategies fromtBmi
and desJardins [9]: DHP (Defect on High Payoff) and DMP (De-
fect on Medium Payoff). A DHP Target defects only on high-gfay

games, and a DMP defects on medium and high payoffs, and coop-

erates on low payofféAmong these strategies, TFT and TFTT are
the only ones who behave in reaction to their opponent’®asti
The rest select their actions based on their type and rezsardif
their opponent’s move.

We also introduce a noise factor for each of these stratggést
corresponding to HAPTIC’s notion of competence. This facto
which is the probability of the actual action to be equal te it
tended action, is selected from this set: {0.7, 0.8, 0.9, 1}.

Then, Requester asks Reporter about Target2. Reporteertenv
the actual result®, to R} based on its typey, and passes the re-
sults to Requester. Requester interpféidased on the learned
and generate®’.> Requester plays badk; and learns Target2’s
competence and integrity, denoted @, 7). Finally, Requester
plays for20 rounds with Target2, starting with its learned values
for Target2's(C, I).

In Expl, 100 Reporter types;, are selected randomly from a
uniform or Gaussian distribution. Requester and Repoirep
types (Competence, and Integrity) values are (1, 0.9).€fargnd
Target2 types are selected randomly from a set of 16 stratgugs:
namely, the cross products of 4 player types (ALLC, ALLD, DHP
and DMP) and 4 competence values (0.7, 0.8, 0.9, 1).

As a performance metric, we use the mean error, which is the
difference between the identified Reporter typeand the correct
type. All results are averaged over 100 ruhs.

Results: Figure 4(a) shows the distribution of true reporter types
and most likely learned types in 100 runs of the experimeet ov
100 reporter types, when the true reporter types are sdlasieg a
uniform distribution. PRep is able to identify the unifornstibu-
tion, since the values are almost equally spread over thmigpic
and pessimistic ranges, except for the realistic type (whiitl be
explained next). The mean error for this experiment is 0Pt of
this error arises from using discrete types in the learninggss:
the discrete steps are 0.1, so inherently an error up to Oil05ev
introduced during learning (0.025 on average).

Another source of error is the population of learned realig-
porters = 0), which is much higher (about 28) than the true num-
ber of realistic reporters value (100/15 or around 7). Thaana-
tion for this disparity is that optimistic reporters cantet identi-
fied when they are reporting about ALLC players. An ALLC playe
always cooperates, so an optimistic reporter makes no elsang
the report, and PRep detects such reporters as realistig pridb-
lem can be solved when a PRep agent has multiple encountibrs wi
the same reporter (see Section 4.5). The same is true fanpsts
reporters when reporting about ALLD players. The poputatd
ALLC players is 25, and roughly half those will face an opstid
reporter, which is 12 in the population. Similarly, anotii@rfalse
positives are generated from the ALLD players. Therefdrepop-
ulation of realistic reporters will be estimated as 24 mbantthe
true number. Since these misidentified realistic Repoliar® a
true value between 0.1 and 0.7, the average error for eadtesét

SR; is Requester's estimation of what actually happened betwee
Reporter and Target2, & is not available to Requester.

°As in Smith and desJardins, competence of agents are sklecte Note that a “run” is different than a “round.” A “round” is angjle

from {0.7, 0.8, 0.9, 1}; and integrity is a number from 0 to 1.
“Multipliers of the rounds are selected from {0.4,1,4}. A DHP

defects on rounds with m=4 and DMP defects on m=1 and 0.4 [9].

play between two agents in PD game, with single Cooperate or
Defect as outcome. A “run” is a combination of several “rasihd
in games between the agents in a scenario.
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Figure 4: Expl; The probability associated with Reporter’s
true reporting type.

24 Reporters will be 0.4. This will cause an additional 0.098,
0.4x24/100) error, making the estimated overall error to be D.12
(0.025 + 0.096), which is very close to the actual error.

Figures 4(b) and 4(c) show the distribution of true agenesyp
and most likely learned types over 100 reporter typesselected
from a Gaussian distribution, with variances of 0.3 (15%ista)
and 0.1 (41% realistic reporters), respectively. PReplestakiden-
tify different distributions of reporters and the learnegpplation is
close to the original population for both large and smaliamces
in the Gaussian function. The mean error for variance 0.31% 0
and for variance 0.1 is 0.077. As the number of realistic reps
increases in the population, the mean error decreasexpdbiss
in part partially because fewer ALLC and ALLD targets wilcta
optimistic or pessimistic reporters, respectively.

4.3 Exp2: PRep Interpretation

In the second experiment, our goal is to show the importance
of correct interpretations when a reporter is biased. Wegdean
experiment with fixed values (as a snapshot of Expl), aveitage
over 100 runs, and focus on finding the correct Reporter's,typ
w and the Target's type, (C, 1), after report interpretation ¢ghe
resulting cumulative payoff.

Design: We follow the scenario shown in Figure 3. In the first
step, Requester and Reporter pBiyrounds with Targetl. In the
second step, Requester and Reporter plagounds with Target2.

In this experiment, we use HAPTIC as a baseline. Also, to show
the negative effect of not re-interpreting reports, we deéinother
baseline, PRep-Nolnterp. This baseline uses PRep mode} wit
out the interpretation component. A third baseline, PRegeRt,
shows the upper limit benefit of reported experiences whemeth
porter is realistic and there are no flips in the report.

In Exp2, Reporter’s true type is optimistic 0.4. Requestat a

Reporter player types values are fixed at (1, 0.9). Targ¢€,'d)
is: (1, 0.6), and Target2's true value is (0.7, 0.6).

Our performance metrics are the accuracy of the learned Re-
porter'sw and Target2's player types (by looking at the probability
assigned to the true player types, i.e., (C, 1)) and the cativel
payoff. The results are averaged over 100 runs.

Results: Figure 5(a) shows the results of learning Reporter's
in Exp2, averaged over 100 runs, wherés optimistic 0.4. This
graph shows that Playerl was able to identify Reporter's typ
having an optimistic behavior. The probability of the levef op-
timism is spread over different values; the maximum liketiti of
these values, is optimistic 0.4, with probability 0.22. Fesult
illustrates the correctness of PRep’s learning component.

Figure 5(b) displays the results of learning Target2’s {CThe
possible hypotheses for Player4 are shown by small cross;gige
correct hypothesis is (0.7, 0.6), which is the true value afgét2
type. The circles’ sizes represent the learned probalifitgach
hypothesis for Target2. The top left graph shows the redaits
HAPTIC. In this case, Requester uses only direct expergenkg
ter 20 rounds of play, the hypothesis probabilities areagbpeenong
four values: (0.7, 0.9), (0.7, 0.6), (0.7, 0.35), and (0.7),0which
means that Requester is getting close but has not yet dgricen-
tified Target2's true type. The PRep-Nolnterp graph shoasuk-
ing the non-interpreted reports still yields a moderatebphility
of finding the correct hypothesis. The results for PRep ao#sh
in the bottom left graph, where the highest probability isigised
to (0.7, 0.6). This is the correct hypothesis; thereforeguester
can achieve higher payoffs with this learned model thangudin
rect experience alone. If Reporter was a realistic reporstead of
being 40% optimistic in Exp2, Requester would have beentable
identify Target2's actual (C, I) with a higher probabiligs shown
in PRep-Perfect graph in Figure 5(b).

Another interesting view of the learning process is how daeried
probabilities changes over a series of rounds for Targatzstype.
As seen in Figure 5(c), PRep starts high (near 0.56) from ¢éie b
ginning, while HAPTIC'’s probability of the true type remaiat a
lower level and needs several more rounds to increase. The ma
reason for this behavior is that PRep has learned Targefisus-
ing reported experiences that it has received from Reporter

The corresponding payoffs resulting from the four appreach
are shown in Figure 5(d). As expected, PRep-Perfect hasghe h
est payoff; PRep (that interprets biased reports) ranksnseand
yields payoffs close to PRep-Perfect. HAPTIC places thep-
Nolnterp is in the fourth place and behaves very similarlifdP-
TIC. Since the reporter in this experiment alters Defecthére-
sults with a 40% probability, using reports without intexfations
will result in a performance close to HAPTIC, which is hinelér
by its belief in the incorrect reports.

4.4 Exp3: HAPTIC Vs. PRep

To verify the effectiveness of PRep over different played e
porter types, we performed Exp3, repeating a game for 108stim
In each run, we use the scenario in Figure 3. Requester'sisype
fixed at (1, 0.9), and the reporters’ types are selected basexd
Gaussian distribution with 0.3 variance (15% realisticontgrs)
centered on zero. The Targetl and Target2 types are selacted
domly among 16 strategic types: the cross product of foatestr
gic types (ALLC, ALLD, DHP, and DMP) with 4 competence val-
ues (0.7, 0.8, 0.9, 1). The mean payoffs for HAPTIC, PRep, and
PRep-Perfect in this experiment are 1.89, 2.17, and 2.5pere
tively. PRep (with biased reporters) achieves 14.8% imgmoant
over HAPTIC, where the upper limit is 15.3% achieved by PRep-
Perfect. A t-test confirms that the mean per-round payoff$Ad?-
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Figure 6: Scenario for TRAVOS and PRep. Req is Requester;

R1, R2,..R10 are Reporters; and T is the Target.

TIC and PRep are different; with 99.9% confidence, the difiee
is between 0.274 and 0.276.

4.5 Exp4: TRAVOS Vs. PRep

In Exp4, we compare the performance of TRAVOS [10] and
PRep in a noisy environment with biased and unbiased regorte
We measure the accuracy of the learned Target types, ané-the r
sulting mean and cumulative payoffs for both a PRep Requeste
and a TRAVOS Requester.

TRAVOS: This model uses probabilistic modeling based on a
beta distribution. TRAVOS outperforms many other trust eeyt
utation models, including probabilistic models such as BRS.
TRAVOS uses the number of satisfactory and unsatisfactugy-i
actions with the sellers as ratings, and uses a weight fumdt
combine these ratings. Agents calculate rating weightsobypar-
ing the relevance of each rating to their own opinions.

TRAVOS models the trustworthiness of each agent by a fulfill-
ment factor, which is equivalent to “competence” in PRepwHo
ever, TRAVOS does not model the integrity of an agent. In orae
compare PRep and TRAVOS, we settle this difference by phogid
the integrity of an agent as an input to TRAVOS, whereas PRep i
searching in a two-dimensional space for competence aegritit
Note that this gives an advantage to TRAVOS.

Design: To be able to compare PRep and TRAVOS in both mod-
eling and assumptions, Exp4 uses another IPD-based tes¢-fra
work. TRAVOS assumes previous transactions between Rejues
and Target, so we design this experiment with this assumptio
Also, we have several Reporters (each with different bemain
this experiment reporting about one Target. Therefore,Rbhe
quester interprets different reporters’ reports aboutTarget.

The scenario for this experiment is shown in Figure 6. Relgues
plays with Target for 10 rounds. Ten Reporters play 10 rowvitts
Target. Each Reporter changes the outcome of its play basisl o
type and then reports the changed results to Requester,pdatas
its belief about that specific Reporter. We repeat the sameeps
100 times; in each run, a Reporter’s type,is learned. In PRep,
this value will be averaged over the so far learnedas seen in
Equation 8) and later will be used in interpreting reports.

In this experiment, Requesters use either TRAVOS or PRep for
modeling their trust and reputation; target types are sste@an-
domly from the cross product of six strategic types (ALLC,LAD,
DHP, DMP, TFT and TFTT) with 4 competence values (0.7, 0.8,
0.9, 1). Requester and Reporter’s competences and inesgaite
fixed at (0.8, 0.9). The population of Reporters consistealistic
and biased reporters (pessimistic/optimistic up to 0.7reatistic),
selected from a Gaussian distribution with 0.1 varianc&44éal-
istic reporters) centered on zero.

We compare the accuracy of Target player types (competence i
this experiment) learned by TRAVOS and PRep. As a performanc
metric, we use the mean error, which is the difference betlee
identified type and the correct type. Also, we compare PRep an
TRAVOS in terms of the mean and cumulative payoff. All result
are averaged over 100 runs.

Results: Despite the fact that we have provided TRAVOS with
the correct integrity, as we can see in Figure 7(a), PRepediatpns
TRAVOS in identifying the Target's type (competence). Téigor
for TRAVOS has converged to 0.078 and for PRep to 0.043 (a 45%
improvement over TRAVOS). The reason is that TRAVOS heavily
discounts the biased reports, while PRep interprets ansl theg
data to learn more about the behavior of the Target. As atresul
of correctly identifying the behavior of the Reporter, themila-
tive payoff is increased from 2085 to 2264 (Figure 7(b)) ama t
average payoff per round is increased from 2.09 to 2.26 (ar8% i
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