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ABSTRACT
Despite a large body of research on integrating organizational
concepts into cooperative multiagent systems, a formal under-
standing of how organizations can influence agents’ decisions
remains elusive. This paper works toward such an under-
standing by beginning with a model of agent decision making
based on decision-theoretic principles, and then examining
the possible routes that organizational influences can take
to affect that model. We show that alternative avenues
of applying influences correspond to different prior notions
of organizational control, and empirically demonstrate the
impact that each can have on the quality and overhead of
coordinated behavior. To do so, we must define the agents’
baseline behavior (without a designed organization), and we
present a methodology for initializing agents’ models to com-
prise what amounts to an “uninformed” organization. Finally,
we show how the specification of organizational influences
in terms of components of a decision-theoretic agent creates
opportunities for agents to compare actual events with pre-
dictions implied in the models, such that agents can reason
about whether to change organizations. We demonstrate
that this capability to question and change organizations can
be valuable if used judiciously.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Coherence & co-ordination, multiagent systems

General Terms
Design, performance

Keywords
Organization, organizationally adept agents

1. INTRODUCTION
Organizational structuring is a widely adopted and of-

ten powerful tool for coordinating large groups of people to
achieve common goals effectively and efficiently, by giving
each person guidance in how to make local decisions that
are useful to the collective endeavor. Multiagent systems
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research has investigated how organizational concepts and
strategies can be modeled and utilized by computational
agents, showing that organizations can increase the expected
performance of large-scale, cooperative multiagent systems
[12, 6]. Research also suggests that organizational control
becomes increasingly effective as the number of agents in-
creases, the time horizon increases, the system complexity
increases, the system resources decrease, and/or the perfor-
mance goals increase [4]. That these issues arise in realistic
application domains has driven research into how to encode
pertinent organizational control and how to augment agent
architectures to follow such control.

A point of departure in this paper is that we attack the
question of what an organization is or could be, computa-
tionally, from the opposite direction. We begin with a model
of agent decision making based on decision-theoretic princi-
ples, captured as decentralized partially observable Markov
decision processes, Dec-POMDPs. Within this formal, well-
defined decision framework, we then explore how various
types of organizational control and influences can be cap-
tured in the different components of the framework, such as
transition and reward functions. Hence, one contribution of
this paper is a systematic and comprehensive enumeration
of where organizational control can be applied, and how it
can be formally manifested in decision-theoretic agents. We
empirically evaluate how the embodiment of organizational
influence in different Dec-POMDP framework components
individually and collectively impacts the quality of agents’
behavior and the costs of agents’ reasoning.

Measuring performance improvements resulting from de-
signing and following a good organization requires a baseline
of performance without any organization. Our more prin-
cipled formulation reveals, however, that defining such a
baseline is problematic. A second contribution of this paper,
therefore, is a methodology for forming baseline organizations
for experimental comparisons.

Our third main contribution in this paper is to demonstrate
how an explicit representation of organizational control in
terms of components of a decision-theoretic framework cap-
tures statistical predictions about runtime behavior, which
agents can use to decide how and when to change (or aban-
don) their organization. We build off of the abstract concept
of an organizationally adept agent (OAA) [3] to formulate
a more precise notion of an OAA that can compare actual
experiences in its environment with the organization’s predic-
tions, and can (with other OAAs) adopt a better alternative
organizational design. Our preliminary experiments show
that this capability to question an organization’s suitability



rather than to follow it blindly can improve system-wide
performance, but that responsiveness needs to be tempered
by the costs of reorganization.

The remainder of this paper is structured as follows. In
Section 2, we describe the decision-theoretic framework that
our agents use and that, for the purposes of this paper, the
organizational structure must work within. Then we turn to
our first contribution, in Section 3, where we describe how
organizational influence is manifested in each of the com-
ponents and how the different manifestations capture prior
organizational strategies in the literature. In Section 4 we
make our second contribution by analyzing the space of base-
line organizations to consider and justifying our choices for
our experiments. Section 5 presents our empirical evaluation
of the impact of different forms of organizational influence
on the quality and costs of coordination. We then turn to
a description of how a rudimentary form of organizational
adeptness has been captured in our agents and present pre-
liminary experiments illustrating the promise and potential
costs of agents that can change organizations (Section 6). We
conclude in Section 7 with a summary of the work presented
here and of our ongoing efforts.

2. PROBLEM REPRESENTATION
We adopt a standard Dec-POMDP decision model [2],
M = 〈N , S, α,A,R, P,Ω, O, T 〉, where: N is the set of n
cooperative agents; S is the (finite) set of global states; α
is a probability distribution over initial global states; A is
the (finite) set of possible joint actions; R is the joint reward
function; P is the joint transition function; Ω is the (finite)
set of possible joint observations; O is the joint observation
function; and T is the finite time horizon. Given a full
specification of the Dec-POMDP, an optimal joint policy, π∗,
can be formulated in principle. In practice, however, finding
such a policy for anything but very simple problems (with
few agents and small state and action spaces) is intractable
[2], and even if found, executing such a policy is problematic
because it generally assumes that all agents have the same
beliefs about the global state.

For these reasons, multiagent approaches to solving such
problems often assume that each agent possesses a local
view of the joint problem. As is customary in that work,
we assume that state is factored: every state is represented
using the same set of τ state features, such that ∀s ∈ S, s =
〈f1 ∈ F1, · · · , fτ ∈ Fτ 〉, where Fj is the finite set of possible
values for state feature j. Each agent i has a local state
representation Si consisting of a subset of the τ features.
Agent i has a local decision model defined for this state
space: Mi = 〈Si, αi, Ai, Ri, Pi,Ωi, Oi, Ti〉, where local re-
wards, transitions, actions, etc. are defined over the states
in Si. We further adopt the common assumption of local full
observability (each agent i can exactly observe the values
of all of its local state’s features). Given these assumptions,
the local decision model Mi of an agent i represents a local
MDP, such that an agent can compute its (optimal) local
policy πi with respect toMi. The joint policy is then simply
defined as π = 〈π1, π2, ..., πn〉.

To illustrate a problem of this type, we use a simplified
firefighting scenario, where firefighting agents and fires to
be fought exist in a grid world (Figure 1). The global state
consists of the locations of the agents and the locations
and intensities of the fires. Figure 1 shows an initial global
state, where the locations of agents A1 and A2 are shown,

Figure 1: Example initial state of a 10×5 firefighting
grid world domain. Ai indicates the position of agent
i, and Fj indicates that there is a fire in that cell with
intensity j.

along with positions of each fire Fx, where x is the current
intensity of the fire in that position. Each agent has 6 actions:
a NOOP action that makes no change to the world state; 4
possible movement actions (N, S, E, W) that move the agent
one cell in the specified direction (and equates to a NOOP if
there is no cell in that direction); and a fight-fire (FF) action
that decrements by 1 the intensity of the fire in the agent’s
current location, if any and otherwise behaves like a NOOP.
Joint actions are defined as the aggregation of the agents’
local actions. Movement actions are independent (agents
can occupy the same location), but FF actions are not: the
intensity of a fire only decreases by 1 even if multiple agents
simultaneously fight it. The joint reward for the agents in
states prior to reaching T is the negative sum of the fires’
intensities in that state. When the time horizon is reached,
the problem episode ends, and the joint reward is 10 times the
negative sum of the remaining fires’ intensities, encouraging
the agents to put all the fires out before the deadline.

An example of how agents might have local models of this
joint model is the following. An agent’s local state consists
of its location and the locations and intensities of the fires.
That is, it does not include the position of other agents.
Hence, its local action space only includes its 6 actions, and
its local transition model will only model how its local actions
affect its local state. Its local reward function is the same
as the global reward function; note that in this case the
sum of the agents’ local rewards will overestimate the true
(negative) reward. Its local finite time horizon is identical
to the global finite time horizon, and its local initial state
distribution is calculated by directly mapping the initial
distribution of global states into the local state space. Given
such a local model, each agent will formulate a local policy
that would fight the fires optimally if the agent were alone in
the world. Note that, in general, the joint policy formed by
the combination of these optimal local policies will not itself
be optimal. For example, in Figure 1, both agents will be
drawn to the high intensity fire first and redundantly fight it
rather than dividing up to fight the two fires concurrently.

3. ORGANIZATIONAL INFLUENCE
As just illustrated, optimizing policies for local models

of joint problems does not necessarily lead to optimal joint
policies. Yet, as has been already discussed, centrally solv-
ing for an optimal joint policy is computationally infeasible
and can lead to policies that rely on agents knowing the
global state. The organizational approach that we examine
here, therefore, focuses on modifying agents’ local models
such that the local policies that agents individually construct



will, in combination, result in better joint policies. We note
that runtime communication to increase global awareness
of agents’ states and plans can also help improve coordi-
nation (e.g., help prevent firefighting agents from behaving
redundantly), and could gainfully augment an organizational
approach. However, in the remainder of this paper we as-
sume no communication between agents in order to avoid
confounding factors in our presentation and in our analysis
of organizational influence’s performance.

3.1 Organizational Design Space
We assert that the components of the Dec-POMDP model

provide a way to systematically enumerate the dimensions
of the organizational design space, at least for designs in-
tended for decision-theoretic agents. Formally, let an or-
ganizational design be defined as Θ = 〈θ1, · · · , θn〉 where
θi = 〈Sθi , αθi , Aθi , Rθi , Pθi , Tθi〉 is the local organizational
model for agent i.1 θi specifies the local state space, initial
state distribution, action space, reward function, transition
function, and finite time horizon (FTH) for agent i, when
the agent is following organization Θ. We now step through
each of the components and discuss how each could be used
to introduce some commonly cited organizational influences.

Rewards: The idea of modifying local models to improve
coordination is not new. In particular, a growing body
of literature on reward shaping specifically looks at how
agents’ reward functions can be manipulated to bias agents
into taking actions that benefit the collective [15, 10]. For
example, reward shaping can lead an agent to establish
conditions that have no (unshaped) local reward, but that
enable other agents to then take actions that lead to high
joint reward. In a similar spirit, Agogino and Tumer [1]
have explored the process of designing agents’ individual
objective functions such that maximizing local rewards leads
to maximizing a global objective function in expectation.
Hence, one obvious dimension in the organizational design
space is the space of alternative combinations of reward
functions to assign to agents.

Transitions: It turns out, however, that changing each
agent’s local rewards alone might be insufficient to induce
some forms of cooperative behavior. For example, consider
the situation where one agent can establish a condition that
enables another to take actions that ultimately lead to high
reward. An organizational reward function can bias the first
agent into establishing the condition; however, the second
agent might not take useful precursor actions because its
local model indicates that the condition is unlikely to be
established by default. To induce the second agent into com-
plementary behavior, the organizational designer needs to
convey the expectation that, because of how the first agent’s
reward is shaped, the second agent should expect the condi-
tion to be (or become) established with high probability. The
organization could give the second agent a modified transi-
tion function indicating that, given organizational influences
elsewhere, the condition of interest is now more likely to
be established. Note that the revised transition function
summarizes the expectations without needing to be specific
about the details; the second agent need not reason about
how the first will establish the condition, or even which agent
is establishing the condition.

1As mentioned, for simplicity we assume local state is fully
observable. What follows can be extended to local partial
observability with the usual impacts on complexity.

Hence, besides reward functions, transition function modi-
fication is another dimension of organizational design. While
the example above points out how these can be correlated,
even if agents’ reward functions are left unchanged they could
still benefit from improved transition functions, for example,
by reflecting the tendencies that agents inherently have in
affecting the states that others might face.

Actions: Without specialized optimizations during policy
creation, organizational shaping of reward and/or transition
components will not reduce the size of the agents’ local policy
spaces, but only their decisions about which of those policies
are optimal. Redesigning some of the other components of
an agent’s decision model, however, can achieve another ob-
jective often attributed to organizational influence, which is
to simplify an agent’s reasoning. For example, the organiza-
tional designer might associate different roles with different
agents and thus induce agents to specialize in the possible
actions they will exercise. The designer can give agent i
a reduced action specification Aθi ⊆ Ai that constrains its
choices in some (or all) states. For example, in Figure 1,
agent A1 might be prohibited from moving outside of an
organizationally-dictated area of responsibility. Chosen well,
such restrictions not only help agents pursue complementary
policies, but simplify planning for each. Like reward shaping,
encoding organizational influence as constraints on behavior
is a familiar approach in the literature [6, 11].

States: In a factored state representation, the organiza-
tional designer could determine that there are features that
an agent can sense that are unnecessary to represent given
the organization. In our running firefighting example, for
instance, the organizational designer might decide that some
(distant) fires need not be modeled by an agent at all (be-
cause they are the responsibility of other agents), thereby
simplifying its local decision problem. Further, the organi-
zational designer might purposely augment an agent’s local
state representation with new features, where the designer
has decided that those features are crucial to distinguishing
between states that otherwise would look locally identical.
Such augmentations must be done with caution, however,
and if the designer includes such augmentations, it must
also delineate the communication protocols and policies that
would ensure an agent possesses up-to-date values for those
features despite not being able to directly observe them. For
instance, in our running example, to improve coordination
the designer might insist that each firefighter tell the others
which fire it is now working towards extinguishing. Establish-
ing these types of commitments and conventions has proven
useful [8], but this paper will only consider organizations
that remove state features.

Initial State and FTH: Finally, an organization can
also influence an agent’s behavior through αθi and Tθi . In
the firefighting scenario, an organization could, for example,
initially position the firefighters at particular locations and
reflect the influence on initial state correspondingly. Similarly,
by shaping the rewards, transitions, and actions of the various
agents, the organizational designer might determine that the
improved parallelism from coordination means that agents
can safely reason over shorter time horizons. Alternatively,
the designer might improve coordination by increasing Tθi
for the agents, effectively asking them to be less myopic.

3.2 Related Work
In the preceding, we have stepped through the compo-



nents of a local decision model for a decision-theoretic agent,
and described how an organizational designer could adjust
a component to influence an agent’s decisions. By adjust-
ing the agents’ components appropriately, an organizational
designer can influence agents to make more complementary,
globally-useful decisions, and in some cases also simplify the
agents’ local reasoning processes. As noted above, adjusting
components like reward functions and action spaces have
correspondences with familiar notions in the organizational
structuring literature. However, prior work on implementing
organizational influences within agents largely takes a top-
down approach: given influences that a researcher’s intuitions
determine are pertinent, an agent architecture (such as a BDI
architecture [3]) is extended to incorporate those influences.
In contrast, the dimensions for organizational influence in
this paper emerge from the bottom up, directly from the
components of the principled decision-theoretic framework.

Much of the literature in multiagent organization design
and specification concentrates on formulating organizational
modeling languages (OMLs), such as MOISE+ [13] and
OMNI [14], among a variety of others. Though the specifics
of these OMLs vary, they generally emphasize specifying
an agent organization at an abstract level in terms of roles,
role relationships/interactions, norms, etc. They also tend
to be agnostic about how an agent would map the abstract
specification into its internal reasoning processes. Hence,
our work here complements that work, helping to bridge the
gap between modeling and implementation by identifying
opportunities and limitations in what OMLs can express that
can be meaningfully mapped into influences over decision-
theoretic agents.

4. BASELINE ORGANIZATION
In our preceding characterization of how an organizational

designer influences an agent, the basic idea is that the de-
sign θi = 〈Sθi , αθi , Aθi , Rθi , Pθi , Tθi〉 supplants the agent’s
“local” model Mi = 〈Si, αi, Ai, Ri, Pi, Ti〉. But where does
an agent’s (original) local model come from? Clearly, the
performance improvements that an organizational design will
make depends on how (dis)organized the agents are when
following their initial local models. This means that we
could show arbitrarily good performance improvements by
initializing agents with arbitrarily bad local models.

This is a fundamental and under-addressed quandary in the
artificial agent organizations research field. The combination
of initial local models of agents essentially do comprise an
organizational design. When assembling an agent system,
agents might be selected based on the inherent alignment
between their local models and the (organizational) biases of
whomever is assembling the system. The actions agents are
capable of, the states they can represent, their predispositions
about what states are rewarding, etc. can all factor into
decisions about which agents are included in the system.

Our evaluation of the improvement achievable by following
a designed organization thus depends on defining a base-
line organization. To develop as even-handed a baseline as
possible, we advocate initializing local decision models by
performing an uninformed mapping of the joint Dec-POMDP
models into localized versions. In this way, the local models
are perforce aligned with the global model, but they are
not crafted to differentiate the roles and behaviors of the
agents. Essentially, the philosophy is to endow each agent
with a local model that directly makes the individual agent

responsible for solving the global problem, to the extent its
awareness and capabilities allow.

Specifically, our methodology for initializing agents’ local
models to provide an experimental baseline is as follows.
First, we assume that the subset of state features directly
observable to the agent defines its local state representation.
Second, the action space of an agent is simply its component
of the joint action space. Third, the local reward function
is the same as the global reward function, except that any
components involving features outside of the agent’s local
state representation are dropped, since the agent does not
have values for those features. Fourth, the local transition
model corresponds to the joint transition entries where the
existence of other agents is moot. Finally, the initial local
state distribution maps the global distribution into the local
state space, and the local finite time horizon is identical to
the global value. In the firefighting domain, the baseline
organization is the local model as we described it in the last
paragraph of Section 2.

While this method for creating a baseline model is still
dependent on somewhat arbitrary decisions (e.g., which fea-
tures are included in an agent’s local state), the idea is
that aspects that influence how an agent formulates a policy
(what is rewarding, what might happen in the world, etc.)
are aligned with the “true” global model but contain as little
information as possible about what an agent might expect
others to do in the world. We assume that it is up to an
organizational designer to provide such information.

Despite our adoption of this uninformed-but-aligned base-
line, we have recognized that other factors also influence the
difference that organizational design can make. A simple
example we’ve encountered is how the initial configuration
of state can greatly affect whether the baseline organization
is effective. In the firefighting domain, if we assume that the
fires pop up across the space with uniform probability, then
where should we assume firefighters begin? If we assume
that they are uniformly distributed in the environment, then
their local models (where they prefer fighting nearby fires)
inherently lead to a good allocation of tasks (fires) to agents.
If we assume that they all start in the same location, on the
other hand, then the local models inherently lead to agents
moving around en masse and yields no parallelism benefits.2

Even randomly placing firefighters is not an answer, because
distributing fires and agents in the same uniformly random
way introduces its own bias. In our experiments described in
Section 5.2, we present results from the two extreme environ-
ments: the agents beginning uniformly distributed; and the
agents beginning clustered in the center of the grid world,
which represents the best and worst case in expectation for
the baseline organization respectively.

5. EVALUATION
We now turn to evaluating our claimed benefits of charac-

terizing the organizational design space in terms of adjusting
the components of an agent’s decision-theoretic model. In
this section, we use our simplified firefighting problem do-
main to investigate the effects of modifying each component
individually, and in combination, as a step toward building
an automated design algorithm.

2Note that if multiple firefighters on the same fire had a
super-additive effect, instead of the sub-additive effect in our
domain, then initially spreading out could be disadvanta-
geous, while moving around in a pack might be beneficial.



The experiments that follow use the problem formulation
already described (Section 2), in terms of state features,
agents’ actions, their transitions, and joint reward function.
To test the degree to which an organizational design provides
long-term benefit to a multiagent system, we run a fixed orga-
nizational design over a large number of randomly-generated
problem instances, where each instance is an episode that
begins with a randomized configuration of fires and ends
when the time horizon is reached. By the luck of the draw,
some problem instances might be well suited to one orga-
nization over another. We focus on aggregate performance
over many episodes not only to smooth out the randomness
of the instances but moreover to identify an organization’s
effectiveness over the long term, due to the assumption that
organizational design has a high cost that is amortized over
time. The measures of performance of interest are the ex-
pected joint reward and the planning overhead of the agents
in each episode. A well-designed organization is one that
improves joint reward while also simplifying each agent’s
local planning problem.

5.1 Comparison to Optimal
To be able to compute an upper-bound on performance

(an optimal joint policy) against which to compare, we begin
with problems in a simple 10×5 grid world with 2 coop-
erative agents and 2 fires, as illustrated in Figure 1. The
distribution of fires’ locations is uniformly random over the
entire grid, and the fires’ intensities are uniformly random
over {1, 2, 3}; however, the agents always begin in the same
locations (those in Figure 1). To speed up the tests without
pruning any viable solutions, the finite time horizon is the
maximal time either agent would require to put out both
fires alone (varies per episode). To get a sense of the impact
of different organizational designs, we tested three designs in
addition to the baseline organization. One, called fullOver-
lapOrg, assigns both agents to be responsible for all fires in
the entire grid. However, unlike the baseline organization
where agents have no model of each other, fullOverlapOrg
provides agents with improved transition models that reflect
the possible activities of the other agent. Specifically, our
organizational designer heuristically assumes that an agent
will first fight the fire closest in its region, then the closest
fire from there, and so on, until the time horizon. So, the
organization adjusts the other agent’s transition function to
anticipate that some fires (on the other side of the grid) will
have decreasing intensities even without fighting them itself,
helping it refrain from rushing to distant high-intensity fires
that will be addressed by someone else.

A second organizational design, called partitionOrg, parti-
tions the locations, assigning responsibility for fires in the
western 5×5 subgrid to A1, and the eastern subgrid to A2,
removing actions from the agents’ action spaces that would
move them out of their regions. More generally, partitionOrg
represents an assignment of each task to exactly one agent.

The third organization is called smallOverlapOrg, in which
the 4 middle columns of the grid are in both agents’ regions
of responsibility. Like in partitionOrg, agents’ action spaces
are pruned so an agent doesn’t consider moving out of its
region, while like fullOverlapOrg, an agent has an adjusted
transition function to reflect that fires in its local state space
have a chance of going out without it fighting them.

To create the local policies, each agent uses its organiza-
tional model to create the reachable state space from the

given initial state forward. It then uses CPLEX [7] to cal-
culate the optimal local policy for the reachable state space
using the linear program as formulated by Kallenberg [9].

Before describing our results, we have to address one more
issue. Agents build policies that only consider states they
could conceivably reach within the time horizon. Because
an agent using the baseline organization models the world
as if it is alone, its reachable state space does not include
states where some fires’ intensities decrease without it fight-
ing them. Thus, when executing its policy it could reach
an unexpected state. Rather than explode the state space
by including low-probability transitions covering every possi-
bility, in our experiments we simply assume that when an
agent “falls off” its policy (reaches an unplanned state), it
constructs a new policy going forward from its (unexpected)
current state, and that this planning is instantaneous with
respect to events in the world. (The world “waits” for the
agent to replan.) While future work should treat this more
realistically, for the purposes of our experiments this assump-
tion favors less informed organizations (that fall off policy
more frequently) more than informed ones, so the benefits
of organizational design will be, if anything, understated.
Finally, note that agents given improved transitions might
still sometimes fall off policy, because the heuristics used in
the transition functions are imperfect.

Our experiments are summarized in Table 1. We generated
1,500 episodes with random initial states and solved each
using the 3 organizational designs (partitionOrg, smallOverla-
pOrg, and fullOverlapOrg), as well as the uninformed baseline
organization. We also generated the optimal joint policy for
each episode to compute the optimal attainable reward if the
agents could afford the time to generate it and could also
sense each others’ positions. These results show that even
simple organizational designs can improve rewards consid-
erably compared to the baseline, but that overly restrictive
organizations (partitionOrg) can degrade performance be-
cause the same agent too often must fight both fires. As
one would expect, more restrictive organizations increasingly
simplify agents’ local decision problems. Moreover, note that
all of the organizations decrease local computation over the
baseline, because in the baseline both agents solve larger
problems (putting out all the fires by themselves) than when
they are informed (through the transition function) that they
will have help.

Note that the fullOverlapOrg has greater global aware-
ness than the other organizations; however, this increased
awareness incurs greater computational costs. Because per-
formance is basically inversely correlated with computation,
we created a unified performance metric by adopting the
standard methodology of having the agents sit idle at the
start of execution while they create their policies. To do
this, we convert the actual CPU time for policy creation into
simulation time steps, and then force the agents to sit idle for
that many time steps at the beginning of the episode (essen-
tially performing NOOPs). Figure 2 presents the adjusted
expected reward after accounting for computational costs as
a function of the CPU time per simulation time step. These
results confirm our intuitions that when computation is ex-
pensive (low c) paritionOrg is best due to its highly simplified
decision process. Then as computation becomes cheaper (c
increases), the more flexible organizations become superior,
and finally when computation is very cheap, computing the
optimal joint policy becomes best.



Reward Plan Time Replans
Baseline -15.97 86 1.32
ParitionOrg -16.15 12 0.26
SmallOverlapOrg -14.74 27 0.16
FullOverlapOrg -14.70 70 0.14
Joint -14.37 24558 0.00

Table 1: Mean experimental results for Section 5.1
for expected reward, CPU time to create initial pol-
icy (ms), and average number of times the replan-
ning mechanism was invoked per agent per episode.

Figure 2: Adjusted rewards for Section 5.1 after ac-
counting for computation time as a function of the
CPU time per simulation time step.

5.2 Design Components
We now turn to isolating the impact of different dimensions

of organizational design, corresponding to different compo-
nents of the agents’ decision models. For these experiments,
we use larger environments with 10 cooperative agents and
10 fires on a 25×10 grid. Fires are still distributed uniformly
randomly over the entire grid, with intensities drawn uni-
formly from {1, 2, 3}. As discussed at the end of Section 4,
the initial locations of the agents can favor, or disfavor, some
organizational designs. Thus, in these experiments, we con-
sider two extreme cases of initial locations for the agents:
where they are evenly spread around the environment; and
where they are clustered at the center of the grid.

To understand the impact of designing along different di-
mensions, we implemented largely the same organizational
structure using the different components. The structure in-
herits from the smallOverlapOrg in Section 5.1, narrowing
agents’ ranges of policies to consider while still providing
them with some flexibility to load balance by having overlap-
ping regions of responsibility. Specifically, the 25×10 grid is
divided into 10 distinct 5×5 subgrids, one for each agent, to
act as the agent’s primary area of responsibility (PAR). In
each (non-wall) direction, the subgrid is expanded by 3 cells to
introduce overlap; conceptually, this is an agent’s secondary
area of responsibility (SAR). We implemented 5 organizations
capturing this fundamental structure: actionOrg removes
actions that take an agent out of its combined PAR and
SAR; stateOrg removes features for states outside of the
combined PAR and SAR; rewardOrg penalizes the agent
with increasing severity for leaving its PAR (Manhattan
distance from PAR squared); transitionOrg models how

fires in the PAR and SAR might go out due to someone
else’s actions using the same heuristics as in Section 5.1 (and
like stateOrg ignores more distant fires to curb state-space
explosion resulting from the richer transition model); and
fullOrg uses all of the dimensional levers just described.

We generated 100 random episodes (initial fire configu-
rations), for each of the spread and clustered variations of
agents’ initial locations. For each episode, we ran each of
the 5 organizations above, as well as the baseline organiza-
tion. The problems were too large to compute optimal joint
policies. Table 2 presents the results for these experiments.

These results illustrate many of the intuitions from Sec-
tion 3.1. As others have discovered, reward shaping can be a
powerful tool for increasing the expected joint reward; how-
ever, it does not generally reduce the agents’ computational
efforts. Shaping the transition functions can also yield a
large increase in the expected reward; however, it substan-
tially increases the agents’ computational costs. Notice that
organizations with improved transition functions replan dur-
ing execution much less, indicating that if recovering from
falling off policy incurs non-negligible cost, then transition
shaping could be of critical importance. We also observe that
constraining the agents’ action or state spaces can greatly
simplify the agents’ decision problems and can also increase
the expected joint reward. Finally, with fullOrg, we observe
that the organizational influences in the components are not
completely redundant, as it is largely possible to obtain the
additive benefits found in each of the other organizations.
The drop in expected reward as compared to transitionOrg is
due to the shaped reward functions urging agents to quickly
go their respective PARs rather than stop and fight fires along
the way. However, also note that the computation time is
drastically reduced, suggesting that the tradeoff would be
beneficial unless computation is exceptionally cheap.

Finally, the reader may have noted that our experiments
did not evaluate the impact of restructuring the other two
components: the initial state distribution αθi ; and the time
horizon Tθi . One could envision organizations that modify Ti
to give agents specific roles for planning horizons, where some
agents focus on the near-term and others on the long-term,
though the organization would probably also focus an agent’s
action space Aθi on actions of a matched granularity. If αi
summarizes the exogenously-determined initial state, the de-
signer can only map this into the agent’s adjusted state space
Sθi , as was implicitly done for the organizational variations
above. However, as seen in the relative performance between
the spread and clustered environments, if the organization
can impose initial states on agents (spreading them out in
anticipation of arising fire configurations), then this provides
an additional lever for influencing collective performance.

6. ORGANIZATIONAL ADEPTNESS
As demonstrated in Section 5.1, an organizational designer

confronts tradeoffs in deciding how tightly to influence the
agents. If not tightly enough, agents might duplicate effort
or work at cross purposes while, if too tightly, agents might
load balance poorly or have tasks fall between the cracks.
We assume the organizational designer can use a model of
the expected problem distribution to form an organization
that, in expectation, will work best. However, if its model
is (or over time becomes) erroneous, the agents must decide
how to refine, revise, or even abandon that organizational
structure.



Large Problems (Spread) Large Problems (Clustered)
Reward Plan Time Replans Reward Plan Time Replans

Baseline -107.40 1646 7.89 -436.7 10912 0.00
RewardOrg -91.45 1817 7.49 -242.0 11051 9.38
TransitionOrg -85.14 14606 0.86 -222.5 10859 0.55
ActionOrg -94.14 551 7.70 -264.5 621 8.56
StateOrg -94.14 1237 2.60 -254.4 1588 1.50
FullOrg -87.51 5476 0.88 -250.4 2652 1.02

Table 2: Mean experimental results for Section 5.2 for expected reward, CPU time to create initial policy
(ms), and average number of times the replanning mechanism was invoked per agent per episode.

Following Corkill et al. [3], we refer to agents with this
capability as organizationally adept agents (OAAs). As advo-
cated elsewhere [5], agents need operational control capabili-
ties to elaborate and refine organizational control guidelines.
For example, agents with overlapping areas of responsibility
can use operational control to resolve who is responsible for
which tasks in the current situation. But operational control
can be expensive (in computation, communication, delay,
etc.), so organizations that more narrowly define the roles
of each agent, and thus require less operational control, can
be preferable. However, if the designer’s assumptions about
the problems that will be encountered are wrong, a narrower
organization might leave too little latitude for operational
refinement to meet coordination needs. An OAA should be
able to compare the problems actually encountered to the
organizational designer’s expectations, and decide whether a
change or abandonment of organization is warranted, thus
allowing for narrower organizations to be utilized.

Our decision-theoretic formulation of organizational design
provides a framework for agents to make such comparisons
and decisions, and thus for a more formal characterization of
what it means for an agent to be organizationally adept. For
example, an OAA i can compare its organizational initial
state distribution αθi with the initial states it has actually
witnessed over a series of episodes to detect mismatches.
Similarly, i can recognize that, for example, the probabilities
that fires will be be put out by others according to Pθi are
not supported by statistics over observed transitions, or that
states whose rewards have been shaped by the organization
are seldom reachable.

When the expectations implied in the organizational struc-
ture stem from high-level assumptions the designer has about
the problem domain, such as that fires will appear uniformly
randomly through the entire region, the designer can an-
notate an organization with the assumptions on which its
selection is conditioned. Our current decision-theoretic OAA
architecture captures such annotations in terms of variables
to monitor and expectations over their values. More formally,
optionally along with its organizational specification θi, agent
i can receive a set of monitor-variable and value-expectation
pairs ψi = 〈(ψi1 , vi1)...(ψim , vim)〉. (If none are provided,
the OAA can still use the expectation implicit in θi.) Es-
sentially, the annotated formulation indicates that, to the
extent that the monitor-variables take on values consistent
with expectations, the organization should be followed.

As a preliminary illustration of these OAA concepts, we use
our 10-agent problem domain from Section 5.2 and consider
two different models of how fires arise: having an increas-
ingly higher probability of arising toward the east end of
the grid; and having an increasingly higher probability of

arising toward the west end. Note that the desired organi-
zational behavior is significantly different between the two
environments; in the eastEnvironment we would want to
designate more agents to the eastern region (and vice versa
for the westEnvironment). We designed a specialized orga-
nization for each case, which are analogous to fullOrg from
Section 5.2 except that the PARs are non-uniformly sized to
compensate for the biased fire distributions. For example,
in the westOrg, 3 agents are responsible for the western 4
columns (4×3, 4×4, and 4×3 PARs). Working eastward,
the PARs get progressively larger, starting with two 4×5
PARs (stacked vertically), then two 5×5 PARs, then two 6×5
PARs. Finally, a lone agent is responsible for the eastern
edge with a 5×10 PAR. The eastOrg is a symmetric copy
of the westOrg. Associated with each organization is a set
of monitor variables informing each agent that the organi-
zational designer expected one fire, on average, to be in its
PAR (for that organization).

We provided the agents with both of these annotated orga-
nizations, in addition to fullOrg, which is weakly applicable
both environments. The agents all initially adopt (based
on the designer’s directives) fullOrg to reflect the designer’s
uncertainty about the environment. As episodes are experi-
enced, the agents track their monitor variables. They then
jointly aggregate this observational evidence, e, and perform
Bayesian inference to calculate the likelihood that each of
the environments is the actual environment being observed,
which are used to estimate the expected reward of following
each available organization. The agents then collectively and
greedily adopt the organization with the highest anticipated
expected reward. Formally, they adopt Θ∗:

Θ∗ = arg max
Θ

E[R|Θ, e]− c(Θc,Θ)

E[R|Θ, e] =
∑
j

Pr(Mj |e)E[R|Θ,Mj ]

where c(Θc,Θ) is the cost of switching from the current orga-
nization Θc to Θ. We assume there is no cost for remaining
in the same organization, ∀i c(Θi,Θi) = 0. Pr(Mj |e) is the
likelihood of environmental model Mj being the actual model
given e, which the agents calculate via Bayesian inference.
E[R|Θ,Mj ] is the expected reward of following organization
Θ in Mj , which we assume is provided by the organizational
designer in the annotations. For our experiments, we esti-
mated E[R|Θ,Mj ] by a priori simulating Θ on a training
set of episodes created from Mj .

Our experiments present the agents with episode batches
where the true environment model is selected uniformly ran-
domly from the two environments every 20 episodes (all
organizations face the same episodes in the same order).



Figure 3: Expected reward as a function of the ob-
servational evidence decay rate.

Only at the end of each episode are the agents allowed to
collectively adopt whichever organization they deem best.
Since the true environment is dynamic, we allow the orga-
nizational designer to set a decay rate in the annotations,
which the agents use to decay the importance of past moni-
tor variable observations. We performed experiments with
several organizations: statically using the east/west/fullOrg
for every episode; and several parameter settings of the OAA
process described above. OAAx refers to the OAA process
above where the organizational switching cost is x.

Our results are summarized in Figure 3, which confirms sev-
eral intuitions. Firstly, statically following either specialized
organization performs poorly since they suffer when being
used in the environment they were not intended for; however,
statically following fullOrg makes a noticeable improvement
by being weakly suited to both environments. Secondly, by
allowing the agents to react to the shifting environment, the
OAA capability (in general) can yield a large performance
gain. Finally, if the organizational switching cost is low,
the agents should maintain sufficient observational evidence
history in order to prevent the agents from switching organi-
zations due to a transient episode, such as when an episode
from the eastEnvironment happens to “look” like an episode
from the westEnvironment due to unlikely fire locations.

7. CONCLUSIONS
In this paper we have presented a decision-theoretic frame-

work that provides a systematic method for enumerating the
possible ways in which an organization can influence agents’
decision-making processes. We have intuitively described and
empirically demonstrated how influencing the various Dec-
POMDP components can both increase the agents’ expected
joint reward as well as simplify their local decision problems
as compared to a baseline local model. Finally, in Section 6
we have shown how our organizational framework provides a
more formal characterization of what organizational adept-
ness can mean compared to prior work and have provided
preliminary empirical evidence of the benefits of OAA. In
the future, we plan to expand the functionality of OAA;
for example, rather than greedily reacting to current model
likelihoods, the agents could make predictions about the
ways the environment is changing and preemptively switch
organizations. Additionally, we plan to investigate the effects

of an agent reasoning unilaterally about its observational evi-
dence and individually changing its organization (as opposed
to a central decision process), as well as the possibility of
gradually blending organizations together when switching
as opposed to the all-or-nothing switching described in this
paper. Finally, using the insights gained from Section 5, we
plan to develop an automated organizational designer that
can create organizations within our structured framework.
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