
Reasoning under Compliance Assumptions in Normative
Multiagent Systems

Max Knobbout
Utrecht University

Dept. of Computer Science
The Netherlands

M.Knobbout@students.uu.nl

Mehdi Dastani
Utrecht University

Dept. of Computer Science
The Netherlands

M.M.Dastani@uu.nl

ABSTRACT
The use of norms in multiagent systems has proven to be a
successful approach in order to coordinate and regulate the
behaviour of participating agents. In such normative sys-
tems it is generally assumed that agents can obey or disobey
norms. In this paper, we develop a logical framework for nor-
mative systems that allows reasoning about agents’ abilities
under a multitude of norm compliance assumptions. In par-
ticular, we investigate different types of norm compliance
and propose an extension of Alternating Temporal Logic
(ATL) to reason about the abilities of (coalitions of) agents
under different types of norm compliance assumptions. For
this extension we show that the problem of model-checking
remains close to the domain of standard ATL. Finally, we
show that some norms can limit an agent’s autonomy in the
sense that an agent cannot control the violation of these
norms. We present and discuss various classes of the so-
called self-supporting norms, i.e., norms for which individual
agents have control over their violations.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent system

General Terms
Theory, Design, Verification

Keywords
Normative Systems, Organizations, Verification, Logic

1. INTRODUCTION
The use of norms and social laws in multiagent systems

has proven to be a successful approach in order to ensure the
overall objectives of such systems. Early examples of such an
approach can be found in Shoham and Tennenholtz [7] and
Moses and Tennenholtz [6]. In these works, social laws are
used to constrain the behaviour of the agents by forbidding
certain actions in specific situations. This line of research
was later extended by several authors in a multitude of ways.
For example, in [8] the basic idea is extended to the more

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright © 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

expressive modelling domain of alternating temporal logic
(ATL) with the idea that the application of a social law in
a multiagent system is successful if, by implementing it, the
overall objective of the system is satisfied. Later these ideas
were extended with the notion of preference to reason about
norm compliance in normative systems. Example of such
extensions are [9], where each agent was attributed a single
goal, and [2], where agents were given a priority list of goals.
The main topic of these papers was to investigate whether
certain sets of norms can be considered ‘stable’ under con-
sideration of the agents’ preferences. Another extension of
these ideas was introduced in [4], where norms are consid-
ered from a mechanism design perspective. In this frame-
work, norms are related to game theoretic solution concepts
such that one can specify and verify whether a set of norms
in a multiagent system implements some social/overall ob-
jectives in specific equilibria.

In this paper, we introduce an extension of ATL to rea-
son about properties of normative multiagent systems under
various norm compliance assumptions. In our setting, norms
are assumed to be directed to coalitions of agents, e.g., a
norm states that a set of agents should not take certain ac-
tions in specific states. Moreover, we assume that agents can
disobey norms in the sense that they can take actions that
are disallowed by the norms. We then define various types
of norm compliance behaviors such as “a coalition of agents
obey/disobey norms that are directed to precisely this coali-
tion” or “a coalition of agents obey/disobey norms that are
directed to this coalition and all its subcoalitions”. Our pro-
posed extension of ATL can be used to specify and verify
whether some overall objective of multi-agent systems can
be satisfied under the assumption that a coalition of agents
behave according to a specific norm compliance type while
the agents outside the coalition behave according to another
norm compliance type. The proposed extension can be used
by the designers of normative systems to analyze norms that
are directed to coalitions of agents and to investigate their
impacts on the overall system behaviour under the assump-
tion of specific norm compliance types. This extension can
also be used by individual agents who need to reason and
decide if they can achieve their own objectives by behaving
according to a specific norm compliance type in a normative
system when the system is populated by other agents that
behave according to another specific norm compliance type.

In our framework, we introduce abstract normative con-
straints as a basic extension of the social law paradigm. We
consider norms as similar to social laws in the sense that



they denote the disallowed actions of the agents. However,
norms are considered as different from social laws in the
sense that the agents are allowed to violate them. More-
over, and in contrast to social laws, norms are directed to
coalitions of agents and not only to individual agents. Thus,
we do not assume that “implementing” a system of norms
enforces every agent to be perfectly norm obedient. To some
extent, our research is related to [1] in which the need for
robust normative systems is discussed. They introduce an
extension of CTL (Computation Tree Logic) in which state-
ments such as “if coalition C is norm compliant, then this is
sufficient to guarantee ϕ” can be expressed. In their work
a robust normative system is defined as a multiagent sys-
tem which remains ‘effective’ (specified by some criterium)
even if certain agents behave in a non-compliant manner.
In our framework, a more expressive language is proposed
to also reason about system properties under various norm
compliance assumptions. An important difference with this
paper is that we depart from the domain of ‘agent-labelled
Kripke Structures’ to the more expressive and natural do-
main of Concurrent Game Structures. Using our proposed
logic, we can then construct such statements as “does there
exist a norm compliant strategy for a given agent to guaran-
tee ϕ under the assumption that the other agents are non-
compliant?”. We believe that this extra layer of expressivity
is indeed important for agents in order to decide whether to
comply with the given norms or participate in the multia-
gent system. Our framework can also be useful from the per-
spective of a designer when trying to design systems which
formally abide certain properties under certain norm com-
pliance assumptions.

In section 2 we will give a quick recap on the syntax and
semantics of standard ATL. In section 3 we introduce the
notion of abstract normative constraints and in section 4
we provide the syntax and semantics of our proposed ATL
extension with an elaborate example. In section 5 we dis-
cuss the model checking complexity of the proposed ATL
extension. Finally, in section 6 we present the notion of
self-supporting norm sets.

2. CONCURRENT GAME STRUCTURES
In this section, we first briefly recall on the definition

of Concurrent Game Structures, the underlying model we
use for multiagent systems. A Concurrent Game Structure,
or CGS, can be seen as a multiagent extension of a sim-
ple transition system. It consists of states of the world,
and a complete labelling of joint-actions over the transitions
connecting these states. More formally, a CGS is a tuple
S = ⟨k,Q,Π, π,Ac, δ⟩ such that:

● A natural numbers k ≥ 1 of players. In our model, each
player corresponds to a number. We sometimes use Σ
to talk about the set {1, ..., k}.

● A finite set Q of states.
● A finite set Π of atomic propositions.
● A mapping π which maps each state q ∈ Q to a subset
of propositions which are true at q. Thus for each q ∈ Q
we have π(q) ⊆ Π.

● A mapping Ac which maps each player a ∈ Σ and each
state q ∈ Q to a non-empty subset of the natural num-
bers denoting the moves for player a in state q. Thus
for each a ∈ Σ and each q ∈ Q it holds that Ac(a, q) ∈

P(N). In our model, each action corresponds to a nat-
ural number. For each state q ∈ Q, a move vector is
a tuple ⟨α1, ..., αk⟩ such that αi ∈ Ac(i, q). The set of
all move vectors for a state q ∈ Q, denoted by D(q), is
given by Ac(1, q) × ... ×Ac(k, q).

● A mapping δ which maps each state q ∈ Q and each
move vector ⟨α1, ..., αk⟩ ∈ D(q) to another state that
results from state q if each player adopted the move
denoted in the move vector. Thus for each q ∈ Q and
each ⟨α1, ..., αk⟩ ∈D(q) we have δ(q, ⟨α1, ..., αk⟩) ∈ Q.

Note that this model is synchronous, meaning that at any
moment in time each agent needs to decide on an action
synchronously. Moreover, it is also deterministic; the same
action in the same state will always yield the same resulting
state.

Alternating-time temporal logic, as discussed in [3], is in-
terpreted over a concurrent game structure S that has the
same propositions and players. Evaluating a propositional
formula at a given state amounts to verifying whether the
formula is satisfied given the labelling of that state. To
evaluate a formula of the form ⟪A⟫ψ at a state q of S, we
can consider a game between a protagonist and an antag-
onist which results in a computation. At every round the
protagonist chooses for each player in A a move, and then
the antagonist proceeds by choosing for every player Σ/A
a move, after which the position is updated from q to q′.
This process is repeated indefinitely, which results in a com-
putation λ. The protagonist wins the game if the resulting
computation satisfies the subformula ψ, which is a temporal
formula of the form ◯ϕ, ◻ϕ or ϕ1Uϕ2 (where ϕ,ϕ1,ϕ2 are
again ATL formula’s), otherwise the antagonist wins. Then
the formula ⟪A⟫ψ is satisfied at q if the protagonist has a
winning strategy for this game.

More formally, ATL is characterized by the following gram-
mar, where p ∈ Π and A ⊆ Σ: ϕ ∶∶= p∣¬ϕ∣ϕ∧ϕ∣⟪A⟫◯ϕ∣⟪A⟫◻
ϕ ∣ ⟪A⟫ϕUϕ. In order to define the semantics, we first have
to define the notion of strategy. A strategy for a player
a ∈ Σ is a mapping sa which maps a finite (non-empty) se-
quence of states to an action belonging to the last state of
this sequence. Thus for each sequence q0, ..., qk ∈ Q

+ we have
sa(q0, ..., qk) ∈ Ac(a, qk). Given a set of players A ⊆ Σ and a
state q ∈ Q, let SA = {sa ∣ a ∈ A} be the set of strategies A
adopt and let out(q, SA) be the set of computations starting
from state q which the players in A can enforce by follow-
ing their respective strategies (that is, independent of what
the players Σ/A play). A computation λ = q0, q1, q2, ... is in
out(q0, SA) if it holds that for all positions i ≥ 0 there is a
move vector ⟨α1, ..., αk⟩ ∈ D(λ[i]) (where λ[i] denotes the
state at position i) such that δ(λ[i], ⟨α1, ..., αk⟩) = λ[i + 1]
and for all a ∈ A it is the case that sa(λ[0, i]) = αa.

Given a game structure S = ⟨k,Q,Π, π,Ac, δ⟩ and a state
q ∈ Q, we define the semantics inductively as follows:

● S, q ⊧ p for any proposition p ∈ Π iff p ∈ π(q).

● S, q ⊧ ¬ϕ iff S, q /⊧ ϕ.

● S, q ⊧ ϕ1 ∧ϕ2 iff S, q ⊧ ϕ1 and S, q ⊧ ϕ2.

● S, q ⊧ ⟪A⟫◯ϕ iff there exists a strategy set SA for A
such that for every computation λ ∈ out(q, SA) it holds
that S,λ[1] ⊧ ϕ.



● S, q ⊧ ⟪A⟫ ◻ ϕ iff there exists a strategy set SA for A
such that for every computation λ ∈ out(q, SA) and all
positions i ≥ 0 it holds that S,λ[i] ⊧ ϕ.

● S, q ⊧ ⟪A⟫ϕ1Uϕ2 iff there exists a strategy set SA for
A such that for every computation λ ∈ out(q, SA) there
exists a position i ≥ 0 such that for all positions 0 ≤ j <
i it holds that S,λ[j] ⊧ ϕ1 and S,λ[i] ⊧ ϕ2.

A formula of the form ⟪A⟫ψ should intuitively be read as
“Coalition A has a strategy in order to enforce ψ”, where ψ
can be a temporal formula of the form ◯ϕ, to be read as “in
the next state ϕ”, ◻ϕ, to be read as “always in the future ϕ”
and ϕ1Uϕ2, to be read as “ϕ1 untill ϕ2 starts to hold”.

3. ABSTRACT NORMATIVE CONSTRAINTS
Before we discuss the notions of compliance and non-

compliance in normative systems, it is important to clarify
what we understand under a normative multiagent system.
For our purposes, much in line with previous research seen in
e.g. [2], a normative system is simply a set of constraints on
the behaviour of the agents. However, since we have entered
the domain of concurrent game structures, we extend this
notion to not only account for behaviour of agents, but also
behaviour of coalitions. Moreover, we also allow the agents
to violate these constraints; they are not hard-constraints
on the behaviour of the agents. More precisely, given a
game structure S = ⟨k,Q,Π, π,Ac, δ⟩, an abstract normative
constraint ⟨A,γ⟩ is a tuple consisting of a subset of player
A ⊆ Σ and a mapping γ which maps a player a ∈ A and
state q ∈ Q to a set of actions for each player that can be
taken in that state. Thus given a state q ∈ Q and a set of
player A ⊆ Σ, for all a ∈ A we have that γ(a, q) ⊆ Ac(a, q).
The set γ(a, q) denotes all the actions that are normatively
demotivated in state q for agent a. Given a set of abstract
normative constraints Γ, we define ΓA = {⟨X,γ⟩ ∈ Γ ∣X = A}
and Γ−A = {⟨X,γ⟩ ∈ Γ ∣X ⊆ A}. In words, ΓA is the set of
abstract normative constraints only applicable to exactly A
and Γ−A the set of abstract normative constraints only appli-
cable to A or any sub-coalition of A. Given a computation
λ = q0, q1, q2, ... and a set of abstract normative constraints
Γ, we say that ⟨A,γ⟩ ∈ Γ is enabled for A at position i+1 ≥ 0
if ∀a ∈ A it holds that γ(a, λ[i]) /= ∅ and taken at position
i + 1 ≥ 0 if there is a move vector ⟨α1, ..., αk⟩ ∈ D(λ[i]) such
that δ(λ[i], ⟨α1, ..., αk⟩) = λ[i + 1] and ∀a ∈ A it holds that
αa ∈ γ(a, λ[i]). Notice that by this interpretation, an ab-
stract normative constraint can still be taken even though
the actual action an agent performed along a computation
differs from the one prescribed by γ.
Given a set of agents A, we can give different interpreta-

tions towards obedience with respect to Γ. Below we define
7 different norm compliance types: 3 types of obediences, 3
types of disobediences, and 1 type of neglectfulness. How-
ever, we stress that this primarily is a choice; certainly more
types of obediences can be considered and constructed based
on the logical framework we provide.

1. Coalitional obedience A computation λ is coali-
tional obedient with respect to a set of agents A and
an abstract normative constraint set Γ, or ⟨Γ,A, c-ob⟩-
obedient, if at any point in the computation for every
⟨A′, γ⟩ ∈ Γ−A it is the case that if ⟨A′, γ⟩ is enabled in
λ, then ⟨A′, γ⟩ is not taken.

2. Total/Selective individual obedience A computa-
tion λ is total individual obedient with respect to a set
of agents A and an abstract normative constraint set Γ,
or ⟨Γ,A, t-ob⟩-obedient, if at any point in the computa-
tion for all a ∈ A it holds that for every ⟨{a}, γ⟩ ∈ Γ{a}
it is the case that if ⟨{a}, γ⟩ is enabled, then ⟨{a}, γ⟩
is not taken. A computation λ is selective individu-
ally obedient with respect to a set of agents A and
an abstract normative constraint set Γ, or ⟨Γ,A, s-ob⟩-
obedient, if at any point in the computation there exists
an a ∈ A such that it holds that for every ⟨{a}, γ⟩ ∈ Γ{a}
it is the case that if ⟨{a}, γ⟩ is enabled, then ⟨{a}, γ⟩
is not taken.

3. Neglectful obedience A computation λ with respect
to a set of agents A and an abstract normative con-
straint set Γ is always neglectful obedient, or ⟨Γ,A,⊺⟩-
obedient. In other words, every computation is by def-
inition neglectful obedient.

4. Selective/Total individual disobedience A com-
putation λ is selective individual disobedient with re-
spect to a set of agents A and an abstract normative
constraint set Γ, or ⟨Γ,A, s-dob⟩-obedient, if at any
point in the computation there exists an a ∈ A such
that it holds that there exists ⟨{a}, γ⟩ ∈ Γ{a} such that
if ⟨{a}, γ⟩ is enabled, then ⟨{a}, γ⟩ is taken. A com-
putation λ is total individual disobedient with respect
to a set of agents A and an abstract normative con-
straint set Γ, or ⟨Γ,A, t-dob⟩-obedient, if at any point
in the computation for all a ∈ A it holds that there
exists ⟨{a}, γ⟩ ∈ Γ{a} such that if ⟨{a}, γ⟩ is enabled,
then ⟨{a}, γ⟩ is taken.

5. Coalitional disobedience A computation λ is coali-
tional disobedient with respect to a set of agents A and
an abstract normative constraint set Γ, or ⟨Γ,A, c-dob⟩-
obedient, if at any point in the computation for every
⟨A′, γ⟩ ∈ Γ−A it is the case that if ⟨A′, γ⟩ is enabled in
λ, then ⟨A′, γ⟩ is taken.

From these definitions, we see that the following holds
for obediences: Given that a computation is ⟨Γ,A, c-ob⟩-
obedient, it is also ⟨Γ,A, t-ob⟩-obedient. Given that it is
⟨Γ,A, t-ob⟩-obedient, it is also ⟨Γ,A, s-ob⟩-obedient and given
that it is ⟨Γ,A, s-ob⟩-obedient, it is also ⟨Γ,A,⊺⟩-obedient.
For the disobediences a similar result holds: ⟨Γ,A, c-dob⟩-
obedience implies ⟨Γ,A, t-dob⟩-obedience, ⟨Γ,A, t-dob⟩-
obedience implies ⟨Γ,A, s-dob⟩-obedience and ⟨Γ,A, s-dob⟩-
obedience implies ⟨Γ,A,⊺⟩-obedience. An easy way of verify-
ing this is by considering that each step in these implications
allows for more possible state-transitions to take place in a
computation.

4. an-ATL SEMANTICS
In this section we will give the semantics of our new logic

an-ATL; ATL extended in order to reason under the pres-
ence of these abstract norms. We will first define the notion
of obedience to the level of strategies. We define the set Ω as
the set of obedience types denoted by a single literal, thus we
have that Ω = {c-ob, t-ob, s-ob,⊺, s-dob, t-dob}. Given a game
structure S = ⟨k,Q,Π, π,Ac, δ⟩, an abstract normative con-
straint set Γ, a state q and an obedience type ω ∈ Ω, we say
that the strategy set SA for players A is ⟨Γ,A,ω⟩-obedient
if it holds that for every computation λ ∈ out(q, SA), λ is
⟨Γ,A,ω⟩-obedient. In our semantics, an obedience assump-



tion is of the form ⟨ω,ω′⟩, where ω,ω′ ∈ Ω. The satisfaction
relation S,Γ, q ⊧ φ in our new semantics replaces the follow-
ing cases in ATL semantics:

● S,Γ, q ⊧ ⟪A⟨ω,ω′⟩⟫◯ϕ iff there exists a ⟨Γ,A,ω⟩-obedient
strategy set SA for A such that for every ⟨Γ,Σ/A,ω′⟩-
obedient computation λ ∈ out(q, SA) it holds that
S,Γ, λ[1] ⊧ ϕ.

● S,Γ, q ⊧ ⟪A⟨ω,ω′⟩⟫◻ϕ iff there exists a ⟨Γ,A,ω⟩-obedient
strategy set SA for A such that for every ⟨Γ,Σ/A,ω′⟩-
obedient computation λ ∈ out(q, SA) and all positions
i ≥ 0 it holds that S,Γ, λ[i] ⊧ ϕ.

● S,Γ, q ⊧ ⟪A⟨ω,ω′⟩⟫ϕ1Uϕ2 iff there exists a ⟨Γ,A,ω⟩-
obedient strategy set SA for A such that for every
⟨Γ,Σ/A,ω′⟩-obedient computation λ ∈ out(q, SA) there
exists a position i ≥ 0 such that for all positions 0 ≤ j <
i it holds that S,Γ, λ[j] ⊧ ϕ1 and S,Γ, λ[i] ⊧ ϕ2.

The formula ⟪A⟨ω,ω′⟩⟫ϕ should intuitively be read as “coali-
tion A has an ω-obedient strategy in order to enforce ϕ if
the remaining agents Σ/A played in accordance with an ω′-
obedient computation”. Moreover, we write JA⟨ω,ω′⟩K◯ϕ for
¬⟪A⟨ω,ω′⟩⟫◯¬ϕ and JA⟨ω,ω′⟩K◻ϕ for ¬⟪A⟨ω,ω′⟩⟫◇¬ϕ (where
◇ϕ ≡ ⊺Uϕ; similar abbreviations can be defined for the dual
of the U operator). The formula JA⟨ω,ω′⟩Kϕ should be read
as “coalition A does not have a ω-obedient strategy in or-
der to avoid ϕ if the remaining agents played in accordance
with an ω′-obedient computation”. Slightly similar to the
result found in ATL, we have the following validity (notice
the reversal of the obedience assumption tuple):

⊧ ⟪A⟨ω,ω′⟩⟫ϕ→ J(Σ/A)⟨ω′,ω⟩Kϕ

Moreover, the following validities hold, where β can either
be replaced with “ob” or “dob”:

1. ⊧ ⟪A⟨c-β,ω⟩⟫ϕ→ ⟪A⟨t-β,ω⟩⟫ϕ
2. ⊧ ⟪A⟨t-β,ω⟩⟫ϕ→ ⟪A⟨s-β,ω⟩⟫ϕ
3. ⊧ ⟪A⟨s-β,ω⟩⟫ϕ→ ⟪A⟨⊺,ω⟩⟫ϕ

Intuitively, what these formula’s state is that a coalition,
when having an obedient strategy to guarantee ϕ (under a
certain assumption that the remaining agents play in accor-
dance with an ω′-obedient computation), they also have a
“less restrictive” obedient strategy (here, with “less restric-
tive” we mean that they are allowed to violate more norma-
tive constraints) to guarantee the same (and vice versa for
disobedient strategies). This is as expected, since we have a
richer pool of strategies to choose from when we have less re-
striction to cope with. Conversely, when reasoning about the
other players, the implication works the other way around.
In this case, we have the following validities (where again β
can either be replaced with “ob” or “dob”):

1. ⊧ ⟪A⟨ω,⊺⟩⟫ϕ→ ⟪A⟨ω,s-β⟩⟫ϕ
2. ⊧ ⟪A⟨ω,s-β⟩⟫ϕ→ ⟪A⟨ω,t-β⟩⟫ϕ
3. ⊧ ⟪A⟨ω,t-β⟩⟫ϕ→ ⟪A⟨ω,c-β⟩⟫ϕ

This intuitively means that a coalition, when having a cer-
tain strategy to guarantee ϕ under a certain assumption
that the other agents play in accordance with a certain obe-
dient computation, they also have a strategy to guarantee
the same under a“more restrictive”obedience assumption of
the computation they move along to (where “more restric-
tive” means that there are less normative constraints which

q1

q3

q0

q2

q4

⟨w, go⟩

⟨go,w⟩

⟨go, go⟩

⟨go,w⟩

⟨w, go⟩

⟨w,w⟩

⟨∗,∗⟩

⟨∗,∗⟩

Figure 1: CGS train example.

can be violated). This is again as expected, since we have to
take into account less computations; namely we do not have
to consider the computations where a normative constraint
was enabled and taken which was previously not considered.

4.1 Example
In this example we consider a scenario where there are

two trains, each controlled by one agent, at the opposite
ends of a tunnel. The tunnel only has room for one train,
and the agents initially have 2 actions available: ‘wait’ and
‘go’. If the agents decide to go simultaneously, the trains will
crash, if they wait simultaneously nothing will happen and
if one goes and the other waits, they can both successfully
make it to the end of the tunnel without crashing. The
CGS belonging to this scenario is shown in Figure 1. Let
us denote the first agent as a1 and the second agent as a2.
Moreover, we assume we have only two atomic propositions,
‘crash’ and ‘no crash’, the former which is only true in q4
and the latter only in q3. Right of the bat, we can conclude
that the following holds for every possible Γ:

M,Γ, q0 /⊧ ⟪a1⟨⊺,⊺⟩⟫◇ no crash

and

M,Γ, q0 /⊧ ⟪a2⟨⊺,⊺⟩⟫◇ no crash

In words, no agent individually has the ability to eventually
bring about the fact that the trains make it through the tun-
nel without crashing. Moreover, the agents are collectively
able to make the trains crash, displayed by the following
formula (again for every possible Γ):

M,Γ, q0 ⊧ ⟪{a1, a2}⟨⊺,⊺⟩⟫◇ crash

We will now construct a normative constraint set Γ in such
a way that it brings about the following:

1. It is normatively demotivated for both agents that they
enter the tunnel simultaneously.

2. It is normatively demotivated for the second agent,
a2, that he waits when the other train has not gone
through the tunnel yet.

As it will turn out, the second normative constraint is suffi-
cient for agent 1 to conclude that he has the ability to bring
about the fact they will eventually reach the end of the tun-
nel safely under certain obedience assumptions of the other
agent. However, from the perspective of agent 2, this con-
straint is still not sufficient: even if he adopts an obedient
strategy, it is still not guaranteed that the trains will not



crash.

We can formalize the above mentioned constraints as ab-
stract normative constraints as follows. We construct Γ =
{⟨{a1, a2}, γ⟩, ⟨{a2}, γ′⟩}, such that:

● γ(a1, q0) = {go}, γ(a2, q0) = {go}; and
● γ′(a2, q0) = {w}

In this example, we are first going to reason about the abili-
ties of agent one, a1. The following an-ATL formula is valid:

M,Γ, q0 ⊧ ⟪a1⟨⊺,t-ob⟩⟫◇ no crash

In words, our first agent now has a strategy to eventually
bring about the fact that the train makes it through the
tunnel without crashing under the assumption that a2 plays
according to an obedient computation (in this case, he only
has to take into account the normative constraint associated
with γ′). To see this, observe that we do not consider any
computations with transitions from q0 to q0 any more (and
from q0 to q2, but this is beyond the point), thus disallowing
the scenario where both agents wait for each other. The
strategy for agent 1 is then to first wait (since he knows that
agent 2 will not wait), and then go. Interestingly enough,
agent 1 also has a strategy to eventually safely reach the
end of the tunnel under the assumption that the other agent
plays in accordance with disobedient computation:

M,Γ, q0 ⊧ ⟪a1⟨⊺,t-dob⟩⟫◇ no crash

To easily see this, observe that we do not consider any com-
putations with transitions from q0 to q4 (and from q0 to
q1, but again is beyond the point), thus the strategy where
agent 1 immediately picks ‘go’ will ensure that both agents
will eventually make it to the end of the tunnel safely.

Let us now reason about the abilities of agent a2. We can
see that a2, as opposed to a1, can not obediently bring about
that both agents will reach the end of the tunnel safely:

M,Γ, q0 /⊧ ⟪a2⟨t-ob,⊺⟩⟫◇ no crash

To see this, selecting the action ‘go’ in q0 will not guarantee
that we will not end up in q4. However, interestingly enough,
agent 2 does have the ability to disobediently bring about
the fact that the ability of agent 1 to reach the end of the
tunnel safely (under assumption that agent 2 plays in such
a way that his normative constraints are not violated) is not
lost:

M,Γ, q0 ⊧ ⟪a2⟨t-dob,⊺⟩⟫◯⟪a1⟨⊺,t-ob⟩⟫◇ no crash

To see this, observe that the action ‘wait’ for agent 2 in q0
will result in either q0 or q2, both in which the ability of agent
1 to safely reach the end of the tunnel, under assumption
that agent 2 obeys his normative constraints, is retained.
However, in case agent 2 plays an obedient strategy, this is
not guaranteed, as seen by the following validity:

M,Γ, q0 /⊧ ⟪a2⟨t-ob,⊺⟩⟫◯⟪a1⟨⊺,t-ob⟩⟫◇ no crash

The reason for this is that agent 2 can not guarantee with an
obedient strategy (action ‘go’ in q0) that he will not end up
in q4. We could say that agent 2 is faced with a dilemma: he
can play obedient, possibly wasting the ability of the other
agent to reach the end of the tunnel safely if the other player
assumed obedience over the normative constraints of agent

2, or play disobedient, preserving the former mentioned abil-
ity but possibly ending up in the same state again.

Let us finally reason about the abilities of the coalition
of agents a1 and a2. We already saw that the coalition
of agents have the ability to bring about the crashing of
the trains. However, even if the individual agents play a
totally individual obedient strategy (or a selective individual
obedient strategy for that matter), the agents can still select
a strategy that can make the trains crash, illustrated by the
following validities:

M,Γ, q0 ⊧ ⟪{a1, a2}⟨t-ob,⊺⟩⟫◇ crash

and

M,Γ, q0 ⊧ ⟪{a1, a2}⟨s-ob,⊺⟩⟫◇ crash

The reason for this is because these obedience assumptions
apply only to the agents on an individual level, and thus
we only have to take into account the abstract normative
constraint associated with a2. On the coalitional level, the
agents indeed do not have an coalitional obedient strategy
to bring about the fact that eventually a crash will occur:

M,Γ, q0 /⊧ ⟪{a1, a2}⟨c-ob,⊺⟩⟫◇ crash

Moreover, to illustrate how strong some obedience assump-
tions can be, the following formula holds for every possible
ϕ:

M,Γ, q0 /⊧ ⟪{a1, a2}⟨c-dob,⊺⟩⟫ϕ

The reason for this is because there does not exist a joint
strategy that violates both abstract normative constraints
simultaneously. This illustrates an important distinction
with ATL, since ATL assumes that there is always a strategy
available for any (sub)coalition of agents at any moment in
time. This also inherently means that checking the validity
of an an-ATL formula of the form ⟪A⟨ω,ω′⟩⟫ϕ in a model M
cannot be reduced to checking a formula of the form ⟪A⟫ϕ
in a transformed model M ′ with removed edges, the reason
simply being that M ′ might not be an actual valid concur-
rent game structure any more.

5. MODEL CHECKING
The problem of determining whether a formula in an-

ATL is satisfied at a certain state reduces to the application
of model checking to the concurrent game structure. The
model checking problem for transition systems is discussed
in [5], and in [3] model checking for ATL is discussed.

We define the extended game structure

S
F = ⟨k,QF

,ΠF
, π

F
,Ac

F
, δ

F ⟩

as follows:

● QF = {⟨�, q⟩ ∣ q ∈ Q}∪
{⟨q′, q⟩ ∣ q′, q ∈ Q and q is a successor of q′ in Q}.

● ΠF = Π ∪ (Γ × {enabled, taken}).

● For all ⟨�, q⟩ ∈ QF we have πF (⟨�, q⟩) = π(q).
For all ⟨q′, q⟩ ∈ QF we have πF (⟨q′, q⟩) = π(q)∪
{⟨⟨A,γ⟩, enabled⟩ ∣∀a ∈ A ∶ γ(a, q′) /= ∅}∪
{⟨⟨A,γ⟩, taken⟩ ∣ exists ⟨α1, ..., αk⟩ ∈ D(q′) such that
∀a ∈ A ∶ αa ∈ γ(a, q′) and δ(q′, ⟨α1, ..., αk⟩) = q}



● For all a ∈ Σ and all ⟨�, q⟩, ⟨q′, q⟩ ∈ QF we have
AcF (a, ⟨�, q⟩) = AcF (a, ⟨q′, q⟩) = Ac(a, q).

● For all ⟨�, q⟩, ⟨q′, q⟩ ∈ QF and all ⟨α1, ..., αk⟩ ∈D(q) we
have δF (⟨�, q⟩, ⟨α1, ..., αk⟩) = δF (⟨q′, q⟩, ⟨α1, ..., αk⟩) =
⟨q, δ(q, ⟨α1, ..., αk⟩)⟩.

Let fΓ

A be a function that maps, given a coalition A and
abstract normative constraint set Γ, each obedience assump-
tion in Ω to a propositional formula with variables
Γ × {enabled, taken}. Thus we have fΓ

A ∶ Ω ↦ Lprop(Γ ×
{enabled, taken}). We define the function as follows (no-
tice that we have written ⟨ϕ, e⟩ and ⟨ϕ, t⟩ as shorthand for
⟨ϕ, enabled⟩ and ⟨ϕ, taken⟩ respectively):

1.

f
Γ

A(c-ob) = ⋀
⟨A,γ⟩∈Γ−

A

(⟨⟨A,γ⟩, e⟩→ ¬⟨⟨A,γ⟩, t⟩)

2.

f
Γ

A(t-ob) = ⋀
a∈A

, ⋀
⟨{a},γ⟩∈Γ{a}

(⟨⟨{a}, γ⟩, e⟩→ ¬⟨⟨{a}, γ⟩, t⟩)

3.

f
Γ

A(s-ob) = ⋁
a∈A

, ⋀
⟨{a},γ⟩∈Γ{a}

(⟨⟨{a}, γ⟩, e⟩→ ¬⟨⟨{a}, γ⟩, t⟩)

4.

f
Γ

A(⊺) = ⊺

5.

f
Γ

A(s-dob) = ⋁
a∈A

, ⋁
⟨{a},γ⟩∈Γ{a}

(⟨⟨{a}, γ⟩, e⟩→ ⟨⟨{a}, γ⟩, t⟩)

6.

f
Γ

A(t-dob) = ⋀
a∈A

, ⋁
⟨{a},γ⟩∈Γ{a}

(⟨⟨{a}, γ⟩, e⟩→ ⟨⟨{a}, γ⟩, t⟩)

7.

f
Γ

A(c-dob) = ⋀
⟨A,γ⟩∈Γ−

A

(⟨⟨A,γ⟩, e⟩→ ⟨⟨A,γ⟩, t⟩)

We then claim that evaluating a formula of the form S,Γ, q ⊧
⟪A⟨ω,ω′⟩⟫ϕ amounts to model checking an ATL* formula in
the extended game structure.

Proposition 1. S,Γ, q ⊧ ⟪A⟨ω,ω′⟩⟫ϕ holds if and only if:

S
F
, ⟨�, q⟩ ⊧ ⟪A⟫(◻fΓ

A(ω) ∧ (◻f
Γ

(Σ/Γ)(ω
′)→ ϕ))

Although this is an ATL* formula, the model checking com-
plexity can still be done in efficient time (polynomial in the
number of transitions, the size of the abstract normative
constraint set and the length of the an-ATL formula). The
exact details of this result are not relevant for this paper, but
we can give a basic intuition behind this finding. Consider a
game structure S withm transitions and an abstract norma-
tive constraint set Γ of size g. We start out by constructing
SF = ⟨k,QF ,ΠF , πF ,AcF , δF ⟩ from S. Notice that if S has
m transitions, SF has O(m) states and O(m) transitions.
Now, the interesting cases arise when we want to check a
sub-formula of the form ⟪A⟨ω,ω′⟩⟫ ◻ ϕ or ⟪A⟨ω,ω′⟩⟫ϕ1Uϕ2.
The idea now is that, when looking for states satisfying these
conditions, we can just encode the winning and losing con-
ditions in the game structure itself. We do this by adding

q0

q1 q2

⟨1,1⟩,⟨1,2⟩,⟨2,2⟩
⟨2,1⟩

⟨∗,∗⟩ ⟨∗,∗⟩

Figure 2: CGS with 2 agents.

two states to the game structure SF , an “always winning”
and an “ always losing” state. The “always winning” state
qW makes the goal formula true forever, the “always losing”
state qL makes the goal formula false forever regardless of
the goal formula ◻ϕ or ϕ1Uϕ2. Notice that the states qW
and qL do not follow the usual definitions of a Concurrent
Game Structures; for example the formula ◻� is still true
at qW even though there would not exist a valuation for qW
that makes this possible. However for the sake of model-
checking this does not matter. Now consider we are model
checking a formula ⟪A⟨ω,ω′⟩⟫ψ (where ψ = ◻θ or ψ = θ1Uθ2).
We proceed as follows: for each state q ∈ QF , if it holds
that q ⊧ ¬fΓ

A(ω), then redirect all incoming transitions to
state qL, if it holds that q ⊧ ¬fΓ

(Σ/A)(ω
′)∧ fΓ

A(ω), then redi-
rect all incoming transitions to qW . This routine can be
done in efficient time, and ensures that if A can only select
⟨Γ,A,ω⟩-obedient transitions to make the goal formula true
(else it would end up in qL) and ensures that if Σ/A selects
a non ⟨Γ,Σ/A,ω′⟩-obedient transition the goal formula is by
default satisfied. Now we can just proceed with “normal”
model checking, which as shown in [3], can be done in time
proportional to the number of transitions in the concurrent
game structure, which is O(m).

6. SELF-SUPPORTING SETS
When we introduced the notion of abstract normative con-

straints, we saw that that it is still possible that an abstract
normative constraint of the form ⟨A,γ⟩ is taken at a cer-
tain state in the model, even though the agents in A might
not have selected the exact actions prescribed by γ. Thus,
even though it seems they were selecting an action in or-
der to avoid a violation, they still ended up in a situation
where this is not the case. In these special circumstances
it is the case that the agents do not have the power to
autonomously avoid a violation. Autonomy is a key facet
within the (multi)agent paradigm and can play a major role
for the agents to decide whether they want to participate in
the multiagent system or comply with the given norms, so
we devote this last section to identify and classify the cir-
cumstances in which a normative constraint set limits the
autonomy of (coalitions of) agents.

Let us first consider the concurrent game structure shown
in Figure 2. Moreover, let us consider the normative con-
straint set Γ = {⟨{a1}, γ⟩}, where γ(a1, q0) = {1}, we see that
agent 2, while being in state q0, has the ability to enforce
agent 1 into a violation. Namely, we see that agent 2 can
select action 2, which causes agent 1 to end up in q1 regard-
less of the action he chooses. Since there exists an action
for agent 1 that disallows going from state q0 to q1 (namely
action 1), even by selecting action 2 the agent can not avoid
violating the constraint. This brings us to the notion of



self-supporting constraint sets. Intuitively, self-supporting
means that if a normative constraint is targeted towards
coalition A, the agents in this coalition have (in some way)
“control”over whether or not they will violate this particular
constraint. However, as we will see in this section, multiple
gradations of “control” can be given. We start out with a
weak form of self-supporting, called weakly self-supporting.

Definition 1 (Weakly Self-supporting). Given a
concurrent game structure S and abstract normative con-
straint set Γ, we say that Γ is weakly self-supporting with
respect to S if and only if it holds that for every coalition
A ⊆ Σ and at any state q ∈ Q there is no strategy avail-
able to A in order to force the remaining players Σ/A into
a non-⟨Γ,Σ/A, c-ob⟩-obedient computation.

We see that in our previous example this was not the
case since agent 2 could force agent 1 into a violation by
selecting action 2. The following proposition shows how we
can identify weakly self-supporting constraint sets using our
new an-ATL logic.

Proposition 2 (Weakly Self-supporting). Given a
concurrent game structure S and abstract normative con-
straint set Γ, Γ is weakly self-supporting with respect to S if
and only if for all A ⊆ Σ it holds that:

S,Γ ⊧ JA⟨⊺,c-ob⟩K◯⊺

Let us give an intuition about why this proposition holds.
Observe that, for a given A, the formula JA⟨⊺,c-ob⟩K◯⊺ is
equal to ¬⟪A⟨⊺,c-ob⟩⟫◯�. Now let us suppose that
⟪A⟨⊺,c-ob⟩⟫◯� holds at state q. This means that there exists
a strategy for A, let us call this SA, such that if coalition
Σ/A behaved according to a ⟨Γ,Σ/A, c-ob⟩-obedient compu-
tation, ◯� would be true. However, the latter can never be
true for any computation, thus we must conclude that ev-
ery computation in out(q, SA) is not ⟨Γ,Σ/A, c-ob⟩-obedient,
which implies that Γ is not weakly self-supporting with re-
spect to S. A similar reasoning can be applied for the other
way around.

Suppose for now we have a weakly self-supporting con-
straint set Γ with respect to S. Now, even though there ex-
ists no coalition that can enforce the other players into a non
collective obedient computation, it does not mean that every
coalition has a collective obedient strategy available to them.
Consider the CGS shown in Figure 3, with again the nor-
mative constraint set Γ = {⟨{a1}, γ⟩}, where γ(a1, q0) = {1}.
We see that Γ is weakly self-supporting with respect to S,
since it is not possible for agent 2 to force agent 1 into a non-
⟨Γ,{a1}, c-ob⟩-obedient computation. However, it is not the
case that agent 1 has a collective obedient strategy available
to him as both action 2 and 3 might bring him into state
q1. This brings up a more stronger notion of self-supporting
constraint sets, namely those in which each coalition always
has a collective obedient strategy available to them. If this
is the case, we say that a normative constraint set is strongly
self-supporting with respect to a concurrent game structure.

Definition 2 (Strongly Self-supporting). Given a
concurrent game structure S and abstract normative con-
straint set Γ, we say that Γ is strongly self-supporting with
respect to S if and only if it holds that for every coalition
A ⊆ Σ there is at any state q ∈ Q a collective obedient strat-
egy available to them.

q0

q1 q2

⟨1,∗⟩,⟨2,1⟩,⟨3,2⟩
⟨2,2⟩,⟨3,1⟩

⟨∗,∗⟩ ⟨∗,∗⟩

Figure 3: CGS with 2 agents.

q0

q1 q2 q3

⟨1,∗⟩,⟨2,2⟩
⟨2,1⟩

⟨3,∗⟩

⟨∗,∗⟩ ⟨∗,∗⟩ ⟨∗,∗⟩

Figure 4: Another CGS with 2 agents.

Just like in the case of weakly self-supporting constraint
sets, we can identify when a normative constraint set is
strongly self-supporting with respect to a concurrent game
structure with the use of our an-ATL logic.

Proposition 3 (Strongly Self-supporting). Given
a concurrent game structure S and abstract normative con-
straint set Γ, we say that Γ is strongly self-supporting with
respect to S if and only if for all A ⊆ Σ it holds that:

S,Γ ⊧ ⟪A⟨c-ob,⊺⟩⟫◯⊺

We now claim that if a normative constraint set is strongly
self-supporting, it is also weakly self-supporting. This is
not hard to verify because, as we have already seen in Sec-
tion 4, we have the result that S,Γ, q ⊧ ⟪A⟨ω,ω′⟩⟫ϕ implies
S,Γ, q ⊧ J(Σ/A)⟨ω′,ω⟩Kϕ, and thus that for all A ⊆ Σ, S,Γ ⊧
⟪A⟨c-ob,⊺⟩⟫◯⊺ implies for all A ⊆ Σ, S,Γ ⊧ JA⟨⊺,c-ob⟩K◯⊺
(but not the other way around).

Again suppose we have a strongly self-supporting con-
straint set Γ with respect to S. An example can be seen
in Figure 4 with again the normative constraint set Γ =
{⟨{a1}, γ⟩}, where γ(a1, q0) = {1}. Although there is a col-
lective obedient strategy available for agent 1 in q0, namely
selecting at this state action 3, there is still an action avail-
able to him which is not in the constraint set but can causes
him to violate a normative constraint, i.e., if agent 1 se-
lects action 2 in q0, there is still a possibility that agent
2 selects action 2. This gives rise to yet another notion of
self-supporting constraint sets, namely that of unconditional
self-supporting normative constraint sets. Intuitively, if this
is the case it means that only the (joint) actions normatively
demotivated by the constraint set Γ will result in a viola-
tion. Thus, “unconditional” does not mean that the status
of whether or not a constraint set is self-supporting does not
rely on the game structure itself, it merely means that if it
is established that a constraint set is unconditionally self-
supporting, it is sufficient to only look at the constraint set
in order to select a collective obedient strategy. To make



this more formal, let us introduce the notion of an A-move.
An A-move is a function cAq that maps each player a ∈ A to

an action for that player, thus we have cAq (a) ∈ Ac(a, q). We

write C(A, q) for the set of all A-moves cAq for coalition A
at state q. Now we define CΓ(A, q) as the set of all A-moves
such that it holds that:

CΓ(A, q) = {cAq ∈ C(A, q) ∣ ∀⟨γ,A′⟩ ∈ Γ−A ∶ allows(⟨γ,A′⟩, cAq )}

where: allows(⟨γ,A′⟩, cAq ) =

(∀a ∈ A′ ∶ γ(a, q) /= ∅)⇒ ⋁
a∈A′

c
A
q (a) /∈ γ(a, q)

In words, the set CΓ(A, q) contain all A-moves for coalition
A which are not normatively demotivated by a constraint in
Γ−A. We can now give the formal definition of unconditional
self-supporting constraint sets.

Definition 3 (Unconditional Self-supporting). .
Given a concurrent game structure S = ⟨k,Q,Π, π,Ac, δ⟩, we
say that an abstract normative constraint set Γ is uncondi-
tional self-supporting with respect to S if and only if for all
A ⊆ Σ it holds that for all states q ∈ Q it is the case that
CΓ(A, q) is non-empty and for every A-move cAq ∈ CΓ(A, q),
it holds that by playing it, all of the normative constraints
⟨A′, γ⟩ ∈ Γ−A will be either not enabled or not taken.

Note that an unconditional self-supporting normative con-
straint set is (by definition) also strongly self-supporting
since we demanded CΓ(A, q) to be non-empty. Now given
a concurrent game structure S = ⟨k,Q,Π, π,Ac, δ⟩ and an
abstract normative constraint set Γ, we can define outq as
a function from a set of A-moves to the set of all possible
states the agents can arrive in by playing such an A-move.

outq(C(A, q)) = {δ(q, dq) ∈ Q ∣ dq ∈ g(cAq ) and c
A
q ∈ C(A, q)}

where

g(cAq ) = {⟨α1, ..., αk⟩ ∈D(q) ∣ ∀a ∈ A ∶ cAq (a) = αa}

Using this definition, the following proposition now states
how we can verify when an abstract normative constraint
set is unconditional self-supporting with respect to a game
structure.

Proposition 4 (Unconditional Self-supporting).
A normative constraint set Γ with respect to a concurrent
game structure S = ⟨k,Q,Π, π,Ac, δ⟩ is unconditional self-
supporting iff ∀q ∈ Q and ∀A ⊆ Σ ∶ outq(CΓ(A, q)) /= ∅ and
outq(CΓ(A, q)) ∩ outq(C(A, q)/CΓ(A, q)) = ∅.

To see why this proposition holds, note that it states that
the states reachable from an A-move in CΓ(A, q) (all the
A-moves which are not normatively demotivated by the con-
straints in Γ−A) and the states reachable from C(A, q)/CΓ(A, q)
(all the A-moves which are normatively demotivated by the
constraints in Γ−A) must be disjoint. If this is not the case,
then there exists an A−move in CΓ(A, q) which by playing
it would result in one of the constraints in Γ−A to be enabled
and taken, thus not unconditionally self-supporting. A sim-
ilar reasoning can be applied for the other way around.

What we have seen in this section is that it is possible
to characterize and identify multiple levels of “control” the
agents have over the ability to adhere to the normative con-
straints. As we already argued, identifying when a norma-
tive constraint set is not (weakly/strongly/unconditional)

self-supporting with respect to a concurrent game structure
may play a crucial role for the agents in order to decide
whether to participate in the system, since they restrict the
autonomy of the agents in some way.

7. DISCUSSION AND FUTURE RESEARCH
In this paper we have developed a model of normative sys-

tems that allows reasoning about agents’ (normative) abili-
ties under a multitude of compliance assumptions. This can
be both crucial in the design and validation of these systems.
To do this, we introduced the notion of abstract normative
constraints and we developed an extension of Alternating
Temporal Logic, an-ATL, to allow reasoning about the abil-
ities of (coalitions of) agents under different compliance as-
sumptions. Moreover, we showed that model-checking an-
ATL formula’s remains close to the complexity of model-
checking standard ATL. In the last part of the paper, we
discussed the notion of self-supporting constraint sets and
explained its relation to autonomy of agents. In particular,
we explained that if a constraint set is self-supporting, the
agents have (in some way) control over whether they can
avoid a violation.

There are multiple ways to extend this line of research.
Firstly, it would be very interesting to consider more com-
pliance assumptions. As can be seen in Section 5, given
a normative constraint set Γ, our logic allows us to create
arbitrary complex obedience assumptions in the language
Lprop(Γ × {enabled, taken}). Moreover, it would be inter-
esting to incorporate goals and preferences of agents and
see how they relate to the obedience behaviour of the other
agents. Finally, the question what “good coalitions” for
agents are in order to not violate any of the norms must
be answered. Perhaps this question can be related to the
topic of coalitional game theory.

8. REFERENCES
[1] T. Ågotnes, W. van der Hoek, and M. Woolridge.

Robust normative systems and a logic of norm
compliance. Logic journal of the IGPL, 18:4–30, 2010.

[2] T. Ågotnes, M. Wooldridge, and W. van der Hoek.
Normative system games. In AAMAS’07, pages
876–883, 2007.

[3] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. Journal of the ACM,
49(5):672–713, 2002.

[4] N. Bulling and M. Dastani. Verifying normative
behaviour via normative mechanism design. In
IJCAI’11, pages 103–108, 2011.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, Cambridge, 1999. ISBN
0-262-03270-8.

[6] Y. Moses and M. Tennenholtz. Artificial social systems.
Computers and AI, 14(6):533 – 562, 1995.

[7] Y. Shoham and M. Tennenholtz. On the synthesis of
useful social laws for artificial agent societies. In
AAAI’92, pages 276–281, 1992.

[8] W. van der Hoek, M. Roberts, and M. Wooldridge.
Social laws in alternating time: effectiveness, feasibility,
and synthesis. Synthese, 156(1):1–19, 2007.

[9] M. Woolridge and W. van der Hoek. On obligations
and normative ability. Journal of Applied Logic,
3:396–420, 2005.


