
Pogamut Toolkit (Demonstration)
Jakub Gemrot

Charles University, Faculty of
Mathematics and Physics

Ke Karlovu 3
Prague 2, 121 16, Czech Republic
jakub.gemrot@gmail.com

Michal Bída
Charles University, Faculty of

Mathematics and Physics
Ke Karlovu 3

Prague 2, 121 16, Czech Republic
michal.bida@gmail.com

Cyril Brom
Charles University, Faculty of

Mathematics and Physics
Ke Karlovu 3

Prague 2, 121 16, Czech Republic
brom@ksvi.mff.cuni.cz

ABSTRACT
All experiments using intelligent virtual agents, sooner or later,
ask for a specific virtual environment that would fit their setup.
Seeking such environment is a daunting task accompanied with
the need for an appropriate agent adapter that provides
infrastructure for mediation of virtual body senses and actions
thereby enabling remote high-level agent control. This demo
presents Pogamut toolkit, which provides out-of-box programmer
tools for creating virtual agents for Unreal Tournament 2004,
Unreal Development Kit and Defcon virtual environment.
Pogamut’s virtual world abstraction is compatible with many
agent oriented languages and architectures including Jadex,
GOAL, POSH, Soar or ACT-R, which makes it highly suitable for
research on intelligent virtual agents.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Reusable libraries

General Terms
Design, Experimentation.

Keywords
IVA toolkit, Virtual environments, Action-selection

1. INTRODUCTION
The development of intelligent virtual agents (IVA) is still far
from being easy as every IVA application calls for complex chain
of tools and libraries that must work together to enable quick and
efficient IVA production. IVA production typically comprises
several cycles, during which researchers:
(a) design,
(b) implement, run, observe & debug,
(c) test & validate their IVAs.
Technically, IVA applications can be conceived as consisting of
three parts (see Picture 1):
(1) a virtual environment (VE),
(2) an environment-agent middleware (EAM),
(3) an agent platform (AP).
Furthermore, as every research have to implement & debug (Point
(b)) and test & validate the application (Point (c)), a researcher

needs:
(4) implementation tools,
(5) debugging tools,
(6) testing & validation tools.

As there is no mature standard yet that would cover the whole
IVA development process or provide research methodology
guidelines and technology interface standards (contrary to
“classical” agents, cf. e.g. FIPA), every IVA application setup
requires a proprietary solution that combines Parts (1) – (6). Here,
we present Pogamut toolkit, a result of 5 years of work, which
aims at providing complete solutions for building IVAs for
various virtual environments. Pogamut toolkit currently supports
development of IVAs for (i) Unreal Tournament 2004 (UT2004),
(ii) Unreal Development Kit (UDK) and (iii) Defcon. Unreal
Tournament 3 (UT3) is a work-in-progress. The toolkit
complements similar attempts, such as [1] capitalizing on BML.

Picture 1. A typical IVA application

2. FEATURES OF IVA TOOLKITS
Instead of listing Pogamut features, it is better to review IVA
production cycle (Points (a) – (c)) with respect to IVA application
Parts (1) – (3). That will provide the list of features that every
IVA toolkit should possess.

2.1 Designing IVAs (Point (a))
Process of designing an IVA is typically sensitive to the selection
of Parts (1) – (3). A researcher has to understand capabilities,
limitations and options of every part involved. She must
understand a VE (1) to be able to create its particular instance
suitable for the application; she has to work with an EAM (2)
encoding agents’ reflexes and complex sensory and motor
primitives; finally, she will work with an AP itself (3), which will
accommodate agents’ plans and strategic decision making.
The support from the IVA toolkit here is to have getting-started
tutorials, be well documented and provide a lot of executable
example agents that exemplify various features provided by
Parts (1) – (3). Appears in: Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2012), Conitzer,
Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012, Valencia,
Spain.
Copyright © 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2.2 Implementing & Debugging (Point (b))
Once an IVA application is designed and the tool chain is
understood, the implementation can take place. This phase itself
will contain a lot of iterations of Point (b) (see Table 1).
 Unfortunately, all steps of Point (b) will happen in each of VE,
EAM and AP so the toolkit must provide (ideally integrated) (4)
& (5) to help the researcher along the way. The list of desired
features is presented in Table 1.

2.3 Testing & Validating IVAs (Point (c))
Once an IVA is implemented, it needs to be run through series of
tests that provide data for answering experiment hypotheses, e.g.,
for comparison to other existing IVAs fulfilling the same goal.
Usually, it means to run the IVA multiple times (e.g., 20x or
100x) to gain statistical validity of the obtained data.
 The IVA toolkit has two roles in this process (Part (6)). First, it
should provide means for gathering such data, e.g., stubs for agent
observers that can collect data of agent actions, reasoning,
decision making and a VE itself. Second, it should provide tools
(GUIs, libraries, scripts) for automatic testing, so that the
researcher does not need to run every test manually or create such
tools.

Table 1. The list of IVA platform features that ease
implementing & debugging of IVAs

2.4 Technical dependencies
Unfortunately, there are technical dependencies between a VE, an
EAM and an AP. Thus every complete tool chain will contain a
lot of “glue” code that adapts VE-EAM and EAM-AP. As there
are no mature standards how VEs, EAMs and APs should look
like, no one can expect (for instance) that existing tools for AP

will provide much insight into interoperability between EAM and
AP or even VE and AP. For example, an automated IVA testing
tool that operates over UT2004-Pogamut-SPOSH (as part of (6))
will not work for Defcon-Pogamut-Jason setup as it will contain
much of UT2004-Pogamut-SPOSH specific code.
This is not surprising but leads to another observation that every
IVA toolkit should state which tools it provides with respect to
concrete VE-EAM-AP chosen.

3. FEATURES OF POGAMUT
Tables 2 and 3 provide an overview of existing and implemented
tool chains for creating IVAs for UT2004, UDK and Defcon
environment by the Pogamut toolkit.

Table 2. Bindings that Pogamut as EAM provides.

4. USAGE
 In this paper we have presented a list of general features that are
(has to be) common to every IVA toolkit aiming to support
development of IVA applications. The crucial point is that
Pogamut supports these features with respect to three different
virtual environments. Furthermore, Pogamut already proved its
applicability by being used for international IVA competition,
research and education.

5. ACKNOWLEDGMENTS
This research was partially supported by project P103/10/1287
(GACR), by student grants GA UK No. 0449/2010/A-INF/MFF
655012/2012/A-INF/MFF, and by SVV project number 263 314.

6. REFERENCES
[1] Thiebaux, M., Marshall, A., Marsella, S., Kallmann, M.

SmartBody: Behavior Realization for Embodied
Conversational Agents. In: Proc. of Autonomous Agents and
Multi-Agent Systems (2008).

VE / EA Java POSH Jason ACT-R

UT2004 Yes Yes No Yes
UDK Yes Yes No No
Defcon Yes No Yes No

 (1) VE (2) EAM (3) AP

Implement VE editor

IDE for coding
reflexes and

complex sensory and
motor primitives

IDE for creating
agent plans

Run Means for quick (re)starting of the whole tool chain
(startup scripts or GUI).

Observe and
debug VE visualizer

Interactive coding,
sync. breakpoints

with VE, logs.

Interactive coding,
sync. breakpoints
with EAM, logs.

Table 3. Existing tutorials and features of Pogamut toolkit for respective VE/AP combinations.
 Designing Implementing & Debugging Testing & Validating

VE / AP Installer Getting
started doc. Tutorials Commented

examples IDEs / Tools IDEs / Tools

UT2004+Java Yes Yes Yes Yes NetBeans IDE, Debug GUI Experiment runner lib.

UT2004+POSH Yes Yes Yes Yes NetBeans IDE with POSH Editor
and POSH Debugger

Experiment runner lib.

UT2004+ACT-R Yes No Yes Yes NetBeans IDE X

UDK+Java Yes Yes Partially Yes NetBeans IDE X

UDK+POSH No No Partially No NetBeans IDE with POSH Editor
and POSH Debugger

X

Defcon+Java No No Yes Yes NetBeans IDE for coding, Auto
deploy & run Ant scripts

X

Defcon+Jason No No Yes Yes Auto deploy & run X

