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ABSTRACT 

One popular approach to active perception is using POMDPs to 

maximize rewards received for sensing actions towards task ac-

complishment and/or continually refining the agent’s knowledge.  

Multiple types of reward functions have been proposed to achieve 

these goals: (1) state-based rewards which minimize sensing costs 

and maximize task rewards, (2) belief-based rewards which max-

imize belief state improvement, and (3) hybrid rewards combining 

the other two types.  However, little attention has been paid to 

understanding the differences between these function types and 

their impact on agent sensing and task performance. In this paper, 

we begin to address this deficiency by providing (1) an intuitive 

comparison of the strengths and weaknesses of the various func-

tion types, and (2) an empirical evaluation of our comparison in a 

simulated active perception environment. 
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1. INTRODUCTION 
Recently, one application of intelligent agents growing in popular-

ity is intelligent information gathering.  Here, developers com-

monly model the agent’s reasoning about sensing as an active 

perception problem (e.g., [9]), where the agent makes explicit 

decisions about sensing to maximize the quality and/or quantity of 

its gathered information.   One popular approach to active percep-

tion is to make sequential decisions using the partially observable 

Markov decision process (POMDP) [5], e.g., in user preference 

elicitation [2, 3] and agent-based classification [4].  

To illustrate, we consider a robotic mining simulation called Min-

eralMiner, a testbed for sensing research similar to RockSample 

[8].  Here, an intelligent agent completes frequent mineral collec-

tion tasks with firm deadlines.  To discover minerals (gold, silver, 

uranium), the agent performs sensing on various mines in the 

environment.  The agent models its sensing at each mine with an 

active perception POMDP, where the states and observations 

represent the possible mineral types in the mine and the actions 

represent various sensing activities with different cost and accura-

cy, as well as drilling actions (which stop sensing) for each type 

of mineral.  Of note, drilling for an incorrect mineral type destroys 

a mine.  Thus, quality sensing is necessary for completing tasks. 

2. REWARD FUNCTION COMPARISON 
Several types of reward functions for active perception POMDPs 

have been proposed in the literature.  First, state-based rewards 

 (   ) (e.g., [3, 4]) follow the traditional design of reward func-

tions in the POMDP literature [5], where rewards are the benefit 

or cost of actions in different states with respect to the accom-

plishment of tasks and environment impact.  An agent handles its 

uncertainty about the hidden state of the environment by margin-

alizing expected rewards over beliefs about each state: 

                                     ∑  ( ) (   )     (1) 

We present  (   ) values for two state-based reward functions 

for MineralMiner in Table 1 (similar to [3]), where (1) Cost Sens-

ing encodes the actual costs incurred by the agent for each action, 

and (2) Zero Cost Sensing focuses only on task rewards.  

Alternatively, recently proposed belief-based rewards [1] break 

from tradition and consider only measures on the entire belief 

state of the agent, independent of individual states.  For example, 

if the primary goal of sensing is to reduce the uncertainty in the 

agent’s beliefs, the agent can use the entropy in its belief state as a 

measure of uncertainty, then maximize the negative of its ex-

pected entropy to minimize uncertainty: 

              [ (    )]   [∑     ( )    | |  
   ( )   ] (2) 

Other belief-based reward functions accomplish similar goals 

including maximizing information gain or the expected top belief: 

                                     [       
   ( )]  (3) 

The intuitive strengths and weaknesses of these functions include: 

 State-based rewards directly encode the costs of sensing ac-

tivities, allowing the agent to minimize sensing costs, where-

as belief-based rewards ignore such information. 

 Belief-based rewards directly encode the benefits of sensing 

(i.e., belief state improvement), whereas state-based rewards 

only implicitly consider this information through finding pol-

icies of actions that reach task accomplishment the fastest. 

 State-based rewards provide a natural stopping condition for 

sensing: when the expected reward of using information ex-

ceeds further sensing costs, and thus are appropriate for task- 

based environments.  Belief-based rewards, instead, require 
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Table 1: State-based Rewards for MineralMiner 
Action Cost Sensing Zero Cost Sensing 

Correct 

State 

Incorrect 

State 

Correct 

State 

Incorrect 

State 

Advanced   

(80% Accuracy) 

-5 -5 0 0 

Basic  

(50% Accuracy) 

-2 -2 0 0 

Wait (do nothing) 0 0 0 0 

Drilling  100 -500 100 -500 

an external stopping condition (e.g., stop when a confidence 

threshold is reached for the top belief:  ( )      ). 

 Belief-based rewards optimize beliefs for continual sensing 

when it is unknown when information will be used, whereas 

state-based rewards might be inappropriate for such envi-

ronments [1] due to lacking task rewards to guide sensing.  

Finally, hybrid rewards consider both of the other types simulta-

neously in the form of a weighted function [1, 6], e.g.,   

                 ∑  ( ) (   )  (   )    [ (    )] (4) 

where   weights the impact of the two reward types.  Below, we 

use a hybrid of Cost Sensing (c.f., Table 1) with negative expected 

Entropy (Eq. 3) using three weights:                 . 

Hybrid functions have the potential to merge the strengths of 

state- and belief-based rewards while mitigating their weaknesses:  

 Hybrid rewards add cost information for sensing activities to 

belief-based reward functions to improve sensing. 

 Hybrid rewards incorporate belief state revision into state-

based rewards to speed up belief state convergence and pro-

mote faster task accomplishment. 

 However, the weight between the two types of rewards must 

be properly tuned, which can be difficult to set a priori.  

3. INVESTIGATION 
We now provide results from an empirical investigation using 

MineralMiner to evaluate our intuitive comparison of the various 

active perception POMDP reward function types.  To maximize 

rewards, we choose actions from limited depth policy trees creat-

ed online [7] from the current belief state for the current mine.  

This approach (1) finds exact solutions with low computational 

cost due to the small POMDP size, and (2) allows us to compare 

how performance depends on policy depth (         ) due to the 

different properties of the functions.  We used 600 mines/tasks to 

provide many opportunities for sensing and ran our experiments 

30 times with different random seeds to minimize variance.   

Figures 1-2 present: (1) the number of mines correctly identi-

fied/drilled, measuring sensing effectiveness, and (2) the task-

based rewards earned by the agent (Cost Sensing, c.f., Table 1), 

measuring sensing efficiency.  Due to space constraints, we high-

light the key analyses from our results, confirming our intuitions: 

 State-based functions almost always improved as policy 

depth increased.  This is because myopically, state-based 

functions only minimize immediate costs, whereas non-

myopically they minimize total costs through less sensing. 

 Belief-based functions performed consistently for all policy 

depths due to always looking ahead to expected belief im-

provement, but achieved lower task rewards (higher costs) 

than state-based functions for longer policy depths (   ). 

 Hybrid rewards (      ) performed the best due to com-

bining cost-awareness (state-based rewards) and rapid belief 

improvements (belief-based rewards). 

 
Figure 1: Number of Mines Correctly Identified and Drilled 

 
Figure 2: Cumulative Task-based Rewards 

Note: Cost has negative task rewards due to very poor sensing 

 Increasing policy depth from 3 to 4 worsened performance of 

all functions but at different rates.  Thus, looking farther 

ahead is not always beneficial, which we intend to further 

study.  
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