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ABSTRACT

An ad hoc team setting is one in which teammates must
work together to obtain a common goal, but without any
prior agreement regarding how to work together. In this
work we introduce a role-based approach for ad hoc team-
work, in which each teammate is inferred to be following
a specialized role that accomplishes a specific task or ex-
hibits a particular behavior. In such cases, the role an ad
hoc agent should select depends both on its own capabilities
and on the roles currently selected by other team members.
We present methods for evaluating the influence of the ad
hoc agent’s role selection on the team’s utility and we ex-
amine empirically how to choose the best suited method for
role assignment in a complex environment. Finally, we show
that an appropriate assignment method can be determined
from a limited amount of data and used successfully in new
tasks that the team has not encountered before.
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I.2.11 [Distributed Artificial Intelligence]: Multiagent
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1. INTRODUCTION
Ad hoc teamwork is a relatively new research area [1, 4,

5] that examines how an agent ought to act when placed
on a team with other agents such that there was no prior
opportunity to coordinate behaviors. This is in contrast
to most prior multiagent teamwork research, which often
requires explicit coordination protocols, languages, and/or
shared assumptions (e.g. [3, 6]).

In some team domains, the team behavior can be broken
down into roles. In such domains, an ad hoc agent’s main
task is to decide which role to assume, such that the team’s
performance is maximized. The decision of which role an ad
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hoc agent should assume is situation-specific: it depends on
the task the team performs, the environment in which it op-
erates, and the capabilities of the team members. One trivial
approach to the problem is for an ad hoc agent to assume
the role at which it is most individually capable. However,
the choice of optimal role—one that results in highest team
utility—rarely depends only on the ad hoc agent, but also
on the ability and behavior of the other team members. We
therefore examine the contribution of an ad hoc agent to
the team by the measure of marginal utility, which is the in-
crease in a team’s utility when an ad hoc agent is added to
the team and assumes a particular role. An optimal mapping
of an ad hoc agent to a role is, therefore, one that maximizes
the marginal utility, hence maximizing the contribution of
the ad hoc agent to the team’s utility.

2. PROBLEM DEFINITION
An ad hoc teamwork problem is one in which several

agents find themselves in a situation where they all have
perfectly aligned goals, yet they have had no previous op-
portunity to coordinate their teamwork [5]. In this work we
introduce the role-based ad hoc teamwork problem, which is
one that requires or benefits from dividing the task at hand
into roles. Throughout this paper we refer to the agents that
make up a team as either ad hoc agents or teammates. Ad
hoc agents are agents whose behavior we can control, while
teammates are agents that we have no control over, poten-
tially because they were programmed at a time when future
collaboration with our agents was unforeseeable.

Formally, let task d have m roles R(d) = {r0, ..., rm−1}.
Let A = {a0, ..., an−1} be the set of ad hoc agents and
B = {b0, ..., bk−1} be the set of teammates such that T =
A ∪ B is the team that is to perform task d. Let mapping
P : B → R(d) be the mapping of B to roles {r0, ..., rm−1}
and let mapping S : A → R(d) be the mapping of A to
roles {r0, ..., rm−1}. Finally, let mapping SP : T → R(d)
be the combination of mappings S and P . A team score
U(SP, d, T ) results when the set of agents T perform a task
d, with each tj ∈ T fulfilling some role ri ∈ R(d) under
mapping SP . The marginal utility MU(S, P ) obtained by
mapping S, assuming P is the mapping of B to roles, is the
score improvement obtained when S maps A to roles. Hence,
marginal utility MU(S, P ) = U(SP, d, T ) − U(P, d, B).

Given that mapping P is fixed, the role-based ad hoc team
problem is to find a mapping S that maximizes marginal
utility. Although for the remainder of this paper we focus
on the case where A = {a0}, the problem definition provided
above is valid for any number of ad hoc team agents.



3. MODELS FOR CHOOSING A ROLE
The gold standard way for an ad hoc agent to determine

the marginal utility of selecting a particular role is to deter-
mine U(SP, d, T ) for each possible role it could adopt. How-
ever, in practice, the ad hoc agent must predict its marginal
utility for all possible roles and then select just one role to
adopt. Here we lay out three possible models with which
the ad hoc agent could do this prediction.

Unlimited Role Mapping Model The value received by
the team for an agent performing a role is not depen-
dant on the roles fulfilled by other teammates.

Limited Role Mapping Model The benefit the team re-
cieves for an agent performing role ri is dependent on
the number of agents performing ri. The team recieves
no benefit for an additional agent performing ri if this
results in less than (greater than) rmin

i (rmax
i ) agents

performing ri.

Incremental Role Mapping Model The value added by
an agent performing a role is correlated with the num-
ber of agents performing that role via a (1) logarithmic,
(2) exponential, or (3) sigmoidal function.

4. MODEL EVALUATION
We examine each of the three models described above in

a capture-the-flag style variant of Pacman [2]. The Pacman
map is divided into two halves and two teams compete by
attempting to eat the food on the opponent’s side of the
map while defending the food on their side. A team wins
by eating all but two of the food pellets on the opponent’s
side or by eating more pellets than the opponent before time
expires. The result of each game is a score differential—the
difference between the number of pellets protected by the
team and the number of pellets protected by the opponent.

Figure 1: Sample Pacman capture-the-flag map.

4.1 Determining the Best-Suited Model
We use three tasks to determine which of the models best

represents the marginal utility of a role selection for the Pac-
man Capture-the-Flag environment, where a task is defined
by the number of opponents and the map. In each task we
consider two roles that could be performed: R ={offense,
defense}.

We start by gathering full sets of gold standard data. In
particular, we gather score differentials over one thousand
games for each team of zero to six offensive agents and zero
to six defensive agents (49 teams). In order to emphasize
differences in score differentials close to zero, we input the
score differential from each game into the sigmoid function

1/1 + e−0.13∗scoreDifferential and average the results to ob-
tain gold standard data. Then we use the gold standard data
to determine the gold standard decision of whether an ad hoc
agent should perform an offensive role or a defensive role on
any team composed of zero to five offensive agents and zero
to five defensive agents. To determine the gold standard de-
cision we look at whether the gold standard data is greater

for the team with one extra defensive player or the team
with one extra offensive player.

For each of the model functions, we input the gold stan-
dard data and the model function into a least squares curve
fitting algorithm and obtain fitted parameters for the model
function. We then use the fitted parameters to calculate
fitted results for all 49 teams. Lastly, we translate these fit-
ted results into fitted decisions using the same methodology
used to translate the gold standard data into gold standard
decisions. Then we compare the number of times the gold
standard decision does not match the fitted decision for a
particular team arrangement —in other words, the number
of incorrect decisions. Our experiments showed that the ex-
ponential and sigmoidal functions of the incremental model
made the fewest incorrect decisions across the three tasks.
Hence we conclude that in the Pacman Capture-the-Flag
domain, at least on the maps and opponents studied, the
incremental model using an exponential or sigmoidal func-
tion most accurately models team utility.

4.2 Predictive Modeling
Once a model type has been selected for a domain, the

ad hoc agent can use this model to predict the marginal
utility of role selection on new tasks for which we have lim-
ited gold standard data. We do this by choosing fitted pa-
rameters for the new task based on available data. Our
experiments showed that the prediction accuracy of each in-
cremental model function variation improved as more data
was available, and that some variations did surprisingly well
even when provided extremely sparse data.

5. FUTUREWORK
This research is among the first to study role-based ad

hoc teams. As such, there are many potential directions for
future work. We plan on expanding our work into more com-
plicated environments with more than two potential roles to
fulfill and more than one ad hoc agent. Additionally, we
wish to consider the case in which the ad hoc agents en-
counter teammates that are running unfamiliar behaviors,
forcing the ad hoc agents to model their teammates.
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