
On Deconflicting Local Coordination Among Agents

(Extended Abstract)

Manh Tung Pham and Kiam Tian Seow
School of Computer Engineering, Nanyang Technological University, Singapore 639798

pham0028,asktseow@ntu.edu.sg

ABSTRACT
For conflict resolution between local coordination modules
of distributed agents, synthesized based on inter-agent con-
straints, two original ideas are proposed. The first is a
designer-comprehensible Distributed Constraint Specifica-
tion Network (DCSN) for describing the constraint relation-
ships among agents. The second is an algorithm using cut-
set theory for generating, from a given DCSN, an AND/OR
graph compactly representing all conflict resolution plans.
A case study is presented.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
Agents, Multiagent Systems

General Terms
Algorithms, Design, Theory

Keywords
Multiagent Coordination, Conflict Resolution

1. DCSN
We shall use small letters such as n, m, k, to denote inte-

gers, and for an integer n ≥ 1, In denotes the set {1, 2, ..., n}.
Definition 1. Let n ≥ 2, m ≥ 1. A distributed constraint

specification network (DCSN) N is a tuple (A, C), where A =
{Ai | i ∈ In} is an agent set of size n and C = {Ck

Jk
| k ∈

Im, Jk ⊆ In} is an inter-agent constraint set of size m, where
Ck

Jk
∈ C is a constraint specified for the group of agents AJk

=

{Ai | i ∈ Jk}. In other words, for all k ∈ Im, the agents in AJk

must coordinate among themselves to respect Ck
Jk

.

Each Ck
Jk

∈ C in a DCSN N is said to be a relevant
constraint for agents in the group AJk

= {Ai | i ∈ Jk}.
Without loss of generality, assume henceforth that

⋃

k∈Im

Jk =

In, i.e., every agent in A is in AJk
for some k, and so every

agent needs to coordinate. Then a DCSN can be redefined
as N = {(Jk, C

k
Jk
) | k ∈ Im, Jk ⊆ In}. An element N k

1 =

(Jk, C
k
Jk
) of N is then called a basic subnet of N ; and a non-

empty NSr
r ⊆ N consisting of r = |Sr| ≥ 1 basic subnets

is called a r-constraint subnet of N with constraint subset

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

{Ck
Jk

| k ∈ Sr}. Where the constraint subset is arbitrary, a
r-constraint subnet is simply denoted by Nr.

A DCSN can be graphically represented by an undirected
graph with agents represented by rectangular nodes, and
each constraint relevant for an agent group by an oval hyper-
edge with arcs connecting it to all the agents in the group.
A r-constraint subnet Nr of N is said to be constraint-
connected if the graph representingNr is a connected graph.

Given a DCSN N = (A, C), the problem of interest is
to synthesize local plans and coordination strategies, called
coordination modules (CM’s) henceforth, for every agent in
A to respect every constraint in C. For this problem, we
propose a compositional synthesis approach:
• Step 1 Basic Subnet Synthesis: Synthesize for ev-

ery agent a set of local CM’s, one for each of the agent’s
relevant constraints.

• Step 2 Subnet Composition
-Step 2.1 Conflict Resolution Plan Generation: Gen-
erate a conflict resolution plan for the given DCSN.
-Step 2.2 Conflict Resolution Plan Execution: Com-
pose subnets with conflict resolution by following a prece-
dence order of subnet composition operations in the plan.
This is to completely deconflict the local CM’s synthe-
sized in Step 1. Each subnet composition operation entails
designing deconflicting CM’s for the agents concerned to
ensure nonconflictingness in the composed subnet.
Henceforth, we present the theory for representing conflict

resolution plans using AND/OR graphs [1]. We assume that
a subnet composition is an operation on two subnets.

2. PLAN REPRESENTATION
A conflict resolution plan for a DCSN is a finite number

of subnet composition operations, with ordering constraints
between them. Such a plan may encompass several complete
planning sequences, each of which is an ordered sequence of
the subnet composition operations that satisfies all the or-
dering constraints. Executing a given plan means following
one of its complete planning sequences to successively com-
pose (the solutions of) different pairs of subnets to form
(solutions of) larger subnets, starting with all basic subnets
“disconnected” from each other, and ending with all of them
correctly composed to form the DCSN.

Observe that a conflict resolution planning sequence for a
DCSNN is a reversal of a successive decomposition, starting
with N , of constraint-connected component subnets until
only basic subnets remain. This suggests that the forward
search problem of generating conflict resolution plans N can
be addressed as a backward search problem of successively
decomposing N into pairs of constraint-connected compo-
nent subnets until only basic subnets are left.

Definition 2. The AND/OR graph of conflict resolution plans

for a DCSN N is a hyper-graph TN = (SN , HN), where 1) SN
is the set of nodes of TN and defined as SN = {Nr ⊆ N |
Nr is constraint-connected }, and 2) HN is the set of hyper-edges
of TN and defined as HN = {(Nr1 , (Nr2 ,Nr3)) ∈ SN × (SN ×
SN) | Nr2 ∩ Nr3 6= ∅ and Nr1 = Nr2 ∪ Nr3}.

The nodes in the AND/OR graph TN represent constraint-
connected subnets ofN , and each of the hyper-edges is a pair
(Nr1 , (Nr2 ,Nr3)) denoting the decomposition of subnet Nr1

into two component subnets Nr2 and Nr3 , or equivalently,
the composition of Nr2 and Nr3 into Nr1 . A hyper-edge
points from a node representing a subnet to two nodes rep-
resenting the component subnets. The node that represents
the complete DCSN N is referred to as the root node and
denoted by nroot, and the nodes representing basic subnets
of N are referred to as the leaf nodes. The set of all leaf
nodes of TN is denoted by Θleaf . In what follows, a conflict
resolution plan for N is represented by a tree in TN that
starts at nroot and terminates at Θleaf .

3. AND/OR GRAPH PLAN GENERATION
To generate an AND/OR graph representation of conflict

resolution plans, the idea is to enumerate all possible de-
compositions of a DCSN N into two constraint-connected
component subnets. Each such decomposition corresponds
to an edge of the AND/OR graph TN connecting the root
node representing N to two nodes, with each representing a
component subnet. The same decomposition process is then
repeated for each of the component subnets until only basic
subnets are left.

Definition 3. The constraint relational network (CRN) CRN r

of a r-constraint subnet NSr
r = {(Jk, C

k
Jk

) | k ∈ Sr} is a tuple

(Cr ,Rr), where Cr = {Ck
Jk

| k ∈ Sr} is the constraint set of

size r in Nr and Rr ⊆ Cr × Cr is a relation over Cr, such that
(∀Ck

Jk
, Ch

Jh
∈ Cr)[(Ck

Jk
, Ch

Jh
) ∈ Rr ⇔ (Jk ∩ Jh 6= ∅)].

Observe that enumerating all possible decompositions of
a subnet Nr into two constraint-connected subnets can be
done by enumerating all possible cut-sets of its CRN CRN r.
Specifically, consider a cut-set (Cx, Cy) that decomposes CRN r

into two parts, where Cx and Cy are the two disjoint sets
of vertices of CRN r belonging to these two parts. Write
Nx ∼ Cx and Ny ∼ Cy to denote respectively that Nx and
Ny are the component subnets induced by Cx and Cy. Then
Nx and Ny are two constraint-connected component sub-
nets decomposed from Nr. Conversely, any decomposition
of Nr into two constraint-connected component subnets Nx

and Ny corresponds to a cut-set (Cx, Cy) of CRN r, with
Nx ∼ Cx and Ny ∼ Cy.

Procedure GenerateANDORGraph(N)

Output: An AND/OR graph TN = (SN , HN) of conflict
resolution plans for N , initialized with SN = ∅ and
HN = ∅

begin
Step 1: If N contains only one basic subnet then return;
otherwise, convert N into a CRN = (C,R);
Step 2: Compute CutSets as the set of all cut-sets of
CRN ;
Step 3 while CutSets 6= ∅ do

Step 3a Remove a cut-set (Cx, Cy) from CutSets. Let
Nx ∼ Cx and Ny ∼ Cy ;
Step 3b Add nodes and an edge to T :
SN = SN ∪ {Nx,Ny ,Nx ∪ Ny},
HN ∪ {(Nx ∪ Ny,Nx,Ny)};
Step 3c For r ∈ {x, y}, GenerateANDORGraph(Nr);

4. A CASE STUDY
The system under study [Fig. 1(a)] consists of three agents

A1, A2 and A3, and four constraints E1

{1,2}, E
2

{1,2}, B
3

{1,3}

Agent A1

Agent A3

Agent A2

1take1
1return 1return

1take2

2return 2return
2take1 2take2

1place

2place

3remove1

3remove2

3deliver

Buffer B1

Buffer B2

Equipment E1 Equipment E2

(a) Overall system

Agent A1

E1
{1,2}

Agent A2

Agent A3
E2

{1,2}

B3
{1,3}

B4
{2,3}

(b) DCSN

E1
{1,2}

E2
{1,2}

B3
{1,3}

B4
{2,3}

{A1, A2} {A3}

{A2}

{A1}

{A1}{A2}

(c) CRN

N

N
1
1

N
2
1

N
3
1

N
4
1

N
{3,4}
2

N
{2,3,4}
3

N
{1,2}
2

N
{1,2,3}
3

N
{1,2,4}
3

N
{1,3}

2

N
{1,3,4}
3

N
{2,4}
2

N
{1,4}

2

N
{2,3}
2

(d) AND/OR graph plans

Figure 1: A manufacturing system.

and B4

{2,3}. A1 and A2 are producer agents that continually
follow a production plan: Acquire manufacturing equipment
E1 and E2 in either order, produce a workpiece, return the
equipment to their initial location, move to the buffers’ loca-
tion, place the finished workpiece into the respective one-slot
buffer B1 and B2, and finally return to the initial state for a
new production cycle. A3 is a delivery agent that continually
takes a work piece from either buffer B1 or B2, processes,
and delivers it to customers. The four constraints E1

{1,2},

E2

{1,2}, B
3

{1,3} and B4

{2,3} are formulated to respectively en-
sure mutual exclusion of equipment use, and no overflow or
underflow of buffers.

Fig. 1 shows the DCSN [Fig. 1(b)], CRN [Fig. 1(c)] and
AND/OR graph representation of conflict resolution plans
[Fig. 1(d)] for the manufacturing system. This AND/OR
graph can be automatically generated by applying the pro-
cedure GenerateANDORGraph to decompose the CRN in
Fig. 1(c) recursively.

With appropriate weights assigned to hyper-edges of an
AND/OR graph, an A∗ search [2] can return a solution tree
with minimum depth, namely, a plan that allows maximal
simultaneity in executing deconflicting operations, such as
the tree highlighted in Fig. 1(d). Presented elsewhere [3], a
complete CM solution for this case study can be efficiently
computed by executing this highlighted plan tree.

5. REFERENCES
[1] N.Deo. Graph Theory with Applications to Engineering and

Computer Science. New York: Prentice-Hall, 1974.
[2] S.Russell and P.Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, 2003.
[3] M. T. Pham. Discrete-event Multiagent Coordination:

Framework and Algorithms. PhD Thesis, NTU, 2011.

