
Multi-Agent A* for Parallel and Distributed Systems

(Extended Abstract)
Raz Nissim

Ben-Gurion University of the Negev
Be’er-Sheva, Israel

raznis@cs.bgu.ac.il

Ronen I. Brafman
Ben-Gurion University of the Negev

Be’er-Sheva, Israel
brafman@cs.bgu.ac.il

ABSTRACT
Search is among the most fundamental techniques for prob-
lem solving, and A* is probably the best known heuristic
search algorithm. In this paper we adapt A* to the multi-
agent setting, focusing on multi-agent planning problems.
We provide a simple formulation of multi-agent A*, with
a parallel and distributed variant. Our algorithms exploit
the structure of multi-agent problems to not only distribute
the work efficiently among different agents, but also to re-
move symmetries and reduce the overall workload. Given a
multi-agent planning problem in which agents are not tightly
coupled, our parallel version of A* leads to super-linear
speedup, solving benchmark problems that have not been
solved before. In its distributed version, the algorithm en-
sures that private information is not shared among agents,
yet computation is still efficient – sometimes even more than
centralized search – despite the fact that each agent has ac-
cess to partial information only.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
gence

General Terms
Algorithms

Keywords
Distributed Search, Parallel search, Multi-Agent Planning.

1. INTRODUCTION
A* is probably the most celebrated heuristic search algo-

rithm. Its good theoretical properties make it the favorite al-
gorithm when searching for a provably optimal solution. The
main contribution of this paper is MA-A*, a multi-agent for-
mulation of A*. MA-A* attempts to make the most of the
parallel nature of the system, i.e., the existence of multiple
computing agents, while respecting its distributed nature,
when relevant, i.e., the fact that some information is local
to an agent, and cannot be shared. It is not a shallow paral-
lelization or distribution of A*, as some successful parallel

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

implementations of A* [4]. Rather, it is structure-aware,
using the distinction between local and globally relevant
actions and propositions to focus the work of each agent,
dividing both states and operators among the agents, and
exploiting symmetries that arise from the multi-agent struc-
ture. Moreover, MA-A* reduces exactly to A* when there
is a single agent, unlike existing multi-core search methods
[2]. MA-A* comes in two flavors, a parallel one and a dis-
tributed one, that differ only in the nature of the heuristic
functions used.

To evaluate MA-A* we apply it to a number of multi-
agent planning problems, comparing its performance to the
best current optimal centralized planner and to the best
(non-optimal) distributed planner. In the parallel case, our
preliminary experiments show super-linear speed-up, as op-
posed to sublinear speedup by the best parallel planner, on
problems in which agents are not tightly coupled. This stems
from the fact that our algorithm is able to exploit the inter-
nal structure of the problem, and not only the added com-
putational power. Using this variant, we were able to solve
a number of planning problems that were so far beyond the
reach of the best centralized optimal planners, and show up
to ×20 speedup on problems solved by both systems. In
the distributed case, the agents are constrained to use only
information that is directly accessible to them, i.e., informa-
tion about their own operators and non-private aspects of
the operators of other agents. Thus, this variant is truly dis-
tributed, and private information is not shared. In that set-
ting, one would hope that the distributed algorithm would
do not much worse than the centralized one (which has ac-
cess to all information, but less computing power). Here,
we see that the lack of global information is costly. Yet,
even now, as long as the system is somewhat decoupled, the
distributed algorithm can outperform the centralized one.

2. MULTI-AGENT A*
A ma-strips problem [1] for a set of agents Φ = {ϕi}ki=1

is given by a 4-tuple Π = 〈P, {Ai}ki=1, I, G〉, where P is a
finite set of propositions, I ⊆ P and G ⊆ P encode the
initial state and goal, respectively, and for 1 ≤ i ≤ k, Ai is
the set of actions agent ϕi is capable of performing. Each
action a = 〈pre(a), eff(a)〉 is given by its preconditions and
effects.

The ma-strips model distinguishes between private and
public variables and operators. A private variable of agent
ϕ is required and affected only by the actions of ϕ. An
action is private if all variables it affects and requires are
private. All other actions are classified as public. That is,



ϕ’s private actions affect and are affected only by ϕ, while
its public actions may require or affect the actions of other
agents. For ease of presentation we assume that all actions
that achieve a goal condition are considered public.

MA-A*, presented in algorithms 1-3, is a distributed vari-
ation of A*, which maintains a separate search space for
each agent. Each agent maintains an open list of states that
are candidates for expansion and a closed list of already
expanded states. It expands the state with the minimal
f = g + h value in its open list. When an agent expands
state s, it uses its own operators only. This means that
two agents expanding the same state will generate different
successor states.

Algorithm 1 MA-A* for Agent ϕi

1: while did not receive true from a solution verification
procedure do

2: for all messages m in message queue do
3: process-message(m)
4: s← extract−min(openlist)
5: expand(s)

Algorithm 2 process-message(m = 〈s, gϕj (s), hϕj (s)〉)
1: if s is not in open or closed list or gϕi(s) > gϕj (s) then
2: add s to open list and calculate hϕi(s)
3: gϕi(s)← gϕj (s)
4: hϕi(s)← max(hϕi(s), hϕj (s))

Algorithm 3 expand(s)

1: move s to closed list
2: if s is a goal state then
3: broadcast s to all agents
4: initiate verification of stable property flower−bound ≥

gϕi(s)
5: return
6: for all agents ϕj ∈ Φ do
7: if the last action leading to s was public and ϕj has

a public action for which all public preconditions hold
in s then

8: send s to ϕj

9: apply ϕi’s successor operator to s
10: for all successors s′ do
11: update gϕi(s

′) and calculate hϕi(s
′)

12: if s′ is not in closed list or fϕi(s
′) is now smaller than

it was when s′ was moved to closed list then
13: move s′ to open list

Since no agent has complete knowledge of the entire search
space, messages must be sent, informing agents of open
search nodes relevant to them. Agent ϕi characterizes state
s as relevant to agent ϕj if ϕj has a public operator whose
public preconditions (the preconditions ϕi is aware of) hold
in s. In principle, a relevant state must be sent to ϕj (and
this is what A* would effectively do). However, in some
cases, this can be avoided, and there is also some flexibility
as to when precisely the message will be sent. We discuss
these finer details later, and for now, assume a relevant state
is sent once it is generated.

The messages sent between agents contain the full state
s, i.e. including both public and private variable values, as
well as the cost of the best plan from the initial state to s
found so far, and the sending agent’s heuristic estimate of
s. When agent ϕ receives a state via a message, it checks
whether this state exists in its open or closed lists. If it does
not appear in these lists, it is inserted into the open list. If
a copy of this state with higher g value exists in the open
list, its g value is updated, and if it is in the closed list, it is
reopened. Otherwise, it is discarded. Whenever a received
state is (re)inserted into the open list, the agent computes
its local hϕ value for this state, and assigns the maximum
of its hϕ value and the h value in the received message.

Once an agent expands a solution state s, it sends s to all
agents and initiates the process of verifying its optimality.
When the solution is verified as optimal, the agent initiates
the trace-back of the solution plan. This is also a distributed
process, which involves all agents that perform some action
in the optimal plan. When the trace-back phase is done, a
terminating message is broad-casted.

Termination detection is done using Chandy and Lam-
port’s snapshot algorithm [3], which enables a process to
create an approximation of the global state of the system,
without “freezing” the distributed computation.

In the parallel setting, MA-A* allows each agent com-
plete knowledge of both private and public operators of all
agents. Thus, all agents compute (and can share) a single,
global heuristic function, meaning that hϕi(s) = hϕj (s) for
all agents ϕi, ϕj ∈ Φ and for all states s. In the distributed
setting, we assume that agents have access to public infor-
mation and their own private information only. Because
each agent has different information, it must compute its
own local heuristic function. Thus, each agent can compute
its heuristic estimate using a domain description that con-
tains its own actions, as well as all public actions projected
to public variables. The algorithm is completely agnostic as
to how the agent uses this description to compute its pri-
vate heuristic function. This allows us great flexibility, since
different agents may use different heuristics. In fact, this is
the essence of distributed search – each agent is a separate
entity, capable of making choices regarding how it performs
search.

Detailed experimental results, as well as proof of correct-
ness and optimality are available in a technical report [5].

3. REFERENCES
[1] R. I. Brafman and C. Domshlak. From one to many:

Planning for loosely coupled multi-agent systems. In
ICAPS, pages 28–35, 2008.

[2] E. Burns, S. Lemons, R. Zhou, and W. Ruml. Best-first
heuristic search for multi-core machines. In IJCAI,
pages 449–455, 2009.

[3] K. M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems. ACM
Trans. Comput. Syst., 3(1):63–75, 1985.

[4] A. Kishimoto, A. S. Fukunaga, and A. Botea. Scalable,
parallel best-first search for optimal sequential
planning. In ICAPS, 2009.

[5] R. Nissim and R. Brafman. Multi-agent a* for parallel
and distributed systems. Technical Report 12-03,
Department of Computer Science, Ben-Gurion
University of the Negev, 2012.


