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ABSTRACT
The present paper investigates repeated games with imper-
fect private monitoring, where each player privately receives
a noisy observation (signal) of the opponent’s action. Such
games have been paid considerable attention in the AI and
economics literature. Identifying pure strategy equilibria in
this class has been known as a hard open problem. Recently,
we showed that the theory of partially observable Markov
decision processes (POMDP) can be applied to identify a
class of equilibria where the equilibrium behavior can be de-
scribed by a finite state automaton (FSA). However, they
did not provide a practical method or a program to apply
their general idea to actual problems. We first develop a pro-
gram that acts as a wrapper of a standard POMDP solver,
which takes a description of a repeated game with private
monitoring and an FSA as inputs, and automatically checks
whether the FSA constitutes a symmetric equilibrium. We
apply our program to repeated Prisoner’s dilemma and find
a novel class of FSA, which we call k-period mutual punish-
ment (k-MP). The k-MP starts with cooperation and defects
after observing a defection. It restores cooperation after ob-
serving defections k-times in a row. Our program enables
us to exhaustively search for all FSAs with at most three
states, and we found that 2-MP beats all the other pure
strategy equilibria with at most three states for some range
of parameter values and it is more efficient in an equilibrium
than the grim-trigger.
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1. INTRODUCTION
We consider repeated games with imperfect private moni-

toring, where each player privately receives a noisy observa-
tion (signal) of the opponent’s action. This class of games
represents long-term relationships among players and has
a wide range of applications, e.g., secret price cutting and
agent planning under uncertainty. Therefore, it has been
paid considerable attention in the AI and economics liter-
ature. In particular, for the AI community, the framework
has become increasingly important for handling noisy envi-
ronments. In fact, Tennenholtz and Zohar consider repeated
congestion games where an agent has limited capability in
monitoring the actions of her counterparts [5].

Analytical studies on this class of games have not been
quite successful. The difficulty comes from the fact that
players do not share common information under private mon-
itoring, and finding pure strategy equilibria in such games
has been known as a hard open problem [4]. Under private
monitoring, each player cannot observe the opponents’ pri-
vate signals, and he or she has to draw statistical inferences
about the history of the opponents’ private signals. The in-
ferences quickly become very complicated over time, even if
players adopt relatively simple strategies [1]. As a result,
finding a profile of strategies which are mutual best replies
after any history, i.e., finding an equilibrium, is a quite de-
manding task.

Quite recently, we show that the theory of the partially
observable Markov decision process (POMDP) can be used
to identify equilibria, when equilibrium behavior is described
by a finite state automaton (FSA) [2]. This result is signifi-
cant since it implies that by utilizing a POMDP solver, we
can systematically determine whether a given profile of finite
state automata can constitute an equilibrium. Furthermore,
this result is interesting since it connects two popular areas
in AI and multi-agent systems, namely, POMDP and game
theory.

We first develop a program that acts as a wrapper of
a standard POMDP solver. Furthermore, as a case study
to confirm the usability of this program, we identify equi-
libria in an infinitely repeated prisoner’s dilemma game,
where each player privately receives a noisy signal about
each other’s actions.

2. REPEATED GAMES WITH PRIVATE MON-
ITORING AND FSA

A finite state automaton (FSA) is a popular approach for



compactly representing the behavior of a player in repeated
games. We focus on a symmetric pure finite state equilib-
rium (SPFSE), which is a pure strategy sequential equilib-
rium of a repeated game with private monitoring, where
each player’s behavior on the equilibrium path is given by
an FSA. A sequential equilibrium is a refinement of Nash
equilibrium for dynamic games of imperfect information.
We apply the POMDP technique to the prisoner’s dilemma

model analyzed by [2]. The stage game payoff is given as fol-
lows.

a2 = C a2 = D
a1 = C 1, 1 −y, 1 + x
a1 = D 1 + x,−y 0, 0

Each player’s private signal is ωi ∈ {g, b} (good or bad),
which is a noisy observation of the opponent’s action. For
example, when the opponent chooses C, player i is more
likely to receive the correct signal ωi = g, but sometimes
an observation error provides a wrong signal ωi = b. Let us
introduce the joint distribution of private signals o(ω | a)
for the prisoner’s dilemma model. When the action profile
is (C,C), the joint distribution is given as follows (when the
action profile is (D,D), p and s are exchanged).

w2 = g w2 = b
w1 = g p q
w1 = b r s

Similarly, when the action profile is (C,D), the joint distri-
bution of private signals is given as follows (when the action
profile is (D,C), v and u are exchanged).

w2 = g w2 = b
w1 = g t u
w1 = b v w

These joint distributions of private signals require only the
constraints of p+ q + r + s = 1 and t+ u+ v + w = 1.
We define a monitoring structure that is nearly-perfect.

We say monitoring is nearly-perfect if each player is always
likely to perfectly observe the opponent’s action in each pe-
riod, i.e., p = v, q = r = t = w, and s = u = 1 − p − 2q,
where p is much larger than q or s. Although the monitoring
structure is quite natural, systematically finding equilibria
in such structure has not been possible without utilizing a
POMDP solver. Alternatively, we say monitoring is almost-
public if players are always likely to get the same signal
(after (C,D), for example, players are likely to get (g, g) or
(b, b)), i.e., p+ s = t+ w ≈ 1 and q = r = u = v ≈ 0.
Let us summarize the existing FSAs. First, grim-trigger

(GT) is a well-known FSA under which a player first co-
operates, but as soon as she observes defection, she defects
forever. GT can often constitute an equilibrium. Second,
tit-for-tat (TFT) is another well-known FSA in Fig. 1. It is
well known that TFT does not prescribe mutual best replies
after a deviation (hence it is not a subgame perfect Nash
equilibrium (SPNE)). This problem does not arise under
almost-public monitoring. Finally, 1-period mutual punish-
ment (1-MP) in Fig. 2 is known as Pavlov [3]. According to
this FSA, a player first cooperates. If her opponent defects,
she also defects, but after one period of mutual defection,
she returns to cooperation. It is well-known that Pavlov
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can constitute an SPNE under perfect monitoring. How-
ever, this has not been investigated well in the setting of
private monitoring.

3. K-PERIOD MUTUAL PUNISHMENT
Let us first consider 1-MP. We can see that after one obser-

vation error occurs, players can quickly return to the mutual
cooperation state RR. The expected probability (in the in-
variant distribution) that players are in state RR is about
p− 2q. Unfortunately, 1-MP does not constitute an SPFSE
in our parameterization, since it is too forgiving.

Therefore we generalize the idea of 1-MP to k-period mu-
tual punishment (k-MP). Under this FSA, a player first co-
operates. If her opponent defects, she also defects, but after
k consecutive periods of mutual defection, she returns to co-
operation. Figure 3 shows the FSAs of 2-MP. 2-MP is less
forgiving than 1-MP, since it cooperates approximately once
in every three periods to the opponent who always defects.
By increasing k, we can make this strategy less forgiving.
When k = ∞, this strategy becomes equivalent to GT.

Although it is somewhat counter-intuitive, requiring such
mutual defection periods is beneficial in establishing a ro-
bust coordination among players under nearly-perfect mon-
itoring. In contrast, under almost-public monitoring, TFT
can better coordinate players’ behavior; TFT can be an equi-
librium, while k-MP is not. In both cases, GT can be an
equilibrium. Accordingly, our program helps us to gain im-
portant insights into the way players coordinate their be-
havior under different private monitoring structures.

Furthermore, we exhaustively search for small-sized FSAs
that can constitute an equilibrium under nearly-perfect mon-
itoring. We enumerate all possible FSAs with at most three
states, i.e., 5832 FSAs, which is obtained from the numbers
of actions, signals, and states, and check whether they con-
stitute an SPFSE. We found that only eleven FSAs (after
removing equivalent ones) could be an SPFSE in a reason-
ably wide range of signal parameters. In addition, among
them, 2-MP is the only FSA that is more efficient than GT.
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