
Adversarial Patrolling Games

(Extended Abstract)

Yevgeniy Vorobeychik
∗

Sandia National Laboratories
Livermore, CA

yvorobe@sandia.gov

Bo An and Milind Tambe
University of Southern California

Los Angeles, CA
{boa,tambe}@usc.edu

ABSTRACT
Defender-Attacker Stackelberg games are the foundations of tools
deployed for computing optimal patrolling strategies in adversar-
ial domains such as the United states Federal Air Marshals Service
and the United States Coast Guard, among others. In Stackelberg
game models of these systems the attacker knows only the proba-
bility that each target is covered by the defender, but is oblivious to
the detailed timing of the coverage schedule. In many real-world
situations, however, the attacker can observe the current location of
the defender and can exploit this knowledge to reason about the
defender’s future moves. We study Stackelberg security games
in which the defender sequentially moves between targets, with
moves constrained by an exogenously specified graph, while the at-
tacker can observe the defender’s current location and his (stochas-
tic) policy concerning future moves.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed artificial intelligence—
Intelligent agents
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1. INTRODUCTION
Game theoretic approaches to security based on Stackelberg game

models have received much attention in recent years, with several
finding deployment in real-world settings including LAX (Los An-
geles International Airport), FAMS (United States Federal Air Mar-
shals Service), TSA (United States Transportation Security Agency),
and USCG (United States Coast Guard) [8, 3]. At the backbone
of these applications are defender-attacker Stackelberg games in
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which the defender first commits to a randomized security policy,
and the attacker uses surveillance to learn about the policy before
attacking. The analysis of Stackelberg security games has focused
primarily on computing Strong Stackelberg equilibrium (SSE), i.e.,
the optimal strategy for the defender [7, 9].

To date, the Stackelberg game models for all real-world secu-
rity applications assume that attacker knows the probability that
each target is covered by the defender, but is oblivious to the ac-
tual sequence of defender moves. For example, the defender may
in fact visit targets according to some fixed (but randomly gener-
ated) patrolling schedule, but the attacker is presumed to be unable
to observe the defender’s location at any point during the patrol. In
many realistic settings, such as USCG [3], it is likely that the at-
tacker can in fact observe the patrol while it is in progress (e.g., the
coast guard ships can be quite overt). Thus, one potentially more
plausible model in such a setting would allow the attacker to ob-
serve both the randomized policy of the defender (i.e., probability
distribution over moves) as well as current defender location. We
formally model this setting as an adversarial patrolling game, or
APG.

2. RELATED WORK
Some of the earliest work on adversarial patrolling settings was

done in the context of robotic patrols, but involved a comparatively
simpler defense decision space (for example, with a set of robots
moving around a perimeter, and a single parameter governing the
probability that they move forward or back) [1, 2].

More recent work by Basilico et al. [5, 4, 6] studied general-
sum patrolling games in which they assumed that the attacker is in-
finitely patient, but the execution of an attack can take an arbitrary
number of time steps. However, the resulting formulations rely
fundamentally on the assumption that both players are infinitely
patient, and cannot be easily generalized to handle an impatient at-
tacker. Moreover, Basilico et al. only consider a restricted attacker
strategy space, and, additionally, their formulation may involve ex-
traneous constraints which result in suboptimal solutions.

3. ADVERSARIAL PATROLLING
Formally, an adversarial patrolling game (APG) can be described

by the tuple {T,Uc
d(i), U

u
d (i), U

c
a(i), U

u
a (i), δ, G}, where T is the

set of n targets patrolled by the defender, Uc
d(i) and Uu

d (i) are the
utilities to the defender if an attacker chooses a target i ∈ T when
it is patrolled and not, respectively, while Uc

a(i) and Uu
a (i) are the

corresponding attacker utilities, δ ∈ (0, 1) is the discount factor
(in some cases, we also allow δ = 1), and G = (T,E) is a graph
with targets as vertices andE the set of directed edges constraining
defender patrolling moves between targets. It is useful to consider
the representation of this graph as an adjacency matrix A, where



Aij = 1 if and only if there is an edge from target i to target j. Be-
low we consider a zero-sum game setting, where Uc

d(i) = −Uc
a(i)

and Uu
d (i) = −Uu

a (i).
The game proceeds in a (possibly infinite) sequence of steps

in which the defender moves between targets (subject to the con-
straints imposed by G), while the attacker chooses the time and
target of attack. The defender’s (stochastic) patrolling policy is a
schedule π which can in general be an arbitrary function from all
observed history (i.e., the sequence of targets patrolled in the past)
to a probability distribution over the targets patrolled in the next
iteration. The attacker is presumed to know the defender’s policy
π at the time of decision. At each time step t the attacker observes
the defender’s current location i and may choose to wait or to at-
tack an arbitrary target j ∈ T . If an attacker waits, he receives
no immediate utility, while attacking a target j gains the attacker
Uc

a(i) if it is covered by the defender at time t + 1 and Uu
a (i) if it

is not. We denote the attacker’s policy by a. We say that a policy
(π or a) is Markovian if it only depends on the current location of
the defender, and we call it stationary Markovian if it additionally
has no dependence on time.

EXAMPLE 1. USCG’s Patrolling Problem as an APG: USCG
safeguards important infrastructure at US coasts, ports, and in-
land waterway. Given a particular port and a variety of critical
infrastructure that an adversary may choose to attack, USCG con-
ducts patrols to detect an adversary and protect this infrastructure.
However, while the adversary has the opportunity to observe pa-
trol patterns, limited security resources imply that USCG patrols
cannot be at every location at all times [3]. In the APG frame-
work, USCG is the defender, while a terrorist group (for example)
is an attacker who can conduct surveillance and can both observe
the current location of patrols and obtain a good estimate of the
stochastic patrolling policy deployed.

3.1 APG as a Stochastic Game
The adversarial patrolling game can be formulated as a stochas-

tic game. A stochastic game is defined by a set of states, a set of
players, each taking actions from a finite collection, transition prob-
abilities between states which depend on joint player actions, and,
finally, utility (reward) functions of players determined by current
state and actions jointly selected by the players.

In our setting, states correspond to the set of targets T , as well as
an absorbing state s. Defender actions in each state are the targets
j that he can move to in a single time step, while attacker actions
are to wait or to attack (for the moment, we will assume that we can
compute expected utilities when attacker chooses to attack; we deal
with the issue of which targets are attacked below). The state transi-
tions are actually deterministic, conditional on player actions: if the
attacker chooses to attack, the system always transitions to the ab-
sorbing state s; otherwise, the next target is completely determined
by the defender’s action. Finally, if the attacker waits, our baseline
model involves zero reward accruing to both players. Letting Ri

denote the expected utility to attacker of attacking in state i; the de-
fender’s utility in the zero-sum model is then −Ri. The stochastic
game has an infinite horizon, and in our model the attacker’s dis-
count factor is δ. Figure 1 offers a schematic illustration of APG
as a stochastic game. Since it’s a zero-sum game, the defender will
aim to minimizes the expected attacker utility (starting from state
0, as we had assumed).
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Figure 1: Schematic illustration of APG as a stochastic game,
showing example targets-states i and j, as well the absorbing
state s. pij(·) denotes the transition probability, as a function
of the probability πij that the defender moves from i to j and
whether or not the attacker chooses “wait” or “attack”. Note
that if the attacker attacks, the stochastic game transitions to
the absorbing state with probability 1, independent of πij .
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