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ABSTRACT
We consider the problem of allocating objects to agents when
the objects have minimum quotas. There exist many real-
world settings where minimum quotas are relevant. For
example, in a hospital-resident matching problem, uncon-
strained matching may produce too few assignments to a
rural hospital. Surprisingly, almost 50 years have passed
after the seminal work by Gale and Shapley, no existing
mechanism can guarantee minimum quotas so far; we did
not know how to guarantee that a rural hospital has at least
one resident.
In this paper, we propose mechanisms that can satisfy

minimum quotas as well as standard maximum quotas. More
specifically, we propose extended seat (ES) and multi-stage
(MS) mechanisms modeled after the well-known deferred-
acceptance (DA) and top trading cycles (TTC) mechanisms.
Our proposed mechanisms are all strategy-proof, but a trade-
off exists between the DA and TTC based mechanisms re-
garding Pareto efficiency and elimination of justified envy.
In addition, there exist a tradeoff between ES and MS mech-
anisms depending on the size of minimum quotas.
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1. INTRODUCTION
The matching theory literature has developed numerous

mechanisms to solve the problem of assigning objects to
a group of agents when the agents have privately known
preferences and the objects have priorities over the agents.
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Many problems fit broadly into this context, including as-
signing students to schools [1] and kidneys to patients [5].
Most of the previous literature considers only maximum quo-
tas. However, in many real-world problems, minimum quo-
tas may be imposed as well. This paper proposes several
new mechanisms to deal with both quotas, starting from
assigning students to labs at a university.

Two popular mechanisms that are often used with no min-
imum quotas are the deferred-acceptance (DA) mechanism
[2] and the top-trading cycles (TTC) mechanism [4]. Both
are strategy-proof, but TTC always produces a Pareto ef-
ficient assignment, while DA does not. However, DA elim-
inates justified envy, while TTC, which allows students to
trade their priorities, does not.

The standard DA and TTC mechanisms may fail to pro-
duce feasible matchings that meet minimum quotas. Thus,
we take the standard DA and TTC mechanisms and make
two modifications to each: “extended seat” (ES) and “multi-
stage” (MS). Thus, our four mechanisms are ES-DA, ES-
TTC, MS-DA and MS-TTC. These mechanisms produce
feasible matchings while preserving the good properties of
DA and TTC.

Strategy-proofness is often taken as an important prop-
erty in matching markets, and indeed, all four of our mech-
anisms are strategy-proof. However, there is a tradeoff be-
tween efficiency and fairness. The two TTC based mecha-
nisms produce Pareto efficient assignments, but will lead to
justified envy. It is known that there is no strategy-proof
mechanism that completely eliminates justified envy when
minimum quotas are imposed. Additionally, Hamada et al.
showed that there may be no stable matching [3], extending
the concept of justified envy. Even worse, they also showed
that finding a matching with the minimum number of block-
ing pairs is hard to approximate even if labs have a master
list (i.e., all labs use the same priority ordering).

Thus, we propose a slight strengthening of justified envy
that eliminates some potential blocking pairs under the stan-
dard definition, and show that our two DA mechanisms elim-
inate all such justified envy. Thus, the choice between using
a TTC mechanism or a DA mechanism depends on which
goal, either Pareto efficiency or elimination of justified envy,
policymakers consider more important.

2. MODEL
A market is a tuple (S,L, p, q,≻S ,≻L,≻ML).

S = {s1, s2, . . . , sn} is a set of students, L = {l1, l2, . . . , lm}
a set of labs, and p = (pl1 , . . . , plm) and q = (ql1 , . . . , qlm)
are the minimum and maximum quotas, respectively, for



each lab. We assume 0 ≤ pl ≤ ql for all l ∈ L and
∑

l∈L pl ≤
n ≤

∑
l∈L ql to ensure a feasible matching exists. Define

e = n−
∑

l∈L pl to be the number of “excess students”.
Each student s has a strict preference relation ≻s over

the labs, while each lab l has an idiosyncratic strict prior-
ity relation ≻l over the students. The vectors of all such
relations are denoted ≻S= (≻s)s∈S for the students and
≻L= (≻l)l∈L for the labs. We assume that all labs are ac-
ceptable to all students and vice versa. In addition to the
idiosyncratic lab preferences, there is a separate “master list
(ML)” over all of the students. Without loss of generality,
we let s1 ≻ML s2 ≻ML · · · ≻ML sn.
A matching is a mapping M : S ∪ L → S ∪ L that

satisfies: (i) M(s) ∈ L for all s ∈ S, (ii) M(l) ⊆ S for all
l ∈ L, and (iii) for any s and l, we have M(s) = l if and only
if s ∈ M(l). A matching is feasible if pl ≤ |M(l)| ≤ ql for
all l ∈ L. The labs are not strategic, i.e., ≻L and ≻ML are
fixed and known to all students. Student s envies student
s′ at matching M if M(s′) ≻s M(s) and if student s envies
student s′, this envy is justified if s ≻M(s′) s

′. Also, we say
s strongly justifiably envies s′ at matching M if s envies
s′ and s ≻ML s′ and s ≻M(s′) s

′.
If student s justifiably envies student s′, who is assigned

laboratory l = M(s′), at matching M , then we say that
student s and lab l form a blocking pair. A blocking pair can
also be formed by a student and a lab with an empty seat,
provided that moving the student to the lab with the empty
seat results in a new matching that is feasible. Formally,
given a matching M , student s claims an empty seat at
lab l if (i) l ≻s M(s) (ii) |M(l)| < ql and (iii) |M(M(s))| >
pM(s). Then, student s and lab l′ form a blocking pair if
either (i) s justifiably envies some student s′ ∈ M(l′) or (ii)
s claims an empty seat at l′.

3. EXTENDED-SEAT MECHANISMS
We consider an extended market (S, L̃, q̃, ≻̃S , ≻̃L) where

the set of students is unchanged, but for each “standard lab”
lj , we create an “extended lab” l∗j . Thus, the set of labs is

now L̃ = L ∪ L∗ = {l1, . . . , lm, l∗1 , . . . , l
∗
m}. In addition,

we remove all minimum quotas, and define new maximum
quotas q̃l for l ∈ L̃ as follows: if l ∈ L, we set q̃l = pl, while
if l∗ ∈ L∗, we set q̃l∗ = ql − pl.
For the lab priorities, if l ∈ L, then ≻̃l =≻l; if l∗ ∈

L∗, then ≻̃l∗ =≻ML. That is, the standard labs use the
priorities from the original market, while all of the extended
labs use the ML. For student s, the preferences over L ∪ L∗

are created by taking the original preference relation ≻s and
inserting lab l∗j immediately after lab lj . That is,

preference relation ≻s: lj lk · · · becomes ≻̃s : lj l
∗
j lk l∗k · · ·

Finally, no more than e = n −
∑

l∈L pl students can attain
seats in extended labs. This restriction ensures that all quo-
tas in the original matching problem will be satisfied.

Example 1. [ES-DA] There are five students s1, . . . , s5
and three labs l1, l2, l3. For each lab, pl = 1 and ql = 3. The
preferences and priorities are as follows:

≻s1 : l1 l2 l3,
≻s2 : l2 l1 l3,
≻s3 : l2 l3 l1,
≻s4 : l2 l3 l1,
≻s5 : l2 l1 l3.

≻l1 : s3 s5 s1 s2 s4,
≻l2 : s1 s4 s3 s5 s2,
≻l3 : s1 s2 s4 s5 s3.

To run ES-DA, our extended market uses labs L ∪ L∗ =
{l1, l2, l3, l∗1 , l∗2 , l∗3}, and maximum quotas q̃l = 1 for l ∈ L
and q̃l∗ = 3−1 = 2 for l∗ ∈ L∗. Note that there are no min-
imum quotas in this problem. We additionally modify all
students’ preferences by inserting lab l∗j after lab lj . For ex-
ample, the modified preferences of student s1 are as follows:
≻̃s1 : l1 l∗1 l2 l∗2 l3 l∗3 . For the lab priorities, we set
≻̃l =≻l for l ∈ L, while for l∗ ∈ L∗, we set ≻̃l∗ =≻ML.

In round 1 of ES-DA, student s1 applies to lab l1 and
students s2, . . . s5 apply to lab l2. Labs l1 and l2 tentatively
accept s1 and s4, respectively. Lab l2 rejects s2, s3 and s5.
In round 2, students s2, s3 and s5 apply to l∗2. Since only
e = 2 students can be assigned to extended labs at the final
matching, student s5 is rejected. At the end, the following
matching is produced:

l∗1 − {s1}, l∗2 − {s2}, l∗3 − ∅, l1 − {s5}, l2 − {s4}, l3 − {s3}.

Mapping this back to a matching in the original model:

l1 − {s1, s5}, l2 − {s2, s4}, l3 − {s3}.

The mechanism satisfies strategy-proofness and elimina-
tion of all strong justified envy. Furthermore, this idea can
be applied to TTC and we obtain ES-TTC that is strategy-
proof and efficient.

4. MULTI-STAGE MECHANISMS
The MS mechanisms proceed slightly differently. For these

mechanisms, we first “reserve” a number of students equal
to the sum of the minimum quotas across all labs. Then, we
run the standard DA or TTC on the remaining set of stu-
dents. This procedure is then repeated until all students are
assigned. Because at each stage we reserve a number of stu-
dents equal to the sum of the minimum quotas remaining,
at the end of the mechanism, all minimum quotas will be
satisfied. The MS mechanisms inherit the desirable proper-
ties from the ES mechanisms, i.e., MS-DA is strategy-proof
and eliminates all strong justified envy, while MS-TTC is
strategy-proof and efficient.

A tradeoff exists between the classes of ES and MS mech-
anisms, depending on the size of the minimum quotas. We
empirically show that when the minimum quotas are small,
the ES mechanisms tend to create many traditional blocking
pairs compared to MS. When the minimum quotas are large,
the reverse happens. Policymakers may find it advantageous
to use the MS (ES) mechanisms when the minimum quotas
are small (large).
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