
Handling Change in Normative Specifications

(Extended Abstract)
Duangtida Athakravi, Domenico Corapi, Alessandra Russo

Department of Computing,Imperial College London
{da407, d.corapi, a.russo}@imperial.ac.uk

Marina De Vos, Julian Padget
Dept. of Computer Science,

University of Bath
{mdv,jap}@cs.bath.ac.uk

Ken Satoh
National Institute of

Informatics
ksatoh@nii.ac.jp

ABSTRACT
Normative frameworks provide a means to address the gov-
ernance of open systems, by offering a mechanism to ex-
press responsibilities and permissions of the individual par-
ticipants with respect to the entire system without compro-
mising their autonomy. Careful design is crucial if it is to
meet its requirements. Tools that support the design process
can be of great benefit. In this paper, we describe a method
for choosing the appropriate change in the normative spec-
ification, using impact analysis of the critical consequences
being preserved or rejected by the change.

Categories and Subject Descriptors
H.4 [Programming Techniques]: Logic Programming

General Terms
Theory, Verification, Algorithms, Design

Keywords
Design, Normative systems, Inductive Logic Programming

1. INTRODUCTION
Normative frameworks provide a powerful tool for govern-

ing open systems by providing guidelines for the behaviour
of the individual components without regimentation [4]. Us-
ing a formal declarative language to specify the behaviour of
a normative system gives the system’s designer a means to
verify the compliance of the system with respect to desirable
behaviours or properties [2, 1]. However, when errors are de-
tected, the identification of what changes to make is often
a difficult and error-prone manual process. Corapi et al [3]
have shown how Inductive Logic Programming (ILP) can
support the elaboration of normative specifications, mod-
elled in Answer Set Programming (ASP), by learning possi-
ble changes that would make partial normative specification
consistently compliant with given use-cases.

This paper addresses the problem of how to choose be-
tween alternative changes by analysing their impact on the

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

specification. We use a notion of relevant literals, i.e. el-
ements of the domain that are critical for discriminating
between the suggested changes. We describe how these lit-
erals are computed using test generation [5]. Ranking them
is based on the number of changes that they would discard.
This ranking ensures that the revisions are discriminated
against in the most effective way.

2. HANDLING CHANGE
Our framework for handling change during the elabora-

tion of normative specifications addresses the limitation of
our previous work [3], where it is the designer’s responsibility
to choose the most appropriate revision from multiple pos-
sible revisions computed by a learner. In real applications
the number of suggested changes can be large, making an
automated criteria essential for selecting the most effective
change. As shown in Figure 1, our framework combines the
approach in [3], with two additional steps for computing and
scoring relevant literals. The most highly ranked literal is
then queried to the designer, who can then specify its truth
value. Based on the answer of the designer, those changes
that are refuted by the relevant literals are discarded. Lit-
erals that are dependent on the highly ranked one could be
used to further reduce the hypothesis space.

Figure 1: Framework for handling change

2.1 Abducing Relevant Literals
Our definition of relevant literal is based on the notion of

relevant test given in [5].

Definition 1. (Relevant Literal) Let 〈T,O〉 be a use-case
consisting of a trace T and desired outcome O, given the
existing (partial) normative specification Σ, and the set of
hypothesis representing the suggested revisions HY P . A
literal l is relevant if:



1. Σ ∧ T ∧O ∧H is satisfiable for all Hi ∈ HY P
2. T ∧O ∧ l is an abductive explanation for

∨
Hi∈HY P ¬Hi

3. Σ ∧ T ∧O 2
∨

Hi∈HY P ¬Hi

4. T ∧O ∧ l is not an abductive explanation for ¬Hi, ∀Hi ∈
HY P

Conditions (1) and (3) state that all suggested revisions
satisfy the use-case and are consistent with the normative
specification. These are guaranteed by the correctness of the
learner. Conditions (2) and (4) ensure that some but not
all suggested revisions are rejected by the relevant literal.
These are captured by integrity constraints used as goals of
the following abductive program.

Let NB be the static part of the normative specification,
NT the part containing rules that are revisable, 〈T,O〉 the
use-cases applied for learning suggested revisions S, and let
CH/2 be the function that combines NT with suggested re-
visions by representing them as hypotheses. The relevant
literals are solutions of the abductive task 〈B,Ab,G〉 where:

B = NB ∪ T ∪ CH(NT , S)
G = O ∪ ¬(

∧
Hi∈CH (NT ,S) ¬Hi) ∪ ¬(

∧
Hi∈CH (NT ,S) Hi)

and Ab is the set of ground instances of (possible) outcomes.
The set E of relevant literals is a subset of Ab such that
B ∪ E � G.

2.2 Ranking Relevant Literals
Ideally we want to be able to dismiss as many suggested

revisions as possible, based on the truth value of relevant
literals. We use the number of minimum hypotheses (or
revisions) that a relevant literal may reject, in order to com-
pare it against other relevant literals (we give a fractional
score when a conjunction of literals is required to dismiss
a hypothesis). Thus, the score of a relevant literal l is
s = minimum(n,m), where n is the number of suggested
revisions that l rejects when true, and m is the number of
suggested revisions that l rejects when false. The literals
with maximum score are the most relevant literal. Literals
with equal score could be further ranked according to the
maximum number of hypotheses each one falsifies.

3. CASE STUDY
We have applied our approach to the file sharing agents ex-

ample [3], where only VIP agents have permission to down-
load a block of data without having previously shared its
own block. We have used the same use-case for which the
learned has produced many alternative changes. We have
considered the following four of these changes, which were
similar to each other:
1. occurred(myDownload(X,B), I)←

occurred(download(X,Y,B), I), holdsat(hasblock(Y,B), I).
2. occurred(myDownload(X,B), I)←

occurred(download(X,Y,B), I), holdsat(hasblock(Y,B), I).
occurred(myDownload(X,B), I)←

occurred(viol(myDownload(Y,B2)), I),
holdsat(hasblock(Y,B), I).

3. occurred(myDownload(X,B), I)←
occurred(download(Y, Y,B), I).

4. occurred(myDownload(X,B), I)←
occurred(download(X,Y,B), I), holdsat(hasblock(Y,B), I).

occurred(myDownload(X,B), I)←
occurred(viol(myDownload(X,B2)), I),
holdsat(hasblock(Y,B), I).

Using our method and forming an abductive problem with
background knowledge given by the above revisions and the
original specification, we were able to identify the relevant

Relevant literal
Truth value
True False

occurred(viol(myDownload(alice, x1)), i06) 0.0 2.0
occurred(viol(myDownload(alice, x2)), i06) 0.0 2.0
occurred(viol(myDownload(alice, x3)), i06) 0.0 2.0
occurred(viol(myDownload(alice, x5)), i06) 0.0 2.0
occurred(viol(myDownload(bob, x1)), i06) 0.5 2.0
occurred(viol(myDownload(bob, x2)), i06) 0.5 2.0
occurred(viol(myDownload(bob, x3)), i06) 0.5 2.0
occurred(viol(myDownload(bob, x4)), i06) 0.5 2.0
occurred(viol(myDownload(bob, x5)), i06) 0.5 2.0
occurred(misuse(bob), i06) 0.0 0.5

Table 1: Scoring of relevant literals

literals and score them according to how many suggestions
they could discard. Table 1 contains literals that could po-
tentially dismiss suggestions (2) or (4). Using these values,
we were able to identify the following most relevant literals:

occurred(viol(myDownload(bob, x1)), i06)
occurred(viol(myDownload(bob, x2)), i06)
occurred(viol(myDownload(bob, x3)), i06)
occurred(viol(myDownload(bob, x4)), i06)
occurred(viol(myDownload(bob, x5)), i06)

Any of the above literals would dismiss suggestions (2)
and (4) when false, or only one of them when true, provided
that occurred(misuse(bob), i06) was false.

4. DISCUSSION
In this paper, we have tackled the problem of distinguish-

ing between revisions over normative specifications through
the use of test generation. By identifying comparable conse-
quences of the suggested revisions, we are able to use them
as a rationale for rejecting possible changes. Our case study
provides an example of what outputs can be acquired by the
proposed approach. However, as well as showing the outputs
that could be used for selection criteria, it also demonstrates
that the approach is unable to discriminate between all sug-
gested revisions (no relevant literals that could dismiss the
suggestion (1) or (3) were found).

For the future, the problem of the inability to distinguish
some hypotheses (possibly by extending the use-case’s trace)
needs be adressed. An implementation of an automated sys-
tem for normative revision for further evaluation of the tech-
nique is required. We also plan a modification to the scoring
method that was used to take into account additional factors
such as the length of the revision suggestion.

5. REFERENCES
[1] Alexander Artikis, Marek Sergot, and Jeremy Pitt. An

executable specification of an argumentation protocol. In
Proceedings of Conference on Artificial Intelligence and Law
(ICAIL), pages 1–11. ACM Press, 2003.

[2] Owen Cliffe, Marina De Vos, and Julian Padget. Answer set
programming for representing and reasoning about virtual
institutions. In Katsumi Inoue, Ken Satoh, and Francesca
Toni, editors, Computational Logic in Multi-Agent Systems,
volume 4371 of Lecture Notes in Computer Science, pages
60–79. Springer Berlin / Heidelberg, 2007.

[3] Domenico Corapi, Alessandra Russo, Marina De Vos,
Julian A. Padget, and Ken Satoh. Normative design using
inductive learning. TPLP, 11(4-5):783–799, 2011.

[4] D. Grossi, H. M. Aldewereld, and F. Dignum. Ubi lex, ibi
poena: Designing norm enforcement in e-institutions. In
P. Noriega, J. Vázquez-Salceda, G. Boella, O. Boissier, M.V.
Dignum, N. Fornara, and E. Matson, editors, COIN II,
pages 101–114. Springer, 2007.

[5] Sheila Mcilraith. Generating tests using abduction. In Proc.
Inter. Conf. on Principles of Knowledge Representation and
Reasoning (KR’94), pages 449–460, 1994.


