
Cloning, Resource Exchange and Relation Adaptation: A
Self-organising Multi-Agent Framework

(Extended Abstract)
Dayong Ye

University of Wollongong
NSW 2522 AU

dy721@uowmail.edu.au

Minjie Zhang
University of Wollongong

NSW 2522 AU
minjie@uow.edu.au

Danny Sutanto
University of Wollongong

NSW 2522 AU
danny@elec.uow.edu.au

ABSTRACT
In this paper, a self-organising multi-agent framework is pro-
posed. Different from current related approaches which con-
cerned only a single principle of self-organisation, this frame-
work synthesises the three principles of self-organisation,
i.e., agent cloning/spawning, resource exchange and relation
adaptation. In this framework, an agent can autonomous-
ly generate new agents when it is overloaded, exchange re-
sources with other agents if necessary, and adapt relations
with other agents to achieve a better network structure. In
this way, agents in this framework can adapt to dynamic
environments.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Algorithms

Keywords
Self-organisation, Adapation, Learning

1. INTRODUCTION
Self-organisation is defined as “the mechanism or the pro-

cess enabling the system to change its organisation without
explicit external command during its execution time [2]”.
For self-organising sytems design, Mathieu et al. [1] pointed
out that a self-organising system should include three prin-
ciples. The first one is that agents within the system will
generate new agents to take part of their load once they
are overloaded. The second one is that agents can exchange
skills or resources, if necessary, between each other to in-
crease autonomy. The last one is that agents should be
able to create new specific relations between agents in or-
der to remove the middle-agents. Currently, each of the
three principles has attracted many research efforts. How-
ever, to the best of our knowledge, there lacks an attempt
which combines the three principles in a single framework
in order to achieve better performance compared with those
self-organisation approaches which considers only one of the

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

three principles. Towards this end, in this paper, we present
a self-organising multi-agent framework which combines the
three principles together, i.e., agent cloning/spawning, re-
source exchange and relation adaptation. Our framework is
illustrated within a general platform, i.e., distributed task
allocation. By employing a general platform, instead of a
particular existing system, our framework can be potential-
ly applied to a wide variety of applications.

2. MODEL DESCRIPTION
The task allocation network is modeled as a tuple 〈A,N, T,Γ〉.

Each element is described as follows.

• A is a set of collaborative agents in the network, i.e.,
A = {a1, ..., an}.

• N = {N1, ..., Nn}, where each Ni demonstrates the
neighbours of agent ai.

• T = {t1, ..., tm} is a set of task types which will arrive
at the network.

• Γ = {γ1, ..., γl} is a set of resource types which exist
in the network.

The neighbour set of each agent Ni consists of three dif-
ferent neighbours, i.e., peer, subordinate and superior, which
are formed by two relations, i.e., peer-to-peer relation and
subordinate-superior relation.

A task type defines which resource types are needed and
the quantity of each type of resources is required. In addi-
tion, a task type also dictates the task benefit, the task ser-
vice time and the task maximum waiting time before being
executed. If a task cannot be completed before the deadline
of its service time, the benefit of this task decreases gradu-
ally with time elapse till 0.

There is a continuous dynamic stream of tasks which ar-
rive at the network. Each task Φ randomly corresponds to a
task type in T . Φ can be divided into several subtasks and
each subtask, ϕi ∈ Φ, requires a particular resource type and
a specific amount of this type of resources which are indicat-
ed by the corresponding task type. In addition, each subtask
has a relevant benefit paid to the agent which successfully
completes the subtask. In this paper, a subtask ϕi is mod-
eled as a token ∆i which can be passed in the network to
find a suitable agent to complete. Each token consists of not
only the information about resource requirement of the cor-
responding subtask, but also the token traveling path which
is composed of those agents that the token has passed.

3. THE SELF-ORGANISING MULTI-AGENT
FRAMEWORK

3.1 Agent Cloning/Spawning
When an agent is overloaded (i.e., it cannot complete the

subtasks in its subtask waiting list before their respective
deadlines or it has too many neighbours to keep with), the
agent will create a new agent to handle part of its load. The
agent has two options, namely cloning an agent or spawning
an agent.

Specifically, for a single agent, spawning is triggered when
the task load exceeds the agent’s ability to finish it on time,
given the agent’s current status and resource level. In this
condition, the agent spawns some new agents and assigns
the most benefit tasks and corresponding resources to them.
These spawned agents are as subordinates of the original
agent, but they cannot establish relations with other agents.
When the spawned agents finish the assigned tasks, they are
in an idle status. When the spawned agents keep in an idle
status for a pre-defined period, namely that no more such
subtasks need to be completed, they will be destroyed by
the original agent to save relation management load.

On the other hand, cloning happens when an agent has
too many neighbours, which means that the agent has a
heavy overhead for managing relations with other agents. In
this situation, to avoid possible communication congestion,
the agent clones an agent which has the same resources as
itself, and assigns some neighbours to the cloned agent. The
original agent keeps a peer relation with the cloned one.
Different from the spawning agents, the cloned agent cannot
be destroyed by the original agent. Instead, the original and
cloned agents will compose together, once the total number
of neighbours of them is less than a pre-defined threshold.

3.2 Resource Exchange
For a single agent, when a resource has not been used for

a long time, the agent will transfer the resource to a neigh-
bouring agent which really needs this resource. Here, we
devise a Q-learning algorithm to handle it (Algorithm 1).
An action in this Q-learning algorithm represents transfer-
ring a resource to a neighbour.

Algorithm 1: Resource transfer according to ai
1 for each ai ∈ A do
2 Res← GetResource();
3 for each resource γi ∈ Res do
4 ai initialises Q-values and π;
5 ai informs its neighbours;
6 neighbours respond to ai;
7 r← the reward vector for neighbours;
8 for each neighbour of ai, i.e., nj ∈ Ni do
9 Q(nj)← (1− α1)Q(nj) + α1 · rj ;
10 end for
11 r̄ ← 1

|Ni|
∑

nj∈Ni
rj ;

12 for each neighbour of ai, i.e., nj ∈ Ni do
13 π(nj)← π(nj) + ζ(Q(nj)− r̄);
14 end for
15 π← Normalise(π);
16 ai selects a neighbour based on π;
17 end for
18 end for

3.3 Relation Adaptation
Our relation adaptation algorithm is based on the past

information of the individual agents. Specifically, agents

use the information about the past task allocation processes
to evaluate their relations with other agents. We develop
a multi-agent Q-learning algorithm to tackle the relation
adaptation problem. Algorithm 2 demonstrates our rela-
tion adaptation algorithm in pseudocode form.

Algorithm 2: Relation adaptation according to ai
1 Candidatesi ← ai selects agents in the network;
2 for each aj ∈ Candidatesi do
3 Acti ← available actions(ai, aj);
4 Actj ← available actions(ai, aj);
5 for each x ∈ Acti, y ∈ Actj do
6 Initialise Qix and Qjy arbitrarily;
7 for k = 0 to a predefined integer do;
8 calculate πix(k) and πjy(k);
9 Qix(k + 1) = Qix(k)+

πix(k)α2(
∑

y r
x,y
i πjy(k)−Qix(k));

10 Qjy(k + 1) = Qjy(k)+
πjy(k)α2(

∑
x r

x,y
j πix(k)−Qix(k));

11 end for
12 end for
13 〈xopti, yopti〉 ← argMaxmatch(x,y)(Qix +Qjy);
14 ai, aj take actions xopti and yopti, respectively;
15 µij ← µij + (Li

j/ρ1 − 1);

16 if µij > 1 then µij ← 1;
17 if µij < 0 then µij ← 0;
18 µji ← µij ;
19 end for

When finishing learning Q-values, ai and aj (Line 13) co-
operate to find the optimal actions for both of them.

Algorithm 3 illustrates the reasoning aspect of each a-
gent for selecting a group of agents to initilise the relation
adaptation process.

Algorithm 3: Candidates selection of each agent
1 for each ai ∈ A do
2 Candidatesi ← ∅;
3 for each ∆k ∈ tokensi do
4 statistics of ∆k.owner;
5 end for
6 if ∃ # of same ∆k.owner > ρ2 and
7 ∆k.owner 6∈ Neig∼i ∨Neig�i ∨Neig≺i then
8 Candidatesi ← Candidatesi ∪ {∆k.owner};
9 end if
10 if ∃ # of same ∆k.owner < ρ3 and
11 ∆k.owner ∈ Neig∼i ∨Neig�i ∨Neig≺i then
12 Candidatesi ← Candidatesi ∪ {∆k.owner};
13 end if
14 end for

4. CONCLUSION
This paper introduced a self-organising multi-agent frame-

work which considers the three principles of self-organisation,
i.e., agent cloning/spawning, resource exchange and relation
adaptation. Through combining the benefits of the three
principles, our framework outperforms state of the art ap-
proaches which focus on a single principle only. Since our
framework is decentralised and continuous over time without
external control, it meets the definition of self-organisation
given by Serugendo et al. [2].

5. REFERENCES
[1] P. Mathieu, J.-C. Routier, and Y. Secq. Principles for

dynamic multi-agent organizations. In PRIMA’02, pages
109–122, Tokyo, Japan, Aug. 2002.

[2] G. D. M. Serugendo, M.-P. Gleizes, and A. Karageorgos.
Self-organization in multi-agent systems. The Knowledge
Engineering Review, 20(2):165–189, 2005.

