
Supporting User-Centric Business Processes with WADE
(Extended Abstract)

Federico Bergenti
Università degli Studi di Parma

43124, Parma, Italy

federico.bergenti@unipr.it

Giovanni Caire, Danilo Gotta
Telecom Italia S.p.A.
10148, Torino, Italy

{giovanni.caire,danilo.gotta}@telecomitalia.it

ABSTRACT
In this paper we present the latest developments of WADE
(Workflows and Agents Development Environment) that provide
concrete support for a better realization of the innovative
paradigm of agent-based BPM (Business Process Management).
We discuss the new functionality that WADE offers to enable the
rapid and effective realization of user-centric business processes,
i.e., business processes that are tightly integrated with the work of
users and that are mainly driven by user interactions. Such
processes are met frequently in practice and WADE seamlessly
accommodates Web and Android users by means of dedicated
views.

Categories and Subject Descriptors

I.2.11 [Computing Methodologies]: Distributed Artificial
Intelligence – multiagent systems, languages and structures,
coherence and coordination

General Terms
Management, Design, Languages

Keywords
Agent-based business process management, user-centric business
processes, WADE

1. INTRODUCTION
The extensive use of WADE in mission-critical applications (see
the concluding section and [1] for some examples) has witnessed
the notable importance of user interactions in the scope of
workflows. This is not surprising and we acknowledge that the
idea of workflows has its origins in the management of the work
of people. Nonetheless, we believe that the common approach of
treating user interactions as yet another type of event does not
adequately capture the importance and the high frequency of
them.

So called user-centric workflows are introduced in WADE version
3.0 as a means to capture workflows that (i) frequently need to
interact with users, and (ii) are mainly intended to gather
information and provide feedback to users. WADE now lifts user
interactions to a higher level and it provides specific tools and

features to manage them effectively. The design guidelines for
such a recent development of WADE are as follows:

- The description of the information to provide to users and
the related input to acquire from users must be independent
of the device that the user is concretely accessing;

- Any element of such a description must be extensible in
order to let developers provide more specific descriptions of
both input and output information;

- The software application that the user accesses must be
replaceable by any custom application, once the
communication with the WADE platform is correctly set up;
and

- No device is privileged and developers must be able to
describe workflows in full generality, if they really want.

From such very generic guidelines we could easily choose the
Model-View-Controller (MVC) [2] architectural design pattern as
the coarse grained model around which we designed the new
interactivity package of WADE. The new WADE interactivity
package provides the Java classes of the model of interactions (see
Section 2.1) and a number of visualizers (see Section 2.2)
intended to be integrated in the application shipped to users.

2. WADE USER-CENTRIC WORKFLOWS
In order to fully exploit the power of user-centric business
processes, the developer of a workflow should first inform WADE
that the workflow itself needs to interact with users. This is
accomplished by realizing a workflow class that extends the
InteractiveWorkflow class rather than the common
Workflow class. Such an InteractiveWorkflow class is a
specific subclass of Workflow that provides the needed
machinery to link a workflow instance to a visualizer. WADE
ensures a one-to-one correspondence between a user and an
instance of an InteractiveWorkflow, and therefore an
InteractiveWorkflow has just one user at a time.

When an InteractiveWorkflow is connected to a visualizer,
it is requested to provide the visualizer with a description of the
information to present to the user and with a related description of
the possible user inputs. Such a mechanism is concretely driven
by the workflow developer who can freely use the new method
interact() that InteractiveWorkflow provides. Such a
method is supplied with an Interaction object that contains
the following parts: (i) an abstract description of the information
to be presented to the user with some abstract requirements on the
way information is presented, e.g., by indicating how a set of

Appears in: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2012), Conitzer,
Winikoff, Padgham, and van der Hoek (eds.), 4–8 June 2012, Valencia,
Spain.
Copyright © 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

labels should be aligned on the device screen; (ii) an abstract
description of the information that the user is allowed to return in
a response; (iii) an abstract description of the constraints that the
user response must meet to be considered valid; and (iv) a list of
possible abstract actions that the user is allowed to choose as valid
responses.

Upon executing the interact() method, the workflows is put
into a SUSPENDED state to allow the corresponding visualizer to
present the information to the user and to enable the user to
provide feedback by means of one of the available response
actions. The visualizer is on duty for showing the information in
the best possible way and for allowing the user to provide its
response. The visualizer is also responsible for the correctness of
the provided response because it is in charge of checking the
constraints that identify valid responses.

Once the user has validly compiled its response and chosen one of
the available response actions, the visualizer returns user response
to the workflow instance in terms of a copy of the original
Interaction object that now contains relevant user input and
from which the developer can extract the user response easily.
Such an approach allows developers retrieving response
information from where they originally decided they should be
contained. Moreover, it ensures no redundant information is sent
back in responses.

2.1 A Model of Interactions
In the WADE nomenclature, an interaction is both an abstract
description of the information to be provided to users and a means
to allow users constructing responses. Therefore, WADE provides
a set of Java classes that are used to describe interactions with
such a dual meaning. Such classes are designed using the standard
approach adopted in modern user interfaces and they are
structured in a containment tree. They are divided into the
following major groups:

- Passive elements, e.g., labels and pictures, that are leafs of
the containment tree intended to describe the information to
be provided to users;

- Information elements, e.g., text areas and menus of various
types, that are leafs of the containment tree and that are
meant to provide the user with a means to provide responses;

- Containers, e.g., list and grid panels, that are designed to
aggregate a group of children in order to describe their
relative position in an abstract manner;

- Actions, that describe the types of responses the user can
select; and

- Constraints, that concretely provide check procedures to
ensure the correctness of responses.

With the notable exception of constraints, all such Java classes are
purely descriptive and they are simple containers for information
flowing between an InteractiveWorkflow and a visualizer.
They are designed to maintain the clear separation of concerns of
the MVC design pattern.

All such classes describe the model of an interaction, while the
relative controller is implemented by the adopted visualizer,
which also generates on the fly the relative view. Such an

approach ensures, among other things, that developers are free to
add new visualizers and that no visualizer is privileged.

Constraints are peculiar in the scope of the MVC pattern because
they are intended to validate input. They represent a pluggable
part of the controller because they are responsible for updating the
view upon changes in the model, e.g., by marking invalid
components with an error notification. WADE provides a set of
general purpose constraints that can be used, e.g., to make sure a
mandatory menu has at least one item selected or to warrantee that
the text in a text field conforms to a given regular expression.

2.2 Available Visualizers
At the time of writing WADE provides two visualizers meant to
accommodate two important classes of users: Web users and
Android users. Web users are allowed to activate new interactive
workflows and to connect to suspended workflows by means of a
dedicated visualizer developed using the ZK toolkit [4]. ZK is a
very popular toolkit to develop AJAX applications in Java and it
is easily interfaced with WADE. The ZK visualizer instantiates
one JADE agent on the server side of the Web application for
each and every Web session, and it ensures agents are properly
connected with the WADE platform. The client side of the ZK
application is meant to: (i) present information to the user; (ii)
provide selectable actions in terms of buttons; and (iii) ensure
constraints are met before passing any response to workflow
agents. The chosen approach ensures a lightweight client that is
only in charge of realizing the user interface on the fly and of
validating constraints. ZK provides a proprietary communication
mechanism between the client browser and the server side of the
application which is completely hidden in the deep internals of
ZK, thus becoming transparent to developers.

The Android visualizer is developed along the lines of the ZK
visualizer and we ensured that the internals of the two visualizers
are designed using the same architecture and adopting closely
related approaches. The major difference with the ZK visualizer is
that the Android visualizer is a single Android application that
hosts: (i) a JADE container in split mode (see JADE
documentation for details [3]) which is created in the scope of the
WADE platform; (ii) the agent needed to connect the user with
the workflow; and (iii) the visual components that are used to
dynamically assemble and render the user interface. No
proprietary communication mechanism is needed in this case
because the agent and the visual components share some memory
of the Android device.

3. REFERENCES
[1] Caire, G., Gotta, D., and Banzi, M. 2008. WADE: A

Software Platform to Develop Mission Critical Applications
Exploiting Agents and Workflows. In Proc. 7th Int’l Conf.
Autonomous Agents and Multiagent Systems, 29-36.

[2] Fowler, M. 2003. Patterns of Enterprise Application
Architecture, Addison-Wesley.

[3] JADE – Java Agent Development framework. Available at
http://jade.tilab.com

[4] ZK. Available at http://www.zkoss.org

