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ABSTRACT

In BDI programs it is quite common to find context condi-
tions of plans which are over-constrained in order to ensure
that the most preferred plan is selected for use. This is un-
desirable for at least two reasons. It makes the plan not
available for use at all in situations where it could be of
value as a back-up plan, and also it requires incorporation
of information that conceptually belongs with the preferred
plan. The ability to specify directly in a plan specification,
aspects of the situation which would make the plan more or
less desirable, enables a dynamically calculated preference
ordering which removes the need to over-constrain applica-
bility to obtain the desired plan selection. This paper ad-
dresses the issue of dynamically assigning a value to a plan
instance, based on the current state and the particulars of
the plan instance under consideration. The framework uses
specifications based on logical formulae which are evaluated
dynamically, using the current state and variable bindings
provided via the plan’s context condition. These provide
a simple mechanism for locally specifying the value of plan
instances. This can be regarded as providing a degree of ap-
plicability for a plan, rather than simply a boolean value.

Categories and Subject Descriptors

I.2.11 [Distributed AI]: Intelligent Agents
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1. INTRODUCTION
In BDI (Belief, Desire, Intention) agent systems such as

Jack [15], Jason [4] or any of the AgentSpeak [10] like lan-
guages, the number of different ways of achieving a goal
are typically represented as abstract procedures, or plans.
Each plan has an associated programmed context condition,
which is a boolean formula that specifies when that plan is
considered to be suitable for use. One of the major strengths
of these systems is the ability to specify when a plan is appli-
cable, or valid for use, depending on the particular situation.
However they do not provide a similar mechanism for the re-
lated issue of specifying how good a particular plan instance
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is in a specific situation, thus allowing us to select the plan
which is preferred, or better, based on the current state.

In this paper we describe a straightforward extension for
AgentSpeak like languages, that provides a declarative mech-
anism for capturing priorities or preferences that are based
on the specific situation, and/or the specifics of the plan in-
stance (as opposed to simply the plan type). The proposed
extension provides support for declarative expressivity of lo-
calised preferences and the ability to reason over them which
is a highly desirable feature in many domains. Existing
AgentSpeak like languages already have the infrastucture
to support this approach and can do so with minimal effort.
We have implemented this proposal as an add-on library for
the JADEX [9] agent programming langauge.

While AgentSpeak itself does not specify a plan selection
mechanism, implemented systems often do provide some ap-
proach to specifying a preference ordering over the applica-
ble plans. However this is typically either static, and does
not take account of the specifics of either the situation, or
the plan instance, or is a function, which is not transparent
and does not provide structured information which can be
reasoned over. We follow the approach typical in work on
planning with preferences, of defining a language for speci-
fying the preferences, and a function for aggregation of mul-
tiple preferences [1]. This establishes a framework where
priorities are declaratively specified in terms of logical ex-
pressions which can be reasoned over. This also supports
a mechanism whereby this information can be directly pro-
vided by domain experts.

One application that has motivated this work is participa-
tory modelling for agent based simulations, where end-users
are intimately involved in developing the behaviour models
captured within the (agent based) simulation [6]. We have
been exploring technological support for this process [12],
whereby users run the simulation under different scenarios,
stopping and commenting on an agent’s plan choice at var-
ious points. Feedback here is typically of the form: “in this
situation people would actually use plan X because ...”. Cur-
rently such information must be processed by a programmer
and incorporated into a procedure that does plan selection.
This framework provides a declarative approach which facil-
itates both user understanding of the current specification,
as well as direct modification of that specification. More-
over, the framework can be used to reason over the set of
preferences collected over time, to highlight cases of interest
to the user, such as when different preferences overlap or
when one is implied by the other.
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It is quite common when looking at BDI agent programs,
to see examples where context conditions are over constrained,
as a way of ensuring the desired plan selection, in the ab-
sence of any straightforward mechanism for dynamically de-
termining the value of a plan given the current situation.
For example, assume there is a plan to fly, and a plan to
take the train, for travel between two cities. Appropriate
context conditions for the fly and train plan may well be

flies($airline,$from,$to)

and

station($from) ∧ station($to)

as shown in Figure 1. It may in general be better to fly
than to take the train1, in which case this can be readily
specified in most AgentSpeak like platforms, even though
AgentSpeak itself does not provide for this within the lan-
guage. For example both Jack [15] and Goal [7] use the
order in which the plan/rule specifications appear in the
code to determine priority between plan/rule types. How-
ever, assume we now also want to capture that taking the
train is a good option if the distance between start and des-
tination is less than 500 km. This requires evaluation of the
current situation, namely distance($from,$to) which can
be accessed from the beliefs. What is often seen in this kind
of case is that the context condition of the plan to fly is
written as

flies($airline,$from,$to)∧

(distance($from,$to) > 500)

in order to ensure that the train travel plan is selected in
such situations. However this is distorting the real applica-
bility of the fly plan, and necessitating an understanding of
when it needs to be excluded from prioritisation because of
the relative value of some other plan.
In addition, we may consider different instances of the fly

plan to have different value, depending on the particular
airline. We may wish to specify that flying with a 2-star
airline has a low value, whereas flying with 4-star or above
is valued higher. This requires us to be able to access the
variables specific to the plan instance, and bound in the
context condition, in order to assign the plan a value. For
example, assume that both China Southern and Singapore
Airlines fly between $from and $to, where China Southern is
2-star and Singapore Airlines is 5-star. An ability to assign
dynamically a value based on a formula such as

rating($airline) ≤ 2 and/or rating($airline) > 2

allows this differentiation. In current implemented plat-
forms, and formal language specifications, such differentia-
tion is possible only through the use of procedural reasoning.
Our key requirements for plan priorities then are that their

specification (i) be declarative, (ii) allow access to the cur-
rent world state, (iii) provide access to plan instance vari-
ables, and (iv) be local in scope to the plan.
In effect, the preferences framework proposed here allows

us to dynamically allocate a number to each applicable plan
instance, which then provides a preference ordering that can

1This refers to generally preferred plans from a design point
of view. This is not the same as user-specific preferences,
which are not the focus of this framework.

be used by a plan selection function to choose the most pre-
ferred plan. This number can also be interpreted as a“degree
of applicability”, and while usually the plan selection mech-
anism would simply pick the most applicable plan, other
reasoning is also possible. For instance, in some domains
the cost of trying and failing a plan might be high. Here it
may make sense to not select a plan at all if every applica-
ble plan has a low ranking relative to some domain specific
threshold. These considerations should give the reader an
appreciation for how the framework can be used for plan
selection. However our main focus here is on the description
of the preferences framework, rather than on the different
ways it can be applied in plan selection.

In the following section we first describe how plan selection
is done in current BDI systems as well as some related work.
We then describe in Section 3 our approach to specification
of localised preference information which supports a more
powerful approach to plan selection, without the need to
use meta-plans or some equivalent where the conditions are
hidden in the code. We explore the expressivity of the prior-
ity specification language we will use, and then in Section 4
discuss the need for aggregation of multiple preferences and
define a couple of useful aggregation functions, while leav-
ing it open for this to be provided by the developer using
information specific to the domain.

2. PLAN SELECTION IN BDI
In many BDI languages the plan library is represented as

a set of plan rules of the form: e : ψ ← P , where e is an
event, ψ is the context condition, and P is the plan-body
program. ψ is a boolean formula over the agents beliefs,
and P is considered an applicable strategy for responding to
event/goal e when condition ψ is believed to be true. Plan-
body programs are abstract procedures that may contain
further goals/events as well as actions.

The context condition ψ associated with a plan, allows
the agent execution engine to limit the runtime selection to
those plans which are designed to be appropriate for the
current situation.2

Figure 1 shows a goal plan hierarchy that results from
the set of plan rules shown, based on the example discussed
earlier. As can be seen, each goal, e.g. BookTransport, typ-
ically has some number of associated plans, e.g., fly and
train. At runtime, one of these plans is selected for exe-
cution. If at some point that plan fails, a BDI agent will
generally re-evaluate and choose a different available plan,
in order to continue trying to achieve the goal. If no ap-
plicable plans remain, the goal fails, thus failing the plan
it is part of, e.g. BookSelf, leading to the process of find-
ing a new plan one level higher up in the goal-plan tree,
e.g. UseTravelAgent. It is this in-built failure recovery,
common to many BDI platforms, that make it important
not to exclude a plan from being applicable, because it is
not the highest priority choice. In our example in Figure 1
discussed earlier, although it is better to take the train if
the distance is less than 500 km, it may be that this plan
fails, due to no available seats left. In this case we would
prefer to try booking a flight if one is available. If, as is
often done, the context condition of the fly plan includes

2Plans that apply in every situation do not really warrant a
context filter. Strictly, such plans have a context condition
that always evaluates to true.
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AttendConference

UseTravelAgent BookSelf

Register

...

BookTransport

fly train bus

BookHotel

...

!BookTransport:flies($airline,$from,$to) ∧
itinerary($itinerary,$airline)

← fly

!BookTransport:station($from) ∧ station($to)

← train

!BookTransport:true

← bus

Figure 1: Example goal-plan hierarchy

the clause distance($from,$to) > 500, then this plan will
not be applicable, and hence not available for use when the
train plan fails.
As already mentioned, BDI programming languages such

as AgentSpeak [10] or CANPLAN [11] are agnostic as to
how a plan is selected from a set of applicable plans. In
practice, implementation platforms have one or more mech-
anisms available for this selection. One common approach
is to assume priority based on specification order, so in Fig-
ure 1, if the specification order was as shown, then the fly

plan is prioritised higher than the train plan which is in
turn higher than the bus plan. As noted this is a static pri-
oritisation which does not take account of either the current
situation, or of the particular plan instances available. In
practice these implemented systems are often flexible enough
that there is a mechanism whereby the desired selection can
be accomplished. However this is hidden within a program-
mer defined function, for instance the PlanChoice function
in Jack

3, often referred to as a meta-plan.
Meta-plans are powerful in that they can encode any de-

sired reasoning. However, because they are not declarative,
this information is not available for automated reasoning
about the program and its structure. In the case of our tool
support for participatory modelling for agent based simula-
tion, where we wish to show users which plan an agent will
select, and why, we have no access to the explanation why.
The non-declarative nature of the meta-plan also makes it
difficult to provide an interface whereby end users can inter-
actively modify the selections made by the meta-plan, either
to systematically explore the simulation, or to participate in
the design of the agents.
There has been some work on incorporating preferences

into plan selection in BDI systems. The work of [14] provides
a mechanism for declaring global preferences in a slightly
modified version of LPP [2]. These are then applied to plan
selection, based on the effects of a plan, or on resource usage.
It does not provide a mechanism for defining preferences
based on the current situation, nor directly based on the
characteristics of plan instances. Like much of the work on
preferences in planning, it is oriented towards being able to

3http://www.aosgrp.com/documentation/jack/Agent_
Manual_WEB/index.html

capture and use the preferences of individual users, which
we are not attempting to do in our approach.

Bordini et al. [3] presented extensions to the AgentSpeak

language to allow for integration with the DTC scheduler
for intention selection purposes. They introduced internal
actions, or arbitrary user-provided functions that do not af-
fect the environment, that could be used within a plan’s
context condition as well as in the plan-body program. Us-
ing specific internal actions, this mechanism was used for
calculating plan priorities in a way understood by the DTC
scheduler, for use in intention selection. This ability to call
internal functions from inside context conditions could also
be used to calculate plan instance priorities as we wish to
do. However internal actions are black-box functions and
do not support our agenda of declarative specification and
reasoning.

Casali et al. [5] present an approach that extends BDI
systems with graded mental attitudes (beliefs, desires and
intentions), using modal logic. This enables a more nuanced
version of having a goal, belief or intention, and probably
this could be used to accomplish dynamic priorities of plans
based on graded beliefs and goals. However it does not sup-
port a localised direct specification of plan value based on
the current situation and plan instance variables.

Myers and Morley [8] are, like us, concerned with speci-
fying preferences for agent strategies in specific situations,
rather than the more common individual based preferences.
Like us they identify a need to refer to the variables of a par-
ticular plan instance, which in their framework are called
roles. They also introduce features that can be used to
describe properties of a plan-type, such as “fast-heuristic”
or “exact”. However, although the properties of the plan
are specified locally, the constraints that are used to reason
about which plan to select, are specified non-locally. Also,
their strategy preference mechanisms are embedded within
a larger context of a framework for adjustable autonomy.

Work on preferences in HTN planning [13] is potentially
relevant in that HTN planning is very similar to BDI execu-
tion [11]. However, the approach here is to determine pref-
erences associated with an entire plan, as opposed to pref-
erences with respect to a single choice point. This reflects
the philosophical difference in approach between planning,
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which determines a full course of actions, and BDI execu-
tion, which makes decisions as to how to act at each step,
allowing the executed plan to unfold depending on potential
environmental changes.
Our approach is to assign a quantitative value to each plan

instance, using a local preference specification which allows
dynamic calculation of this value based on both the current
situation and the attributes of the particular plan instance.

3. REPRESENTING THE PREFERENCES
In order to facilitate the calculation of a plan value which

can be obtained dynamically based on a specific situation
and an individual plan instance, we extend the notation for
our plan rule as follows:

e : ψ ← P [θ]

where e is an event, ψ is the context condition, P is the plan
body and θ is a preference description comprising the tuple
< d,V, λ > defined as follows:

d is an integer giving a default preference measure;

V is a set of value specification pairs
{(ϕ1,V(ϕ1)), (ϕ2,V(ϕ2)), . . . , (ϕn,V(ϕn))}, where ϕ is
a preference formula in the language of first order pred-
icate logic without quantification and V : S → R de-
fines a preference measure for the set S of formulae
ϕ ∈ S.

λ is an aggregation function λ : [d,V,S ′] → R which
specifies how to aggregate the default preference mea-
sure d and the preference measures of the evaluated
set S ′ = {ϕ|ϕ ∈ S, ∀ϕ = true} of preference formulae
that hold true in a given situation.

The plan value is then obtained using λ if both λ and S ′

are non-empty, and by using d otherwise.
The preference formulae can access any variables bound

within that plan’s context condition, or available within the
agent’s beliefs (essentially any variables accessible within the
static scope of the plan definition, if the platform used has
scoping mechanisms). We require that the preference for-
mulae in S be non-redundant, i.e., for any two formulae ϕ1

and ϕ2, that ¬[(ϕ1 |= ϕ2) ∧ (ϕ2 |= ϕ1)]. For example, a
non-redundant set S may only contain one of the formulae
A ∧B or B ∧A, but not both, since they entail each other.
Overlapping preference formulae are however allowed, so it
is possible to have A ∧ B ∧ C ∈ S and A ∧ B ∈ S with
the same or different preference measures. The aggregation
function λ then defines how this will be understood.
The preference formulae can be used both for specifying

cases where particular plans are good, but also cases where
particular plans are a poor choice. Using this approach our
fly and train plans can now be specified as shown in Fig-
ure 2. We see that the fly plan has a default value of 5, but
if the rating of the airline is < 2, then it has a preference
measure of 2, and if the rating is > 4 then it has a pref-
erence measure of 7. Moreover, when warnings of volcanic
ash are current, the preference for flying is very low or -10.
Here higher numbers represent higher preference. Similarly
the train plan has a default value of 3, with a preference
measure of 8 if the distance from the source to destination
is less than 500 km.

!BookTransport:flies($airline,$from,$to)

← fly

[5,

{(rating($airline) < 2, 2)

(rating($airline) > 4, 7),
(warning(volcanic-ash), -10)},

λ]

!BookTransport:station($from) ∧ station($to)

← train

[3,

{(distance($from,$to) < 500, 8)},

λ]

Figure 2: Examples of preference descriptions

Looking at the fly plan we can see that at some point we
may find ourselves in the situation where we have a plan to
fly with some airlines which has a rating of 5, and a current
belief warning(volcanic-ash), leading to preference mea-
sure evaluations of 7 and -10 respectively. Our aggregation
function must now determine how this is to be interpreted.
There are a number of intuitively reasonable options in a
case with multiple true preference formulae, including taking
the maximum or the sum. We will explore the aggregation
function further in Section 4.

3.1 Expressivity of Value Specifications
Having introduced the framework for locally specifying

plan values, we now focus on the preference formulae con-
tained in the set S, and the kinds of things that can and
cannot be captured in such formulae. Essentially, preference
formulae can specify combinations of the following types of
information:

• beliefs about the current state of the world, and

• the bound variables for the particular plan instance.

For instance in Figure 2, in plan fly the value specification

(warning(volcanic-ash), -10)

is an example where the current world state influences the
priority of the plan. Here, if the belief representing a cur-
rent warning about volcanic ash holds true, then we want to
assign a very low priority of -10 to this plan instance, as in
such situations we deem flying to be risky as well as prone
to delays.

The specification

(distance($from,$to) < 500, 8)

associated with the train plan says that train travel is val-
ued more (i.e., 8 instead of the default 3) for distances
shorter than 500 km, where distance is calculated using the
values bound to the train plan variables $from and $to.
Similarly the specification

(rating($airline) > 4, 7)

for the fly plan says that if the rating of the airline bound
to the variable $airline is higher than 4-star, then the plan
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receives a fairly high preference measure of 7 compared to
the default of 5. It is this type of specification that is able
to access the variables of the plan instance and differentiate
between instances of the same plan type, that can provide
a benefit over more static priority mechanisms available in
current agent systems.
Note that in some situations, more than a single preference

formula in the set S will hold true, this subset being S ′, in
which case the final single value of the plan instance must
somehow be decided by considering the individual preference
values associated with each formula in S ′. As mentioned
before, this is done by the provided aggregation function λ
that we discuss in the following section.
We now turn our attention to the kinds of things that

would potentially be useful but cannot be expressed, or are
difficult to represent, in our notation. Consider again the
specification

(rating($airline) > 4, 7)

from earlier that gives a higher than default measure to
higher rated airlines. In this case it may in fact be that what
the developer really wishes to capture is that “the higher
the airline rating the more preferred the plan instance is.”
However, this kind of description cannot in general be spec-
ified in our framework that assigns discrete values to logical
formulae evaluations. In order to capture such a prefer-
ence, we would need to approximate it by specifying dis-
crete ranges and providing separate preference descriptions
for each range. This is clumsy and is also less straightfor-
ward for modellers to understand than a single statement.
Overall, this kind of comparison requires reasoning across
multiple plan instances and not just a single instance as we
do here, and is more appropriate at a higher level where this
information is available.
Another potential issue is that our framework does not

support different plan values being calculated depending on
the predecessor (goal or plan) of the goal to which the plan
instance is responding. For example in Figure 1 the fly

plan is in the context of the BookSelf plan, which is one
of the plans available for realising the goal AttendConfer-
ence. However, the BookTransport goal (which is what
causes the fly plan to potentially be evaluated) may also be
used within some other plan within the same agent, where
different preference criteria might apply. For example we
could imagine a goal ArrangeHoliday, which somewhere in
its goal-plan tree contains a plan, say MakeBookings which
also invokes the sub-goal BookTransport but would evalu-
ate the various available plan instances differently than in
the context shown in Figure 1. In general, to address this
issue we would need a language to express the path of plan
choices and resulting goals, in the execution so far, of a given
intention, and this we do not provide. It would of course be
possible to capture this kind of information in the form of
beliefs, which could then be referenced using our framework.
A somewhat related issue is that preference descriptions

cannot depend on information about later sub-goals to be
accomplished and their available plans. For example, the
preference to fly with a higher rated airline (that is pre-
sumably more expensive) may apply only so long as there
are sufficient funds remaining for successfully accomplishing
BookHotel afterwards. This would require the full (poten-
tial) executions to be assessed and then preferences evalu-
ated in light of this information. However this involves plan-

ning and does not accord with the BDI approach of making
a decision at each step, based on current information. Both
these last two limitations are essentially to do with our re-
quirement to specify preferences locally. They also however
follow from the modular design philosophy of BDI plan hier-
archies that sub-goals and sub-plans should be independent
of any higher-level plans in which they are combined.

4. PREFERENCE AGGREGATION
The role of the aggregation function λ(d,V,S ′) is to take

the set S ′ ⊆ S of preference formulae which are true for the
particular plan instance, and use these to determine a sin-
gle plan value given d and V, which will be compared with
the plan values of other applicable plans to select the most
preferred one. The preference specifications, and the way
in which they are aggregated will determine the preference
ordering between all plan instances of the given type. For a
full understanding of the preference ordering for the situa-
tion it is necessary to compare with the numerical values of
other plan types for the same sub-goal. Although in general
explicit ordering is very cumbersome, it is often the sim-
plest approach when dealing with quite small numbers. The
number of distinct plan types is indeed usually very small,
seldom more than five. However numbers of instances can
be large, and it is here that our preference specification must
correctly order different instances of the same type.

In cases where each formula is essentially capturing a set of
independent attributes, i.e., the attributes are preferentially
independent of each other, and giving them a measure of
worth depending on the actual value of the attribute, then it
makes sense to have the aggregation function simply sum the
measures of the preference descriptions in S ′. For example if
our fly plan has the following set of preference descriptions:

(rating($airline) > 3, 2)

(stops($itinerary) = 0, 4)

(warning(volcanic-ash), -10)

then it may well make sense to sum the measures associ-
ated with the preference descriptions in S ′. More generally,
summation can make sense also when attributes within a
formula are not preferentially independent, as long as the
formulae themselves are independent of each other, that is,
the conditions captured by them do not overlap.

However, even if the predicates representing the attributes
are independent, it is likely, given the language we have
specified that we will end up with sentences which are not
independent. Take for instance the addition of

(stops($itinerary) < 2, 2)

to our set of descriptions above. Now, in a particular plan
instance with a bound itinerary, we may have 0 stops. In
this case, the formula in both

(stops($itinerary) < 2, 2) and

(stops($itinerary) = 0, 4)

will evaluate to true and be included in S ′, but it does not
really make sense to add these two values. Of course the
values could have been set such that adding them would
give the desired answer, for instance by changing the value
of stops($itinerary) = 0 to 2, so that it would sum to 4

when both formulae evalute to true. We could also write the
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formulae to be exclusive, e.g.,

(stops($itinerary) > 0 ∧ stops($itinerary) < 2, 2).

However, in order to remove this burden on the designer, we
instead use a definition of λ that sums only over the prefer-
ence descriptions in S ′ where the formula is not entailed by
the formula of some other preference description in S ′. We
call this aggregation function ESum4 and define it as:

λ(d,V,S ′) =
∑

ϕ∈S′,∀ϕ′∈S′\{ϕ}:ϕ′ 6|=ϕ

V(ϕ) (1)

This kind of reasoning over the formulae highlights one of
the key benefits of using a declarative language to capture
preferences. Logical reasoning could also be used to ensure
consistency such as in systems where preferences are col-
lected over time. For instance, reasoning may be used to
identify overlaps in the conditions captured by the formulae
in S and confirm if this was intended or should be corrected.
On the other hand, the system can suggest subsets of for-
mulae that could be further consolidated into more compact
forms.
In some cases attributes or predicates are not indepen-

dent, and the preferred value of one attribute is dependent
on the value of another, called conditional preference. Take
the case where we want the agent to prefer flight times un-
der 14 hours regardless of the number of stops. Here the
preference for flight-time is preferentially independent of the
number of stops. However if the preference is such, that for
flights under 14 hours it is best to have 0 stops, but if it
is over 14 hours it is better to have 1 stop to stretch the
legs, then the preference for stops would be conditional on
flight-time. In this case the preference specifications can-
not simply be given in terms of simple attributes with value
ranges and appropriately chosen preference measures as be-
fore. So while we can certainly capture the preference for
flight-times as

(flight-time($itinerary) < 14, 5)

(flight-time($itinerary) ≥ 14, -2)

there is no way then to set preference measures for the num-
ber of stops, i.e., for the formulae stops($itinerary) = 0

and stops($itinerary) ≥ 0, in a way that gives the de-
sired ordering of the plan instances with any straightforward
aggregation function. However, we can achieve this desired
ordering by explicitly capturing the conditional dependence
that matters, such as:

((flight-time($itinerary) < 14) ∧

(stops($itinerary) = 0), 6)

((flight-time($itinerary) < 14) ∧

(stops($itinerary) = 1), 4)

((flight-time($itinerary) ≥ 14) ∧

(stops($itinerary) = 1), 3)

((flight-time($itinerary) ≥ 14) ∧

(stops($itinerary) = 0), 2)

While this is somewhat cumbersome, the interacting at-
tributes within a single plan are likely to be few, and ex-

4for “Excluding Sum” as we exclude descriptions where the
formulae are implied by other descriptions.

plicit ordering is straightforward to understand and to spec-
ify. Note that while the attributes stops and flight-time are
not mutually independent, the formulae above are mutually
exclusive and therefore if the other preference specifications
in S are independent of these too, then it may make sense
to use the ESum aggregation function. As previously it is
appropriate to exclude descriptions with sentences that are
entailed by other sentences in S ′. So for instance if the spec-
ification

(flight-time($itinerary) < 14, 5)

was added to the above set of preference descriptions (in case
stops is unknown), one would not want to add its preference
measure to that of the first or second descriptions above.

It is also well known that in many cases attributes are not
additive. Indeed, in our simulation work with social science
colleagues we have frequently experienced situations where
they have wanted to capture the fact that the value of A ∧
B is not the same as the value of A plus the value of B. This
third case is also straightforward for us to express in our
framework, as for example

(rating($airline) > 3, 5)

(stops($itinerary) = 0, 3)

((rating($airline) > 3) ∧

(stops($itinerary) = 0), 10)

where we define the value of 0 stops together with a high
airline rating as 10, rather than simply the sum of the two
parts, which would give 8. As before, our aggregation func-
tion ESum as defined will exclude the more general, entailed
descriptions (the first two in the list) from S ′ before sum-
ming, allowing this more specfic (third) description to take
precedence.

We have discussed cases where one attribute may be con-
ditionally dependent on another (e.g. stops being condition-
ally dependent on flight-time). However there are also cases
where the attributes are not directly dependent, but are ob-
viously correlated. Let us assume that we sometimes have
access to further information about an airline, in the form
of its food quality and seat comfort rating, and that we have
the following preference specifications:

(rating($airline) > 3, 4)

(food-quality($airline) > 3, 5)

(seat-comfort($airline) > 3, 6)

It is clear from this specification that seat-comfort is more
highly valued than food-quality or overall rating. Now con-
sider the case where we have two plan instances: one for
Singapore Airlines which is rated 5-star overall, 4-star for
food, but 3-star for seat comfort, and another for Indian
Airlines which is rated 3-star overall, 3-star for food, and 4-
star for seat comfort. If we use ESum the calculated values
will be 9 for Singapore Airlines, and 6 for Indian Airlines,
leading to Singapore Airlines being preferred, even though
its seat-comfort is lower. While this may be the desired in-
terpretation, it is also possible that what is intended is that
the formulae capture potentially overlapping information,
and that the best overall situation be the determinant for
the plan’s value.

For such cases we define a new aggregation function called
EMax that assigns a plan value based on the maximum mea-
sure in S ′:
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λ(d,V,S ′) = max(V(ϕ) | ϕ ∈ S ′, ∀ϕ′ ∈ S ′ \ {ϕ} : ϕ′ 6|= ϕ)
(2)

We note that, should we wish to do so, we can still capture
the combination of good rating and good food quality and
give it a value higher than seat-comfort, by simply combin-
ing into a single formula. Overall though a decision must
be made as to whether the intended interpretation is to give
points to particular conditions and then sum them, or to
recognise particular conditions and choose the highest val-
ued.
Finally, a slight variation on our aggregation functions is

where the individual preference descriptions are really de-
scribing situations which make the plan slightly better or
worse than the default value. In this case it may make more
sense to interpret the measures as offsets from the default.
This makes no difference to the preference ordering among
the plan instances of the single type, but does affect the
calculated plan value, and therefore the preference ordering
of the plan in relation to plans of other types. This Offset
aggregation function for ESum is defined below (the change
to EMax is similar):

λ(d,V,S ′) = d+
∑

ϕ∈S′,∀ϕ′∈S′\{ϕ}:ϕ′ 6|=ϕ

V(ϕ) (3)

The Offset versions of the aggregation functions have the
benefit that they allow us to conceptualise values in relative
terms rather than absolute terms. This is arguably more in-
tuitive as the baseline default values can be correlated across
all plan types that handle the same event. As mentioned,
the final ordering of plan instances of a single type is not
impacted.
To summarise the discussion above, our preference frame-

work caters to the following cases:

• Independent attributes: this is straightforward and is
done by giving preference measures to the attributes
with their particular values.

• Conditionally dependent attributes: this is done by ex-
plicitly specifying the combinations that we care about,
and giving a preference measure to each such combi-
nation.

• Non-additive attributes where the preference value of
two attributes (A ∧ B) together is not the same as
the value of A plus the value of B separately: this is
achieved by logical entailment so that the more specific
formulation, i.e., (A ∧ B) takes precedence.

• Non-independent attributes in the sense that they cap-
ture overlapping things: this is easy enough to specify
in the formulae but needs to be aggregated differently,
such as by taking the most preferred condition rather
than summing over all conditions that hold.

Our framework also allows for multiple aggregation func-
tions to be used in the agent program, since λ is included
in the preference specification θ attached to each plan type.
This means that a different aggregation function could be
used per plan type if needed. In general, we believe that
a choice between ESumOffset and EMaxOffset is sufficient
for applications (i) when the same aggregation function is
to be used for the entire program; (ii) when all plan types

for a given event type have the same aggregation function;
and (iii) when a different aggregation function is required
per plan type.

5. DISCUSSION AND CONCLUSION
The approach that we have presented allows a straightfor-

ward declarative specification of the value of a plan, in a way
that can be dynamically calculated depending on the par-
ticular state of the environment, as well as the information
about the individual plan instance under consideration.

This eliminates the need to use over-constrained context
conditions of plans to enable preferred plan selection of a
different plan type in some situation. With our framework,
we no longer need to have the context condition of our fly
plan include the clause

distance($from,$to) > 500

in order to ensure that the usually less preferred train plan
is chosen for shorter distances. Instead we simply add a
preference description something like:

(distance($from,$to) < 500, 10)

to the train plan, where 10 is sufficient to give the plan a
value above that for the fly plan in this situation.

The declarative specification at the plan level also makes
it straightforward to derive an explanation for a user as to
why a particular plan was chosen in a particular situation.
This framework supports the development of an interface
to allow non-programmers to question and understand the
plan choices being made by the agent system, and indeed to
provide input into what those plan choices should be.

The aggregation functions defined, where more general
specifications are ignored in favour of more specific ones
when both are true, provide ease and flexibility in writing
preference specifications as it is necessary only to consider
whether there are dependencies regarding the combinations
of attributes, not whether there are dependencies involving
the actual formulae.

As far as the authors are aware this is the first approach
to provide a declarative specification to enable plan selec-
tion based on the current beliefs and the bindings of the
particular plan instance.

A possible weakness of the approach is that the ordering is
determined by explicit plan values, and therefore the devel-
oper must ensure that these values give the desired ordering.
In general this approach is undesirable largely because it is
difficult to both assign appropriate values and maintain an
overview of the values assigned. However, we would argue
that in this particular situation the approach is acceptable as
the number of plan types will almost certainly be small, al-
lowing a straightforward overview of relative values. Within
a single plan type, the number of instances may be large,
but we need only ensure that the preference descriptions are
correctly ordered. These will also likely be a limited number,
to address some specific situations.

The biggest weakness of the framework presented is that
we are unable to order all instances based on one or more
preferentially independent variables. However this would re-
quire reasoning across multiple plan instances, whereas our
current framework assesses only one instance at a time. Such
an addition would require a language that allowed compar-
isons across different plan instances that did not rely on the
simple assignment of numerical values that we have now.
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One possibility may be to develop an appropriate prefer-
ence specification framework at the level of goals. This is a
possible area of interest for future work. However we first
want to evaluate the current approach with users who are
not programmers, to establish (i) whether it is easy for them
to specify domain knowledge in this way, and (ii) whether it
is easy for them to understand what is specified in a given
program. Of course it is still possible to achieve such an or-
dering using a meta-plan or other procedural mechanism,
but it is not declarative.
We believe that the ability to dynamically assess the value

of particular plan instances, dependent on current situation
and the specifics of the individual plan is extremely impor-
tant. Making this a part of the declarative specification of
the plan, similarly to the context condition, is a straight-
forward but significant step in improved flexibility of BDI
programming languages.

Implementation

We have developed a basic implementation of the proposed
extension as an add-on Java library (.jar file) for use with
the JADEX

5 agent programming platform. The extension
is available for download, together with usage instructions
and a working example used in this paper, from:
https://sites.google.com/site/rmitagents/software.

6. ACKNOWLEDGMENTS
This work is partially supported by the Australian Re-

search Council under Discovery grant DP1093290 and the
National Climate Change Adaptation Research Facility un-
der grant EM1105. We also thank Andreas Suekto, Ralph
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