
ParaMoise: Increasing Capabilities of Parallel Execution
and Reorganization in an Organizational Model

Mateusz Guzek
Interdisciplinary Centre for

Security, Reliability and Trust,
University of Luxembourg

6, rue R. Coudenhove-Kalergi
Luxembourg, Luxembourg
mateusz.guzek@uni.lu

Grégoire Danoy
Computer Science and

Communications Research
Unit, University of Luxembourg
6, rue R. Coudenhove-Kalergi

Luxembourg, Luxembourg
gregoire.danoy@uni.lu

Pascal Bouvry
Computer Science and

Communications Research
Unit, University of Luxembourg
6, rue R. Coudenhove-Kalergi

Luxembourg, Luxembourg
pascal.bouvry@uni.lu

ABSTRACT
Organization-centered top-down models can be used to effec-
tively represent MAS organizations and their dynamics. In
state-of-the-art Moise+ framework, the organization func-
tioning is modeled as a set of goal decomposition trees,
named Functional Specification (FS). However, such tree
structures do not permit to model all types of goals interde-
pendencies, which might be a limiting factor when dealing
with the organization of complex, large scale systems like
Cloud Computing (CC). Such systems commonly use the
concept of workflow to represent dependencies between the
tasks to be executed. This paper proposes to use the same
workflow approach to model goals execution plans and de-
pendencies in the FS, which permits to include properties
and constraints of a strongly parallel system. The resulting
organization model is ParaMoise that brings more expres-
siveness than Moise+: it can represent an arbitrary acyclic
graph dependency structure, track the status of goals ex-
ecution, and ensure mutual exclusion and progress of dis-
tributed execution. The lock mechanism enables reorgani-
zation that can affect any element of organization at sys-
tem runtime. As an example, ParaMoise is used to model a
realistic CC management MAS that aims to provide self-*
properties to an autonomic computing system.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems; I.2.11
[Distributed Artificial Intelligence]: Multiagent systems

General Terms
Theory, Design, Management, Performance, Reliability

Keywords
Agent societies and Societal issues::Environments, organisa-
tions and institutions; Agent theories, Models and Architec-
tures::Modeling the dynamics of MAS; Agent-based system
development::P2P, web services, grid computing; Systems
and Organisation::Autonomic computing

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
The organizational models of Multi-Agent Systems (MAS)

define the roles, functioning, and rules inside MAS. Ad-
ditionally, they enable conscious, explicit monitoring and
management of organizations composed of agents, which can
be done by external administrators of the organization, as
well as by the agents themselves. The MAS paradigm en-
compasses autonomic, distributed, and decentralized deci-
sion making, and adaptivity to environmental changes. The
demand for such properties grows together with the wide-
spread adoption of Large Scale Distributed Systems (LSDS).

Organization-centered MAS are especially applicable to
current LSDS systems that already have some pre-defined
structure or organization. In such case, a top-down ap-
proach, in which the organizational model is defined a priori
and modified during system runtime, is appropriate. On the
other hand, reorganization behaviors are desired to ensure
adaptability to changing system conditions.

State-of-the-art organizational models and frameworks suit
well multiple types of MAS, e.g. robot soccer team [7], con-
ference organization [2] or rescue team [4]. However, their
current applications is limited by various drawbacks: depen-
dency on external, often centralized entities that support or
manage an organization, simplified view of agents mission
planning, limited or no support of reorganization, and sep-
aration of system and execution into different, loosely con-
nected layers. This works aim is to overcome the above
mentioned points.

We propose ParaMoise, a MAS organizational model that
enables parallel execution of goals structures with arbitrary
precedences, alternative execution of goals, basic failure han-
dling mechanisms, detailed mission and goal status track-
ing, and parallel, decentralized reorganization capabilities
of any component of organization thanks to the mechanism
of locks. Moreover, the reorganization is defined as a com-
position of goals, and can combine in this way the goals of
reorganization process with the standard system goals.

The remainder of this article is organized as follows. The
next section provides a state of the art on MAS organiza-
tional and reorganizational models for LSDS. Then section 3
presents the ParaMoise model, including its novel workflow-
based functional specification and reorganization. An exam-
ple of ParaMoise usage for modeling a CC system is given
in section 4. Section 5 includes some discussion of the pro-
posed contribution, and finally conclusions and perspectives
are presented in section 6.

1029

2. STATE OF THE ART
Various organizational models have been proposed in the

literature to specify MAS functioning and dynamics. We
propose here to analyze some of the most prominent top-
down approaches, selected by their capacity to model LSDS.

AgentCoRe [4] is a framework designed for coordination
and reorganization in MAS. The decision making modules
are capable of the selection of coordination mechanisms, cre-
ation and update of a task structure, subtask assignment and
reorganization (change the assignment of roles to agents, re-
lationships between them or existing task assignment). The
decision making modules are based on strategies. Agent-
CoRe is strongly dependent on its modules, which makes it
less appropriate for general reorganization cases. Addition-
ally, the basic components of AgentCoRe modules do not
include agents as decision makers.

GPGP/STÆM [12] also proposes to decompose the orga-
nization functioning into goals and subgoals. The leaves of
such a tree-structure are tasks. More complex structures can
be created by adding precedence links. One of the key com-
ponents is a domain-independent Design-to-Criteria (DTC)
scheduler. As a result, plans bind agents with specific sets
of tasks. The coordination is based on the goals allocation
and the goals structure. The limitations of such an approach
reside in the limited agent adaptation capabilities because
of the dependency on a given schedule. Additionally, the
domain-independent scheduler creates a single point of fail-
ure, and the lack of scalability of the coordination mecha-
nism may prohibit the use of this framework for a large scale
MAS.

Wang and Liang [16] propose a three layer organizational
model divided into three graphs: social structure, role en-
actment, and agent coordination. In this approach the re-
organization is a graph transformation, based on a set of
predefined graph reorganization rules. Such reorganization
is limited to changing the structural dimension of the orga-
nization, and thus not its functionalities.

Kota et al. [10] present an adaptive self-organizing MAS
that can reorganize on task assignment (i.e. functional) and
structural levels. Agents in an organization provide services
and possess a set of computational resources, which corre-
spond to a CC system. Important concepts of organization
cost, benefit and efficiency are also introduced. The reor-
ganization process is decentralized, however it includes only
4 possible actions: create/remove peer and create/remove
authority.

OperA [2] is a framework for socio-technical systems. It
merges roles with their objectives and presents the relations
between roles as pre-order. The higher level of coordina-
tion in a system are scenes and their compositions. OperA
enables adaptation of a set of agents to a pre-defined organi-
zation model, however it does not concern reorganization of
the model. Moreover, the scenes composition does not sup-
port arbitrary precedences and describe system only on high
level, resulting in less versatile and appropriate for effective
parallel execution model than ParaMoise.
Moise+ [6] is an organization model that specifies three

organizational dimensions: structural, functional and deon-
tic. However the model is designed for small systems, as
only one agent is responsible for reorganization and the re-
organization implementation process is not clearly defined,
and the functional specification is based on goal decompo-
sition trees that limit the possibilities of strongly parallel

executions. Moise+ includes reorganization modeling capa-
bilities [7], an agent programming methodology [8] and it
was recently transformed in an Agent & Artifact framework
named ORA4MAS [5].

These latest developments are used in the JaCaMo multi-
agent programming framework [13]. JaCaMo presents the
reorganization implementation that inherits the single agent
responsible for reorganization process from Moise+, which
results in a sequentially executed implementation plan. More-
over, the organization needs to be stopped for the reorgani-
zation, which may be infeasible in a real LSDS scenario.

The objective of this work is thus to benefit fromMoise+

organization and reorganization dimensions specifications,
introduce a new functional specification that permits to take
into account properties of dynamic LSDS and extend it to
model fully parallel, reorganization at system runtime.

To this end we rely on the concept of workflow, that is well
established and widely used in the Grid computing domain.
The workflow is composed of tasks and their precedence re-
lations among them, which form an acyclic graph of tasks.
It provides fault tolerant distributed execution frameworks
and can include alternatives among edges incoming to a node
to improve failure handling or speedup the execution [9].

3. THE PARAMOISE MODEL
As previously mentioned, the ParaMoise organizational

model is an extension to the Moise+ model. The Moise+

organization-centric model relies on three specifications, i.e.
structural, functional and deontic, that compose the Orga-
nizational Specification (OS). An OS is instantiated by a set
of agents that adopt roles and constitute the Organizational
Entity (OE). The OE therefore expresses the state of specific
organization following the corresponding OS. Moise+ OS
can thus be defined as the tuple 〈SS, FS,DS〉 [13], where SS
is the Structural Specification that defines roles, inheritance
and links between roles, and groups; FS is the Functional
Specification, that groups individual goals into missions and
structures them in social schemes; DS is the Deontic Speci-
fication that binds the SS and FS, i.e. it assigns roles ‘obli-
gations’ or ‘permissions’ to achieve missions with a defined
time constraint. The ParaMoise model uses subsequently
the above mentioned definitions of SS and DS, but changes
FS as described in the next section.

For describing the OE we simplify the definition presented
in [8] and add to it the set of deontic modalities (e.g. obliga-
tions [13]): an OE is a tuple 〈OS,A,GI,SI,O, sg, ar, am〉,
where OS is the organizational specification; A is the set
of agents; GI is the set of group instances; SI is the set
of social schemes; O is the set of current deontic modali-
ties; sg : GI → P(GI) maps each group to its subgroups;
ar : A 7→ P(R×GI) maps agents to the roles they are play-
ing in the groups; am : A 7→ P(M×SI) maps agents to the
missions they are committed to in the social schemes.

3.1 Workflow-based Functional Specification
The original Functional Specification in Moise+ defines

how to achieve the global collective goals as a set of so-
cial schemes. A social scheme is a tree in which goals are
composed of sub-goals to be executed in sequence, choice
or parallel. Coherent goals to be achieved by one agent are
grouped in missions. A mission is assigned a cardinality that
defines the set of agents that can commit to it. Each goal
belongs to a mission and may have defined its success rate.

1030

team = �{ρcoach}, {def , att}, {}, {link(ρplayer, ρplayer), com),
link(ρleader, ρplayer), aut), link(ρplayer, ρcoach), acq), link(ρcoach, ρplayer), aut)},
{}, {}, {ρleader �→ (1, 1), ρcoach �→ (1, 2)}, {def �→ (1, 1), att �→ (1, 1)}�

A team is well formed if it has one defense group, one attack group, one or two agents
playing the coach role, one agent playing the leader role, and the two sub-groups are
also well formed. The group att is specified only by the graphical notation presented
in the Fig. 2. In this structure, the coach has authority on all players by an inter-group
authority link. The players, in any group, can communicate with each other and are
allowed to represent the coach. There must be a leader either in the defense or attack
group. In the defense group, the leader can also be a back and in the attack group it
can be a middle. The leader has authority on all players on all groups, since it has an
inter-group authority link on the player role. In this group, an agent ought to belong to
just one group because there is no inter-group compatibilities. However, notice that a
role may belong to several group specifications (e.g., the leader).

Based on those definitions, the SS of a MAS organization is formed by a set of
roles (Rss), a set of root group specifications (which may have their sub-groups, e.g. the
group specification team), and the inheritance relation (�) onRss.

3 Functional Specification

sequence choice parallelism
goal

missions
success rateke

y

g8g7

g6

m1 m1
g14g13

m1,2,3

g9 m1m1 g11

g21 g22
m2 m3

m2,3

m4,5

g2
.7
m1 g3.9

m6

g24 g25m4 m5

g4.5
m4,5

g0 m7
.8

g16 g17
m3m2 m4 m5

g18 g19

Fig. 3. An example of Social Scheme to
score a soccer goal

The FS in MOISE+ is based on the con-
cepts of missions (a set of global goals2)
and global plans (the goals in a struc-
ture). These two concepts are assem-
bled in a Social Scheme (SCH) which
is essentially a goal decomposition tree
where the root is the SCH goal and where
the responsibilities for the sub-goals are
distributed in missions (see Fig. 3 and
Tab. 3 for an example). Each goal may be
decomposed in sub-goals through plans
which may use three operators:

– sequence “,”: the plan “g2 = g6, g9”
means that the goal g2 will be
achieved if the goal g6 is achieved
and after that also the goal g9 is
achieved;

– choice “|”: the plan “g9 = g7 | g8” means that the goal g9 will be achieved if one,
and only one, of the goals g7 or g8 is achieved; and

– parallelism “�”: the plan “g10 = g13 � g14” means that the goal g10 will be
achieved if both g13 and g14 are achieved, but they can be achieved in parallel.

2 Regarding the terminology proposed in [3], these goals are collective goals and not social
goals. Since we have taken an organizational centered approach, it is not possible to concept
the social goal which depends on the agents internal mental state.

Key

Figure 1: An example of Moise+ Social Scheme

An example of a social scheme from [6] that represents a
social scheme to score a goal in a soccer team is presented
in Figure 1.

In order to provide LSDS more verbose and parallel spec-
ification, we propose to replace the goal decomposition tree
model of the FS by a workflow-based one, that we refer to
as Workflow Specification (WFS).

Based on the originalMoise+ social schema definition [6],
the proposed WFS is defined by an extended tuple 〈G, E ,M,
mo, nm, alt, fh〉, where G is the set of global goals; E is an
added set of precedence relations; M is the set of mission
labels; mo :M→ P(G) is the function that specifies the mis-
sion set of goals ; nm :M 7→ N×N specifies the boundaries
(min,max) of number of agents committed to the mission in
well formed WFS. Two new functions (alt and fh) defining
alternative execution paths and failure handling mechanisms
are also added to the WFS.

The set of global goals can be defined as G = Gp ∪ Gc,
where Gp is the set of primitive goals and Gc is the set of
composed goals. A composed goal is a set of other goals,
either composed or primitive. A primitive goal is either a
simple goal that can be followed by an agent or a set of
agents, or a nested WFS. A precedence relation is defined
as a tuple: e = 〈g1, g2〉, where g1, g2 ∈ Gp, g1 is the precedent
goal and g2 is the antecedent goal. The primitive goals and
precedence relations, interpreted respectively as nodes and
edges, must create a directed acyclic graph in a well formed
WFS. Because of this condition and link between workflow
and graph, in further text we use interchangeably primitive
goals and nodes, as well as precedence relations and edges.

The alt : E → P(E) function specifies the precedence rela-
tions alternatives. Alternative edges must have the same
precedent goal or antecedent goal as the mapped prece-
dence relation. The alternatives express alternative execu-
tion paths in a workflow (in case of common precedent goal,
e.g. Figure 2), or redundancy of conditions for a common
antecedent (i.e. only one of the precedent goals of the alter-
native edges must be achieved, e.g. Figure 8).

The partial function fh : Gp 7→ N specifies the failure han-
dling mechanism for a primitive goal. In case the function is

6

7 8

16 17 18 19

21 22

24 25

Alternative
precedences

Precedence

Primitive
Goal

m1

m1 m1

m2 m3 m4 m5

m2 m3

m4 m5

Key

Figure 2: An example of ParaMoise WFS

undefined, there is no specified failure handling mechanism,
like in Moise+ original FS. Otherwise, the primitive goal is
treated as a transaction and it is either fully successful or
failed at the end of its execution. The function fh specifies
the number of times the transaction can be repeated in case
of failure. If the number of allowed repetitions is reached,
the whole workflow execution is aborted. In such case a res-
cue mechanism shall be defined as another WFS, triggered
by the abortion.

Figure 2 presents how the original Moise+ scheme pre-
sented in Figure 1 can be transformed into a workflow. The
nodes of Moise+ social schema that are not leafs are trans-
lated into composed nodes in WFS, e.g. Gc = {g9 = {g7, g8},
g2 = {g6, g9}, . . . }, and should be listed separately.

3.2 Workflow on Organizational Entity level
The Workflow (WF) is an instance of WFS and contains

the information necessary for a specific execution. It is de-
fined as a tuple 〈WFS, es, gs, exe, gf〉, where WFS is the
workflow specification, es : E → {active, inactive, discarded}
is the function that maps edges to their activity status label;
gs : Gp → {waiting, possible, executing, suspended,
achieved, discarded} is the function that specifies statuses
of primitive goals; exe : Gp 7→ P(A) is the function that
specifies the set of agents executing a goal; gf : Gp → N
specifies numbers of repetitions of primitive goals. Each
primitive goal of a WFS that is itself a nested WFS must
be instantiated as a nested WF, to be a primitive goal of a
WF.

The execution of a WF must follow a set of rules. The cor-
responding transition diagram of state labelings is illustrated
in Figure 3. Initially, all goals are labeled as waiting, except
the goal(s) without incoming precedences that are marked
as possible, and all precedences are labeled as active. A goal
transits from waiting to possible state if there is no active
incoming precedence and at least one incoming precedence
is inactive. If an agent or a set of agents start execution of
a goal, its label is changed to executing and it cannot be
executed concurrently by other agents. In case other agents
would like commit to that goal, they should join the set of

1031

Waiting

Possible

Executing

Achieved Discarded

Suspended

No active incoming edges
and at least one inactive

StartAlt. started
Fail

Alt. failed

Alt. finished Finish

All incoming edges
discarded

Figure 3: State transition diagram of goals status.
The transitions from each state (except Achieved)
to discarded in case of discarding all outgoing edges
are omitted.

agents that is already executing the goal. After successful
end of execution, the goal label is changed to achieved and
all of the precedences outgoing from this goal are marked as
inactive.

The possibility of alternative edges extend the set of ex-
ecution rules as follows. In case an edge incoming to a
goal that starts its execution has alternatives with the same
precedent goal, then all goals that are the antecedents of
the alternatives are labeled as suspended. Once the execut-
ing goal is achieved, the nodes labeled as suspended in the
previous step are labeled as discarded. If a goal becomes
labeled as discarded, the labels of all its outgoing edges are
set as discarded. If all edges incoming to a goal have status
discarded, the goal’s label is set to discarded. If an edge
has alternatives with the same antecedent goal and it be-
comes labeled as inactive, then all other alternatives with
the same antecedent goal are labeled as discarded. If all
outgoing edges of a goal are labeled as discarded, the goal’s
label is set to discarded, unless the goal was previously set
as achieved.

To define the status of composed goals, a total ordering of
nodes status is used: {discarded ≺ achieved ≺ waiting ≺
suspended ≺ executing ≺ possible}. The status of a com-
posed goal is the status of the highest ordered primitive goal
that is included into the composed goal. The proposed or-
dering is designed to present the most important informa-
tion about the composed goals for agents in the system and
ultimately to speed-up the execution of WFs. Underlin-
ing existence of possible and then executing goals facilitates
choosing composed goals that agents can commit to.

An example of a WF during execution is presented in
Figure 4. From the current state of the system, we can
infer that after achieving g6, goal g8 was selected from two
possible alternatives. After achieving g8, the execution of
two goals: g17 and g19 started. The goal g19 was achieved,
while the goal g17 is currently executing. The agents that
committed to role m4 have possibility to start execution of
goal g18, but they have not yet committed to it .

3.3 Reorganization
Reorganization is the process of introducing changes in

an organization. In this work, we consider reorganization

6

7 8

16 17 18 19

21 22

24 25

Alternative
edges
Active
Edge

Waiting
Goal

Possible
Goal

Executing
Goal

Achieved
Goal

Discarded
Goal

Discarded
Edge

m1

m1 m1

m2 m3 m4 m5

m2 m3

m4 m5

Suspended
Goal

Inactive
Edge

Figure 4: An example of WF during execution

on two levels: OS, that defines changes of the core elements
of the organization and OE that concerns the entities of the
particular instance, and thus can be seen as a reconfiguration
of the MAS. However, as OE by definition includes OS,
single reorganization can affect both of these levels.

The novel reorganization process definition of ParaMoise
exploits the concepts of WFS and WF to provide a fully par-
allel mechanism that enables concurrent execution of multi-
ple non-conflicting reorganizations.

At the structural level, the reorganization group that in-
cludes all roles responsible for the reorganization process
was originally defined for Moise+ [7]. ParaMoise redefines
it by relaxing the constraint of a single OrgManager (orga-
nization manager). Additionally, the roles inheriting from
designer as well as historian role are neglected as they are
out of the scope of this paper. The separate role of Selector
(responsible for selecting one from possibly multiple reorga-
nization designs) is added as in [13]. An additional abstract
role Org is created, that is the root of all roles in the reorga-
nization group. The purpose of the Org role is to create an
anchor for compatibility links with other roles in the orga-
nization. In this way, the organizational management roles
can be fully independent from other roles in the MAS. The
final ParaMoise reorganization group structure is presented
in Figure 5. Note that all roles cardinalities are default, i.e.
1 . . .∞.

The exact mechanisms of monitoring, design, and selec-
tion phases of the reorganization are out of the scope of this
paper. We assume that agents in the system have capa-
bilities to monitor the organization and send reorganization
triggers, then design and select a valid reorganization WFS.
The tackled problem is the parallel implementation of a re-
organization WFS.

The reorganization plan implementation is represented as
a regular WF. The only additional construct needed for reor-
ganization is a lock mechanism that prevents contradictory
changes in an organization, e.g. removing a role from an OS
while this role is adopted by an agent at the same time. In
this way, multiple reorganizations can be done in parallel,
as long as they do not have overlapping locks. Two types of

1032

Org

OrgManager

Monitor

Monitored

SelectorDesigner

Reorg

Communication link

Compatibility link

role

InheritanceAuthority link

Group

soc

Composition

Key

abstract role

ReorgGr

Figure 5: The ParaMoise reorganization group

locks are introduced: read and write. The read lock speci-
fies which part of the organization must remain unchanged
for the successful reorganization, while write lock specifies
which part of the organization will be changed by the reor-
ganization process. For example, when an agent is going to
adopt a role, the role specification must be included in read
lock. Contrary to that if the role specification is going to be
removed, its specification must be included in write lock.

The lock is defined as a tuple 〈ROE, type〉, where ROE is
the reduced organizational entity and type ∈ {read, write}
specifies the type of the lock. The core of a lock is its ROE,
which is a tuple of structure identical to OE, but containing
only the elements of the OE, that need to be locked (as a
result some of the fields of the tuple may be empty). As OS
is an element of OE, the presented locks can work on both
OS and OE levels. Additionally, a lock may be limited to
a function’s subset of a domain, to reduce the scope of the
lock. In such case, the lock on function fun on a subset S of
its domain, is denoted as fun(S). The example of usage of
such lock is a change of role assignment of agent ai: instead
of locking the whole function ar, it is enough to create lock
that includes ar(ai).

A reorganization WF, wr, can be created if no overlap
exists between the existing locks and wr locks or if the over-
lap is limited to read locks. Only one wr can be created
at a time, and during this procedure the feasibility of new
locks must be checked. This constraint is important only
for the instantiation of a new wr, since multiple WFs that
are instances of the same WFS may exist and be executed
concurrently. The wr has only one mission to be commit-
ted by OrgManagers, i.e. all reorganization goals can be
interchangeably executed by OrgManagers. After successful
reorganization, the corresponding reorganization locks are
destroyed.

The wr is composed of goals that can modify the OS
and/or the OE, possibly combined with auxiliary standard
goals. ParaMoise extends the set of state-of-the-art reor-
ganization goals from [13]. On the OS level, reorganization
goals include adding, modifying, or removing roles, missions,
deontic modalities, groups, WFS, and goals; and changing
cardinalities of roles and groups. On the OE level, reorga-
nization goals permit to agents to join or leave the OE, to
adopt or leave a role, to swap a role, to commit to or leave a
mission, to create or destroy group instances and WFs, and

1

2

3

m0m0

4

m0m0

Figure 6: The reorganization WF example

modify the set of the current deontic modalities. A read lock
is automatically created for each element created by the wr

and it holds until the end of wr.
The wr is capable to represent the reorganization as a

parallel process, as presented on the example originally exe-
cuted sequentially by JaCaMo [13]. Moreover, the JaCaMO
considers the reorganization process as global sequence, in
which the whole OE is stopped, the OS changed and the new
OE started. On the contrary, ParaMoise reorganization re-
quires only to lock the concerned part of organization, and
as such does not impact the functioning of whole OE, which
might not be acceptable in real LSDS.

The example of reorganization WFS wsr is presented in
Figure 6. The reorganization has only one mission m0, which
is obligatory for all OrgManagers. The goals are: g1: agent
a1 leaves mission m1 of WF s1, g2: agent a1 leaves role r1 of
WF s1, g3: agent a2 leaves mission m2 of WF s1, g4: agent
a2 leaves role r2 of WF s1. The lock for wsr is:
ROE = 〈〈∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ar({a1, a2}), am({a1, a2})〉, write〉,
as wsr changes only the mapping of agents to roles and mis-
sions.

4. CLOUD COMPUTING MANAGEMENT
SYSTEM

In this section, the ParaMoise model is used to specify
the organization and reorganization of an exemplary LSDS,
a Cloud Computing (CC) system. The next subsection pro-
vides a description of the considered system while the second
subsection presents its organization modeling using ParaMoise
specifications. Finally, the third subsection uses examples to
demonstrate ParaMoise ability to model the reorganization
in a CC system.

4.1 System Description
Cloud Computing (CC) [14] is one of the major contempo-

rary incarnations of distributed systems, and has its roots in
outsourcing IT services to large and efficient data centers.
CC services are accessible for any user with an access to
the Internet. CC users do not need to invest in infrastruc-
ture and maintenance of an IT system and can dynamically
increase or decrease the utilization of their services. As a
result, CC systems are large scale, complex and dynamic.

The main aim of a CC system is to provide services to its
customers. The price and the performance guarantees of a
service are described in terms of Service Level Agreement
(SLA), which is a part of the contract between a client and
a CC system operator. In the proposed model, a service is
a group responsible for a set of tasks. A task is an atomic
unit of workload processed by the CC system and belongs
to only one service. Services have defined in SLA the re-
quested quality of service, the price of the service and the

1033

potential penalties in case of violation of SLA conditions.
As a result, the goal of a CC system is to fulfill the terms
of SLAs, rather than to maximize the amount of completed
tasks, as in classical Grid systems.

SLA conditions could have multiple objectives: CC sys-
tems should provide services ordered by customers and en-
sure high performance and availability even in a case of fail-
ures of system components (hardware and software). On
the other hand, such systems shall minimize their energy
consumption for environmental and economical reasons [1].

Typical approach for resource sharing in CC is usage of
Virtual Machines (VMs). VM is a container that enables
isolation of running operating system as well as additional
features like VM runtime migration.

Contemporary CC management systems (e.g. OpenNeb-
ula, Nimbus, OpenStack) include only basic autonomic com-
puting capabilities. They use simple mechanisms, e.g. a
threshold-based rules for VMs consolidation1. A notable
state-of-the-art solution is Snooze [3], which is based on self-
organizing hierarchical MAS. As a result, the system can
self-optimize and self-heal. One of the aims of this work is
to complement such approach by providing a model which
can generalize reorganization and functioning of a system to
increase its performance and capabilities.

4.2 Organizational Specification
The following sections describe the CC organization us-

ing ParaMoise Structural, Functional and Deontic Specifi-
cations.

4.2.1 Structural Specification
The default structural specification of a CC system (Fig-

ure 7) is based on the four main roles we identified in the
functioning of an Infrastructure as a Service CC system: Hy-
pervisor, Virtual Machine, Service Auditor, and Resource
Allocator. As these components are software entities from
the CC system, we make an assumption that System roles
are mutually exclusive: agent already playing one System
role cannot play another one, instead a new agent shall be
dynamically instantiated to play this new role. Despite that,
all System roles are compatible with Organization roles. In
this way the number of agents automatically scales with the
size of the CC system, to assure correct functioning of the
CC management system. Moreover, all system roles can
communicate, if they belong to the same group.

Agents playing the Hypervisor role are installed on the
servers and are responsible for VM and hardware manage-
ment. Examples of hypervisors are Xen [15] or KVM [11].
The cardinality of the Hypervisors role is determined by the
system configuration, e.g. the number of servers. However,
hypervisor role cardinality can vary, as the system changes
over time. A hypervisor can directly monitor its server, e.g.
check its utilization, power consumption and temperature.

Agents playing the VM role are hosted by hypervisors
that have authority on them. They are responsible for pro-
cessing the tasks in the cloud system. The number of VMs
is not bounded, but it is constrained by the hosting system
capabilities, as VMs reserve resources of hypervisors.

Agents playing the Service Auditor role are specialized in
monitoring the performance of services. The auditors can

1Aggregation of VMs on a smaller group of hypervisors to
turn off the rest of hypervisors and reduce CC system energy
consumption in this way.

Hypervisor VM Allocator Auditor

soc

Org System

Database
Web-server

Scheduler
Load Balancer

Web
Service

AuditorsAllocatorsHypervisors VMs

HPC

HPC
Service

AuditorsAllocatorsHypervisors VMs

Underutilized Overutilized

0…* 0…*

Consolidation

Figure 7: Structural specification of a simple CC
system

be a specialized and separated group of VM or they can
be hosted externally. In any case, they must provide high
availability of the audit, which is the main reason for their
separation.

Finally, each agent who plays the Resource Allocators role
is specialized in allocating tasks to VMs. The resource allo-
cators should have dedicated resources, as their high avail-
ability is crucial for the whole system.

There are additional roles inheriting from VM, that corre-
spond to VM specialization: High Performance Computing
(HPC) server, Database server, and Web-server. Similarly,
the roles inherited from Resource Allocator are Load Bal-
ancer (specialized in balancing the large amount of small
requests for web servers or databases) and Scheduler (spe-
cialized in optimizing the execution of HPC tasks). Two
service groups are defined, one for HPC and one for Web
Service. These service groups are composed of subgroups
which include the roles specific for each service . The de-
fault composition rule in this example is 1...∗. Additionally,
two sub-groups of hypervisors are defined: Overutilized and
Underutilized. Hypervisors in these groups can communi-
cate via the Consolidation group, to aggregate VMs.

This example is a simplification of a real CC scenario in
which additional service types with specific requirements
of group members, complex inheritance trees for all roles,
and additional groups may be needed. Nevertheless, this
example is sufficient to present the expressiveness of the
ParaMoise organizational model for a CC system.

4.2.2 Functional Specification
The Functional Specification of a CC management system

is complex even for a simple system. Due to space limita-
tions, one representative example of WFS is presented.

Small HPC Job is shown in Figure 8. It uses other WFSs
as some of its primitive goals and includes multiple missions
and precedence relations. g1 is the job acceptance goal, in-
cluding selection of the sufficient number of VM for a given
deadline. g2 is the preparation of VMs and g3 is the prepa-
ration of the audit. Goals g4 − g9 are task execution goals,
which are themselves WFSs that concern the specific HPC
application. In this case there are 3 data preprocessing goals

1034

1

2 3

4 5 6

7 8 9

10 11

m1

m2 m3

m4 m5 m6

m2 m3

m9m8m7

Figure 8: Small HPC Job WFS

g4 − g6 and three Monte Carlo simulation goals g7 − g9. Fi-
nally, the HPC job is finished by two goals: g10 that decom-
mission used VMs and g11 that finishes the audit and creates
its result. The goals g7 and g8 are redundant: completion
of any of them is sufficient to complete the WFS.

4.2.3 Deontic Specification
As defined inMoise+ , the deontic specification is formed

as a set of obligations (obl) and permissions (per) modali-
ties [6]. In the Small HPC Job example it can be defined as:
obl(Allocator,m1, Now), obl(Hypervisor,m2, Now),
obl(Auditor,m3, Now), and for i ∈ [4; 9], obl(HPC,mi,Now).

4.3 CC System Reorganization
A reorganization in a CC system may be caused by exoge-

nous or endogenous triggers. An exogenous trigger example
may be the creation of a new service group specification or
service group instance. An endogenous trigger example may
be the detection of thermal or utilization imbalances by hy-
pervisors. Two sample reorganizations FS are presented in
this section. In both cases, there is only one mission m0,
which is the obligation of OrgManager role.

4.3.1 Creation of a New Service Group Instance
The Creation of a New Service Group Instance reorgani-

zation WFS (see Figure 9) is an example of an exogenously
triggered reorganization on the OE level. The name of the
new service is My Service. The following goals appear in
the WFS: g1: Create My Service group instance, g2: Create
subgroups instances of the new My Service group instance,
g3: Assign Auditors, g4: Assign VMs and assign the Hyper-
visors hosting the assigned VMs to the Service Hypervisor
subgroup (This primitive goal is a WFS), g5: Start exe-
cution – create the corresponding norms in O, g6: Assign
Allocators, g7: Start audit – create the corresponding norm,
g8: Start allocation – create the corresponding norm. Each
primitive goal can be repeated in case of failure up to 5
times, except the more complex g4 that can be repeated up
to 3 times. The repetitions limits are arbitrary and are set
to assure responsiveness of the system on a level acceptable
for a service user.

The locks created for this operation are read lock con-
cerning the created My Service group specification and its
subgroups specifications (OS level) and a write lock that

1

2

3 4 6

7

5

8

m0

m0

m0 m0 m0

m0

m0

m0

Figure 9: Creation of New Service Group Instance
Reorganization WFS

1 2

3 4 65

m0 m0

m0 m0 m0m0

Figure 10: Thermal Emergency Reorganization
WFS

includes the ar function for the subset of agents that will
adopt the roles of the System elements: Allocator, VM, Hy-
pervisor, Auditor (OE level).

This simple example illustrates the superior expressive-
ness of WFS: even for such simple case, a tree structure can-
not capture the precedences in the least constraining way,
presented in Figure 9. Given the time needed to perform
such an operation in a real CC system, which could be es-
timated as at least several seconds in case there is no ready
VMs, enabling parallel reorganization is critical.

4.3.2 Thermal Emergency
Thermal Emergency reorganization WFS (Figure 10) is an

example of endogenously triggered reorganization on both
OS and OE levels. The endogenous trigger is a detection
of an abnormal thermal phenomena in a system. The WFS
is composed of the following primitive goals that are WFS
themselves. g1: Identify affected hypervisors, g2: Create the
group Thermal Emergency for hypervisors and sub-roles of
Hypervisor: Affected and Unaffected. g3: Hypervisors join
Thermal Emergency group and adopt corresponding roles,
g4: Notify VMs, g5: Notify Auditors, g6: Notify Allocators.
Each of the primitive goals can be repeated only once, to
assure a fast reaction of the system. The notify goals inform
notified roles about the emergency. This major reorganiza-
tion requires wide scope of locks: a read lock includes the
roles of Hypervisor, VM, Auditor, and Allocator. The write
lock include the Hypervisor role, function ar for agents play-
ing the Hypervisor role, and all created entities.

5. DISCUSSION
The presented ParaMoise can be implemented using the

concept of artifact, similarly to ORA4MAS [5] which is an

1035

artifact-based refinement of Moise+. The implementation
details of artifact can enhance the parallel execution. For
example, if all elements of OE are represented as artifacts,
they can be replicated for a parallel access and reliability.
A following synchronization mechanism of replica shall be
lightweight, under the assumption that in the properly de-
signed system typical reorganization concerns only OE ele-
ments excluding OS. In such cases reorganizations have lim-
ited scope and concerns only part of the OE so the corre-
sponding locks and changes are limited. As a result, multiple
reorganizations can be concurrently executed in a LSDS.

6. CONCLUSIONS
This article proposes ParaMoise as a variant of theMoise+

organization and reorganization model which uses Workflow
Specification and Workflow together with corresponding sets
of execution rules to form a novel Functional Specification.
The workflow-based FS creates the possibility of parallel ex-
ecution of arbitrary acyclic goals structures. To enhance its
capabilities, the mechanisms of alternatives (among prece-
dences incoming to a goal or outgoing from it) and goals rep-
etitions are adopted. In addition, nested workflows are made
possible using goals representing another workflow. Thanks
to goal and precedence relations labeling, the progress of a
workflow can be easily tracked.

The workflow is used also by a novel reorganization model,
capable to change any aspect (Structural, Functional, De-
ontic) of a MAS at runtime. The reorganization is scalable,
fault tolerant and strongly parallel: it can be executed by
multiple agents, and multiple reorganizations can occur at
the same time thanks to the proposed lock mechanism. The
reorganization is started by a trigger that can be exogenous
or endogenous. There is no exact definition of the creation
of a reorganization plan: it can be created at runtime by
agents or it can be predefined. As a result, agents can au-
tonomously decide what and how to reorganize.

The future work directions include usage of the ParaMoise
model to fully describe a real CC management system, im-
plementation of the proposed model, the design of effective
and efficient model distribution strategies, and the develop-
ment of reorganization design and selection mechanisms for
ParaMoise.

7. ACKNOWLEDGEMENTS
M. Guzek acknowledges the support of the National Re-

search Fund of Luxembourg (FNR) and Tri-ICT, with the
AFR contract no. 1315254. This work was completed with
the support of the FNR GreenIT project (C09/IS/05).

8. REFERENCES
[1] D. J. Brown and C. Reams. Toward energy-efficient

computing. Queue, 8(2):30:30–30:43, Feb. 2010.

[2] V. Dignum. A model for organizational interaction:
based on agents, founded in logic. PhD thesis,
Proefschrift Universiteit Utrecht, 2003.

[3] E. Feller, L. Rilling, and C. Morin. Snooze: A scalable
and autonomic virtual machine management
framework for private clouds. In Cluster, Cloud and
Grid Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on, pages 482 –489, may
2012.

[4] M. Ghijsen, W. Jansweijer, and B. Wielinga. Towards
a framework for agent coordination and
reorganization, agentcore. In Proceedings of the 2007
international conference on Coordination,
organizations, institutions, and norms in agent
systems III, COIN’07, pages 1–14, Berlin, Heidelberg,
2008. Springer-Verlag.

[5] J. Hübner, O. Boissier, R. Kitio, and A. Ricci.
Instrumenting multi-agent organisations with
organisational artifacts and agents. Autonomous
Agents and Multi-Agent Systems, 20:369–400, 2010.

[6] J. Hübner, J. Sichman, and O. Boissier. A model for
the structural, functional, and deontic specification of
organizations in multiagent systems. In G. Bittencourt
and G. Ramalho, editors, Advances in Artificial
Intelligence, volume 2507 of Lecture Notes in
Computer Science, pages 439–448. Springer Berlin /
Heidelberg, 2002.

[7] J. Hübner, J. Sichman, and O. Boissier. Using the
Moise+ model for a cooperative framework of mas
reorganisation. In A. Bazzan and S. Labidi, editors,
Advances in Artificial Intelligence, SBIA 2004, volume
3171 of Lecture Notes in Computer Science, pages
481–517. Springer Berlin / Heidelberg, 2004.

[8] J. F. Hübner, J. S. Sichman, and O. Boissier.
Developing organised multi-agent systems using the
Moise+ model: Programming issues at the system and
agent levels. International Journal of Agent-Oriented
Software Engineering, 1(3/4):370–395, 2007.

[9] S. Hwang and C. Kesselman. Grid workflow: a flexible
failure handling framework for the grid. In High
Performance Distributed Computing, 2003.
Proceedings. 12th IEEE International Symposium on,
pages 126 – 137, june 2003.

[10] R. Kota, N. Gibbins, and N. R. Jennings.
Decentralised structural adaptation in agent
organisations. In AAMAS-OAMAS, pages 54–71, 2008.

[11] KVM [online]. http://www.linux-kvm.org.

[12] V. Lesser, K. Decker, T. Wagner, N. Carver,
A. Garvey, B. Horling, D. Neiman, R. Podorozhny,
M. N. Prasad, A. Raja, R. Vincent, P. Xuan, and
X. Q. Zhang. Evolution of the gpgp/tæms
domain-independent coordination framework.
Autonomous Agents and Multi-Agent Systems,
9:87–143, 2004.

[13] A. Sorici, G. Picard, O. Boissier, A. Santi, and J. F.
Hübner. Multi-Agent Oriented Reorganisation within
the JaCaMo infrastructure. In Proceedings of The
Third International Workshop on Iinfraestructures
and tools for multiagent systems: ITMAS 2012, pages
135–148, Valencia, Espagne, 2012.

[14] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and
M. Lindner. A break in the clouds: towards a cloud
definition. SIGCOMM Comput. Commun. Rev.,
39(1):50–55, Dec. 2008.

[15] Xen [online]. http://xen.org.

[16] W. Zheng-guang and L. Xiao-hui. A graph based
simulation of reorganization in multi-agent systems. In
Intelligent Agent Technology, 2006. IAT ’06.
IEEE/WIC/ACM International Conference on, pages
129 –132, dec. 2006.

1036

