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ABSTRACT
We present Object Focused Q-learning (OF-Q), a novel re-
inforcement learning algorithm that can offer exponential
speed-ups over classic Q-learning on domains composed of
independent objects. An OF-Q agent treats the state space
as a collection of objects organized into different object classes.
Our key contribution is a control policy that uses non-optimal
Q-functions to estimate the risk of ignoring parts of the state
space. We compare our algorithm to traditional Q-learning
and previous arbitration algorithms in two domains, includ-
ing a version of Space Invaders.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

Keywords
Reinforcement learning, task decomposition, state abstrac-
tion, modular RL.

1. INTRODUCTION
In our research, we aim to develop multi-purpose agents

that can learn to perform a variety of real world tasks.
One approach to this problem is to use reinforcement learn-
ing (RL); however, because of the curse of dimensionality,
the time required for convergence in high-dimensional state
spaces can make the use of RL impractical. There is no
easy solution for this problem, yet humans are able to learn
and perform new skills under the same circumstances by
leveraging the fact that the dynamics of the world are not
arbitrary.

Adult humans are consciously aware of only one stimu-
lus out of each 3 hundred thousand received [22], and they
can only hold a maximum of 3 to 5 meaningful items or
chunks [1] in their short-term memory. This suggests that
humans deal with high-dimensionality simply by paying at-
tention to a very small number of features at once, a capabil-
ity know as selective atteintion. Thus, the challenge to deal
with complex domains is to decide which features to pay
attention to, and shifting the focus of attention as needed.

With this inspiration, we have developed Object Focused
Q-learning (OF-Q), a novel RL algorithm that efficiently

solves a large class of high-dimensional real-world domains.
Our algorithm assumes that the world is composed of a col-
lection of independent objects that are organized into object
classes defined by common behavior. We embrace the ap-
proach of paying attention to a small number of objects at
any moment, so instead of a high-dimensional policy, we si-
multaneously learn a collection of low-dimensional policies
along with when to apply each one, i.e., where to focus at
each moment.

Our algorithm is appropriate for many real-world scenar-
ios, offers exponential speed-ups over traditional RL
on domains composed of independent objects and is not con-
strained to a fixed-length feature vector. The setup of our
algorithm includes aspects of both OO-MDPs [3] and modu-
lar reinforcement learning [13, 16]; however, we extend that
body of work with the key contribution of learning the
Q-values of non-optimal policies to measure the con-
sequences of ignoring parts of the state space, and
incorporating that knowledge in the control policy.

In the next section, we position our work among related
approaches. We then briefly introduce our notation and in
Section 4 explain OF-Q in detail. In Section 5 we highlight
the differences between our arbitration scheme and previ-
ously proposed methods and in Section 6 we discuss the
properties of our algorithm. In Section 7 we describe our
test domains and experimental results, focusing on domains
in which rewards obtained by interacting with different ob-
jects must be balanced with avoiding certain risks (as in the
video game Space Invaders, depicted in Fig. 2(b)). Finally,
we discuss our findings and present our conclusions.

2. RELATED WORK
The idea of using reinforcement learning on varying-length

representations based on meaningful entities such as ob-
jects comes from the field of relational reinforcement learn-
ing [4, 19]. Typically, a human designer creates detailed
task-specific representations of the state space in the form
of high-level facts and relations that describe everything rel-
evant for the domain. These approaches offer great flexi-
bility, but encoding all this domain knowledge for complex
environments is impractical and unsuitable for autonomous
agents that cannot rely on an engineer to provide them
with a tailored representation for any new task they may
face. Object-oriented MDPs (OO-MDPs) [3] constitute a
related but more practical approach that is closer to our
own. Like OF-Q, OO-MDP solvers see the state space as
a combination of objects of specific classes; however, OO-
MDP solvers also need a designer to define a set of domain-
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specific relations that define how different objects interact
with each other. While our approach is less expressive than
OO-MDPs, it does not require specific domain knowledge.
Additionally, OO-MDPs are a model-based approach while
OF-Q is model-free.

RMDP [7] solvers make assumptions similar to ours, but
require a full dynamic Bayesian network. Fern proposes a
relational policy iteration algorithm [5], but it relies on a
resettable simulator to perform Monte-Carlo rollouts and
also needs either an initial policy that performs well or a
good cost heuristic of the domain. Our approach does not
have any of these requirements and relies solely on on-line
exploration of the domain.

In OF-Q, each object produces its own reward signal and
the algorithm learns an independent Q-function and policy
for each object class. This makes our algorithm similar to
modular reinforcement learning, even though we have differ-
ent goals than modular RL. Russell & Zimdars [13] take into
account the whole state space for the policy of each mod-
ule, so they can obtain global optimality, at the expense of
not addressing the dimensionality problems that we tackle.
Sprague & York [16] use different abstractions of the state
space for the different module policies, but because they
use the SARSA algorithm to avoid the so-called illusion of
control, they can no longer assure local convergence for the
policy of each individual module. In OF-Q, as we explain in
Section 4, we take a different approach to avoid this prob-
lem: for each object class, we learn the Q-values for optimal
and non-optimal policies and use that information for the
global control policy. Because we use Q-learning to learn
class-specific policies, we can assure their convergence. In
Section 7.3, we show that our control policy performs better
than the basic command arbitration of modular RL algo-
rithms.

Many other methods leverage different models of the world
that are not based on objects. Some of these approaches rely
on a hierarchical domain-specific structure that has to be
specified by a system designer [2] or derived from heuristics
that apply only to restricted classes of domains [8, 15, 17].
An alternative to hierarchies are local models [18], but these
models require histories and tests of interest, a very domain
specific knowledge that must also be specified by a system
designer.

Other works have a set of candidate representations out
of which one is chosen for a specific task [12, 14], but this is
impractical in high-dimensional domains if there is no pre-
vious knowledge about which features are useful together.
In addition, these approaches use a single representation for
the whole state space instead of shifting the attention focus
dynamically as our algorithm does. U-tree [9] can find its
own representations, but it requires too many samples to
scale well in realistic domains. There are also promising al-
gorithms based on intrinsically motivated learning [20], but
so far these are restricted to domains where the agent can
control all the variables of the state space.

3. NOTATION
A Markov decision process (MDP) is a tuple

M = (S,A, P,R, γ)

with S = F1 × · · · × Fn a finite state space with n fea-
tures, A a finite set of available actions, P = Pr (s′|s, a) the
probability of transitioning to state s′ when taking action a

in state s, R = r(s, a) the immediate reward when taking
action a in state s, and 0 ≤ γ < 1 the discount factor.

A policy π : S → A defines which action an agent takes in
a particular state s.

V π(s) = r(s, π(s)) + γ
∑
s′∈S

Pr(s′|s, π(s))V π(s′)

is the state-value of s when following policy π, i.e., the ex-
pected sum of discounted rewards that the agent obtains
when following policy π from state s.

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

Pr(s′|s, a)Qπ(s′, π(s′))

is the discounted reward received when choosing action a
in state s and then following policy π. π∗ is the optimal
policy maximizing the value of each state. V ∗(s) = V π

∗
(s)

and Q∗(s, a) = Qπ
∗
(s, a) are then the optimal state value

and Q-values. Note that the state-values and Q-values are
always defined with respect to a given policy that is not
necessarily optimal.

4. OBJECT FOCUSED Q-LEARNING
OF-Q is designed to solve episodic MDPs with the follow-

ing properties:

• The state space S is defined by a variable number of
independent objects. These objects are organized into
classes of objects that behave alike.

• The agent is seen as an object of a specific class, con-
strained to be instantiated exactly once in each state.
Other classes can have none to many instances in any
particular state.

• Each object provides its own reward signal and the
global reward is the sum of all object rewards.

• Reward from objects can be positive or negative1. The
objective is to maximize the discounted sum of reward,
but we see negative rewards as a punishments that
should be avoided, e.g., being eaten by a ghost in a
game of Pacman or shot by a bullet in Space Invaders.
This construction can be seen as modeling safety con-
straints in the policy of the agent.

These are reasonable assumptions in problems that au-
tonomous agents face, e.g., a robot that must transport
items between two locations while recharging its batteries
when needed, keeping its physical integrity, and not harm-
ing humans in its surroundings.

For our experiments, we have chosen two domains in the
mold of classic videogames, as we detail in Sec. 7.1. In these
domains, an object representation can be easily constructed
from the screen state using off-the-shelf vision algorithms.
Also, because objects typically provide rewards when they
come in contact with the agent, it is also possible to auto-
matically learn object rewards by determining which object
is responsible for a change in score.
1This convention is not necessary for the algorithm. We
could have only positive rewards and interpret low values as
either punishments or just poor rewards; however, to make
the explanation of the algorithm more straightforward we
will keep the convention of considering negative rewards as
punishments to avoid.
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4.1 Object Focused MDPs
We formalize an OF MDP:

MOF = (S,A, {Pc}c∈C , {Rc}c∈C , γ) ,

where C is the set of object classes in the domain. A
state s ∈ S is a variable-length collection of objects s =
{oa, o1, . . . , ok}, k ≥ 1 that always includes the agent object
oa. Each object o can appear and disappear at any time and
has 3 properties:

• Object class identifier o.class ∈ C.

• Object identifier o.id, to track the state transitions of
each object between time-steps.

• Object state o.state = {f1, · · · , fn}, composed of a
class-specific number of features.

There is a separate transition model Pc and reward model
Rc for each object class c. Each of these models takes into
account only the state of the agent object oa and the state
of a single object of the class c.

Our model differs greatly from OO-MDPs, despite work-
ing with similar concepts. In OO-MDPs, besides objects
and classes, the designer must provide the learning algo-
rithm with a series of domain-specific relations, which are
Boolean functions over the combined features of two object
classes that represent significant events in the environment,
and effect types, which define how the features of a specific
object can be modified, e.g., increment feature by one, mul-
tiply feature by two or set feature to 0. Furthermore, there
are several restrictions on these effects, for example, for each
action and feature only effects of one specific type can take
place. OF-Q does not require this additional information.

4.2 Algorithm overview

4.2.1 Q-value estimation
Q-learning is an off-policy learning algorithm, meaning

that Q-values for a given policy can be learned while follow-
ing a different policy. This allows our algorithm to follow
any control policy and still use each object o present in the
state to update the Q-values of its class o.class. For each
object class c ∈ C, our algorithm learns Q∗c , the Q-function
for the optimal policy π∗, and QRc , the Q-function for the
random policy πR. These Q-functions take as parameters
the agent state oa.state, the state of a single object o of
class c o.state and an action a. For clarity, we will use so
to refer the tuple (oa.state, o.state) and will omit the
class indicator c from Q-function notation when it can be
deduced from context.

With a learning rate α, if the agent takes action a when
an object o is in state so and observes reward r and next
state s′o, the Q-value estimate for the optimal policy of class
o.class is updated with the standard Q-learning update

Q̂∗(so, a) = (1− α) Q̂∗(so, a) + α

(
r + γmax

a′∈A
Q̂∗(s′o, a

′)

)
,

(1)
where the hat denotes that this is an estimate of the true
Q∗.

Algorithm 1 Object Focused Q-learning algorithm.

for c ∈ C do
Initialize Q̂∗c
Initialize Q̂Rc
Initialize threshold τc

end for
T ← {τc}c∈C
Q̂∗ ← {Q̂∗c}c∈C
Q̂R ← {Q̂Rc }c∈C
loop

for c ∈ C do
Q̂∗control ← Q̂∗

Q̂Rcontrol ← Q̂R

candidates←GetCandidates(T, c)
stats← []
for T ′ ∈ candidates do

candidate reward← 0
for i← 1 to n evaluations do

episode reward← 0
Observe initial episode state s
repeat

A← GetSafeActions(s, Q̂Rcontrol, T
′)

a← ε-greedy(s, Q̂∗control,A)
Take action a
Observe new state s and reward r
Update Q̂∗, Q̂R

Update episode reward
until End of episode
candidate reward+ = episode reward

end for
stats[T ′]← candidate reward

end for
τc ← UpdateThresholds(stats, candidates)

end for
end loop

Using the same sample, the Q-value estimate for the ran-
dom policy of class o.class is updated with

Q̂R(so, a) = (1− α) Q̂R(so, a) + α

(
r + γ

∑
a′∈A Q̂

R(s′o, a
′)

|A|

)
.

(2)

4.2.2 Control policy
The control policy that we use is simple. We first decide

A, the set of actions that are safe to take,

A = {a ∈ A|∀o ∈ s, Q̂R (o.state, a) > τo.class}, (3)

where τo.class is a per-class dynamic threshold obtained
as described in Sec. 4.3. The set of all thresholds is T =
{τc}c∈C . The control policy then picks the action a ∈ A
(a ∈ A if A = ∅) that returns the highest Q-value over all
objects,

π(s)OF = arg max
a∈A

max
o∈s

Q̂∗ (o.state, a) .

During learning, we use an ε-greedy version of this control
policy.

4.3 Risk threshold and complete algorithm
The structure of our algorithm is shown in Algorithm 1.

We assume that the number of object classes is known in
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advance, but the algorithm can be extended to handle new
classes as they appear. The outer loop determines the safety
threshold set candidates and runs n_evaluations episodes
with each candidate to compare their performance to that
of he current set of thresholds T . At each time-step of
each episode, our algorithm makes an update to Q̂∗o.class
and Q̂Ro.class per each object o in the state s using the up-
date rules Eq. 1 and Eq. 2. The policies used for control are
only refreshed when the thresholds are updated, so that the
threshold performance estimation is not affected by chang-
ing Q-values. GetSafeActions is implemented using Eq. 3.
In the next sections, we complete the details about threshold
initialization and threshold updates.

4.3.1 Threshold initialization
To avoid poor actions that result in low rewards, we ini-

tialize the threshold for each class as a fraction of Qmin, the
worst possible Q-value in the domain2. For a domain with
a minimum reward rmin < 0 and discount factor γ, Qmin =
rmin
(1−γ) . In our test domains, negative rewards are always

generated by terminal states, so we assume Qmin = rmin.

4.3.2 Threshold updating
OF-Q thresholds are optimized with a hill climbing al-

gorithm. Starting with a threshold set T , the algorithm
iteratively picks each of the available classes c ∈ C and
evaluates two neighbors of T in which the threshold τc is
slightly increased or decreased. These three candidates are
the output of the function GetCandidates in Algorithm 1.
We have empirically found that a variation factor of 10%
from the current threshold works well across different do-
mains. The algorithm runs n_evaluations episodes with
the current threshold set T and each of the two neighbors to
compute the expected reward with each candidate. Then,
the threshold τc is updated with the value that performs the
best.

5. BENEFITS OF THE ARBITRATION
Our main contribution is a control policy that estimates

the risk of ignoring dimensions of the state space using Q-
values of non-optimal policies. In this section we explain the
benefits of this arbitration.

The concept of modules in modular RL literature [16] can
be compared to object classes that are always instantiated
once and only once in each state; modules never share a
policy. This is due, in part, to modular RL aiming to solve
a different type of problem than our work; however, modular
RL arbitration could be adapted to OF-Q, so we use it as a
baseline.

Previous modular RL approaches use a simple arbitration
directly derived from the Q-values of the optimal policy of
each module. The two usual options are winner-takes-all
and greatest-mass. In winner-takes-all, the module that has
the highest Q-value for some action in the current state de-
cides the next action to take. In greatest-mass, the control
policy chooses the action that has the highest sum of Q-
values across all modules.

Winner-takes-all is equivalent to our OF-Q control policy
with all actions being safe, A = A. The problem with this

2In the case where only positive rewards are considered, the
initial value for the thresholds would be a value in-between
Qmin and Qmax

approach is that it may take an action that is very positive
for one object but fatal for the overall reward. In the Space
Invaders domain, this control policy would be completely
blind to the bombs that the enemies drop, because there
will always be an enemy to kill that offers a positive Q-value,
while bomb Q-values are always negative. Greatest-mass is

(a) With these two sources of reward, greatest-
mass would choose the lower state, expecting
a reward of 10. The optimal action is going to
the upper state.

(b) For the pessimal Q-values, both bombs are
just as dangerous, because they both can pos-
sibly hit the ship. Random policy Q-values will
identify the closest bomb as a bigger threat.

Figure 1: Arbitration problems.

problematic due to the illusion of control, represented in
Fig. 1(a). It does not make sense to sum Q-values from dif-
ferent policies, because Q-values from different modules are
defined with respect to different policies, and in subsequent
steps we will not be able to follow several policies at once.

In our algorithm, the control policy chooses the action
that is acceptable for all the objects in the state and has the
highest Q-value for one particular object. To estimate how
inconvenient a certain action is with respect to each object,
we learn the random policy Q-function QRc for each object
class c. QRc is a measure of how dangerous it is to ignore a
certain object. As an agent iterates on the risk thresholds,
it learns when the risk is too high and a given object should
not be ignored.

It would be impossible to measure risk if we were learning
only the optimal policy Q-values Q∗. The optimal policy Q-
values would not reflect any risk until the risk could not be
avoided, because the optimal policy can often evade negative
reward at the last moment; however, there are many objects
in the state space and at that last moment a different object
in the state may introduce a constraint that prevents the
agent from taking the evasive action. Learning Q-values for
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the random policy allows us to establish adequate safety
margins.

Another option we considered was to measure risk through
the pessimal policy, i.e., the policy that obtains the low-
est possible sum of discounted rewards. This policy can be
learned with the update rule

Q̂P (s, a) = (1− α) Q̂P (s, a) + α

(
r + γ min

a′∈A
Q̂P (s′, a′)

)
.

The pessimal policy offers an upper bound on the risk that
an object may pose, which can be useful in certain scenar-
ios; however, this measure of risk is not appropriate for our
algorithm. According to the pessimal policy the two bombs
depicted in Fig. 1(b) are just as dangerous because both
could possibly hit the agent; however, if we approximate the
behavior of the agent while ignoring that bomb as a random
walk, it is clear that the bomb to the left poses a higher
risk. The Q-values of the random policy correctly convey
this information.

In our algorithm, as well as in winner-takes-all, the il-
lusion of control is not a problem. In Space Invaders, for
example, the agent will target the enemy that it can kill
fastest while staying safe, i.e., not getting too close to any
bomb and not letting any enemy get too close to the bot-
tom of the screen. If the enemy that can be killed the fastest
determines the next action, in the next time-step the same
enemy will be the one that can be killed the fastest, and
therefore the agent will keep focusing on that enemy until it
is destroyed.

6. OF-Q PROPERTIES

6.1 Class-specific policies

Theorem 1. Let (S,A, {Pc}c∈C , {Rc}c∈C , γ) be an OF

MDP. ∀c ∈ C, OF-Q Q-function estimates Q̂∗c Q̂
R
c converge

to the true Q-functions Q∗c Q
R
c .

Proof. Q-learning converges with probability 1 under
the condition of bounded rewards and using, for each up-
date t, a step size αt so that

∑
t αt = ∞,

∑
t α

2
t < ∞ [21].

Given our independence assumption and that Q-learning is
an off-policy algorithm, Q-values can be learned using any
exploration policy. If we see the domain as a different MDP
executed in parallel for each object class c, the same conver-
gence guarantee applies. Several objects of the same class
simultaneously present can be seen as independent episodes
of the same MDP. The convergence proof applies too for Q-
values of the random policies by changing the maximization
by an average over actions.

Theorem 2. Let (S,A, {Pc}c∈C , {Rc}c∈C , γ) be an OF
MDP and (S,A, P,R, γ) the equivalent traditional MDP de-
scribing the same domain with a single transition and reward
function P and R. All OF MDP class-specific Q-functions
will converge exponentially faster, in samples and computa-
tion, with respect to the number of objects in the domain,
than the MDP Q-function.

Proof. Q-learning has a sample complexity O(n logn)
with respect to the number of states in order to obtain a pol-
icy arbitrarily close to the optimal one with high probabil-
ity [10]. Without loss of generality, assuming a domain with
m objects of different classes, each with k possible states, the

sample complexity of Q-learning on the global MDP would
be O(km log km), while the sample complexity of each OF-Q
class-specific policy would be only O(k log k).

Regarding computational complexity, assuming the same
cost for each Q-update (even though updates on the whole
MDP will be more expensive), OF-Q would take m times
longer per sample, as it has to update m different policies for
each sample. This makes OF-Q computational complexity
linear in m, while Q-learning computational complexity is
exponential in m, because the sample complexity is already
exponential and all samples have at least a unit cost.

Note that the speed-ups come from considering each ob-
ject independently, and not from organizing the objects in
classes that share a policy. The organization of objects in
classes provides and additional speed-up: if there are l ob-
jects of each class on the environment, for example, each
sample will provide l updates to each Q-function and the
sample complexity would be additionally reduced by a fac-
tor of l.

6.2 Risk thresholds
Besides deriving the appropriate class-specific Q-functions,

OF-Q needs to find an appropriate set of class-specific risk
thresholds. As discussed in Section 4.3.2, these thresholds
are determined with a hill climbing algorithm using the ex-
pected reward as the objective function to optimize. The
episodes used for computing the Q-functions are reused for
these optimizations, and therefore, if the sample complex-
ity for learning the Q-functions dominates the sample com-
plexity for learning the thresholds, the total OF-Q sam-
ple and computational complexity (threshold updating costs
are negligible) would be equal to the one for learning Q-
functions. In this case, our algorithm would provide expo-
nential speed-ups over traditional Q-learning. Experimen-
tally we observe that in even moderately sized problems such
as space-invaders, the time needed to learn the Q-functions
dominates over the time needed to converge on thresholds.A
definite answer to this question would require a complexity
analysis of hill climbing, which is outside of the scope of this
work.

Given the stochastic nature of our objective function, we
can use a hill climbing variant such as PALO [6] to ensure
the convergence of thresholds to a local optima. To find a
global optima for the set of thresholds, simulated anneal-
ing [11] can be used instead. Unfortunately, PALO and sim-
ulated annealing are known to be slower than traditional hill
climbing, which has also proved to work well in our exper-
imental domains. Due to these factors, we have chosen a
simple hill climbing algorithm for the first implementation
of OF-Q.

7. EXPERIMENTAL SETUP

7.1 Domains
We tested OF-Q in two different domains. The first one,

which we call Normandy, is a 10x20 gridworld where an
agent starts in a random cell in the bottom row and must
collect two prizes randomly placed in the top row. At each
time-step, the agent can stay in place or move a cell up,
down, left or right. Additionally, there are cannons to the
left of rows 3 and 4 which fire bombs that move one cell to
the right every time-step. Each cannon fires with a prob-

1065



(a) Normandy. The agent starts in a random cell in the
bottom row and must collect the two rewards randomly
placed at the top, avoiding the cannon fire. In our sim-
ulations the grid size is 10x20 with cannons on the third
and fourth row.

(b) Space Invaders. In such a high-dimensional state
space, traditional reinforcement learning fails to con-
verge in any reasonable amount of time.

Figure 2: Domains.

ability 0.50 when there is no bomb in its row. The agent
receives a reward r = 100 for collecting each prize and a
negative reward r = −100 if it collides with a bomb, and
the episodes end when all the rewards are collected or when
a bomb hits the agent. Fig. 2(a) shows a representation of
a reduced version of this domain.

Our second domain is a full game of Space Invaders, shown
in Fig. 2(b). The agent controls the ship which, at each time-
step, may stay in place or move left or right. At the same
time, the agent may fire or not, so there are six possible
actions. Firing will only work if there is no bullet on the
screen at the moment of taking the action. The agent object
is thus defined by the x position of the ship and the x and
y position of the bullet. The world has two object classes,
namely, enemies and bombs, each one defined by their x
and y positions and, in the case of enemies, direction of
movement. Initially there are 12 enemies and each one may
drop a bomb at each time-step with a probability 0.004. The
agent receives a positive reward r = 100 for destroying an
enemy by hitting it with a bullet, and a negative reward
r = −1000 if a bomb hits the ship or an enemy reaches the
bottom of the screen. The game ends when the agent is
hit by a bomb, an enemy reaches the bottom or the agent
destroys all enemies.

7.2 Baselines
We compare our algorithm with traditional Q-learning (no

arbitration), and four other baselines. Two of them are vari-
ants of our algorithm using winner-takes-all or greatest-mass
arbitration. These two variants still see the world as com-
posed of objects of different classes and use Q-learning to
find an optimal policy for each class, but due to the simpler
nature of their arbitration methods, it is not necessary to
learn the random-policy Q-values nor to find a set of risk
thresholds. The other two baselines are variants of the algo-
rithms proposed by Sprague & York [16]. These two variants

(a) Normandy domain.

(b) Space Invaders domain

Figure 3: Performance vs. training episodes, aver-
aged over 10 runs.

are identical to the previous two, but use SARSA instead of
Q-learning update rule to avoid the illusion of control.

All algorithms and domains use a constant learning rate
α = 0.25, discount factor γ = 0.99, and an ε-greedy control
policy with ε = 0.05. For OF-Q, we use 100 evaluation
episodes per threshold candidate and an initial threshold of
0.05 ·Qmin for each class, unless otherwise stated.

7.3 Results
In Fig. 3 we compare the results of our algorithm and base-

lines on the Normandy and the Space Invaders domain. Our
algorithm performs better in both domains, with a larger ad-
vantage in the more complex Space Invaders domain. Note
that the performance of Q-learning on the Space Invaders
domain keeps improving, but at a very slow rate. After
5 million episodes the average discounted reward was still
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(a) Normandy domain.

(b) Space Invaders domain

Figure 4: Performance and threshold for bomb ob-
jects for single runs with different initial thresholds.
The thresholds are expressed as fractions of the min-
imum Q-value of the domain Qmin.

below 250. In the Normandy domain, the upward slope
of Q-learning is more obvious, and in the 5x5 version of
the domain it did converge within the first million training
episodes.

We do not show the results for the SARSA algorithms
on the Normandy domain because the algorithms would not
make progress in days. The algorithm learned quickly how
to avoid the cannon fire but not how to pick the rewards,
and therefore the episodes were extremely long. In Space
Invaders, these algorithms are the worst performers. These

results are not surprising because SARSA is an on-policy
algorithm and does not offer any convergence guarantees in
these settings. If each object class policy was observing the
whole state space, the SARSA policies would converge [13],
but we would not get the scalability that OF-Q offers, since
these come from considering a set of low-dimensional policies
instead of a high-dimensional one.

The performance of greatest-mass varies a lot between
each domain, being a close second best option in the Nor-
mandy domain and the worst option in Space Invaders. We
believe this is due to the illusion of control that we discussed
in Section 5. The Normandy domain is not affected by this
problem, as there are only two sources of positive reward
and, at each time-step, the agent will go towards the reward
that is closest. However, the case for Space Invaders is more
complicated. Initially, there are 12 enemies in the domain,
all of them a source of reward. The agent can only fire one
bullet at a time, meaning that after it fires it cannot fire
again until the bullet hits an enemy or disappears at the top
of the screen. At each time-step, firing is recommended only
by one object, the closest enemy to kill; however, the best
action for all the other enemies is to not fire yet. Because of
the discount factor, the Q-value for the optimal action (fire)
for the closest enemy is greater than each of the Q-values
for the optimal actions of the rest of the enemies (do not
fire yet), but there are more enemy objects whose Q-values
recommend not to fire. This causes the ship to never fire,
because firing at a specific enemy means losing the oppor-
tunity to fire on other enemies in the near future.

We ran our algorithm with different initial thresholds to
test its robustness. We can see in Fig. 4 that the thresholds
for the bombs in both domains converge to the same val-
ues, and so does performance, even though there are some
oscillations at the beginning when Q-values have not yet con-
verged. Starting with a large value of 0.5 ·Qmin seems to be
a bad option because even if the policy derived from the Q-
values is already correct, the Q-values themselves may still
be off by a scaling factor, leading to an ineffective threshold.
Nonetheless, even this particularly bad initial value ends up
converging and performing as well as the others.

8. DISCUSSION
OF-Q works better than previous arbitration algorithms

because it is able to learn which actions are acceptable for
all sources of reward, so that it can subsequently choose to
be greedy safely. Imagine a domain where there is a big
reward with a pit on the way to it, so that trying to get the
reward will actually cause the agent to end the episode with
a large negative reward. The random policy Q-values with
respect to the pit will reflect this possible outcome, even if
it takes a very specific set of actions to reach the pit. The
closer in time-steps that the agent gets to the pit, the more
likely it is that a random policy would lead to the pit and
the more negative the Q-values will be. By learning a risk
threshold, OF-Q will be able to keep a reasonable safety
margin and learn that it is never worth falling into the pit
even if there is a big reward ahead. Winner-takes-all, on the
other hand, would be completely blind to the pit and even
greatest-mass would still fall in the pit if the positive reward
is large enough, even though it will never be reached.

Function approximation can improve RL performance, but
in practice, it is often necessary to manually engineer a set of
domain-specific features for function approximation to per-
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form well. In many cases, such engineering is a non-trivial
task that may essentially solve the abstraction problem for
the agent. Still, we expect that using function approxima-
tion for the class-specific Q-functions can make OF-Q scale
to larger problems in future work. In such work the goal will
be to leverage function approximation while minimizing the
need to hand-engineer domain-specifc features.

One limitation of the current formulation of OF-Q is that
it cannot learn about interactions between two non-agent ob-
jects; however, we believe this is a reasonable trade-off for
the benefit of not requiring a system designer to provide do-
main specific information (e.g., OO-MDPs). Moreover, the
class of problems concerned only with agent-object interac-
tions is quite large, for example, it covers all of the domains
used by Diuk et al. [3] as well as many videogames and real
world tasks; nonetheless, we plan to extend OF-Q in future
work to account for interactions between different non-agent
objects. To do that, we will look at pairs of objects to see if
their behavior can be described more accurately when con-
sidered together. This way, the complexity of the learned
policies will match the real complexity of the domain.

9. CONCLUSIONS
In this paper we introduced Object Focused Q-learning

(OF-Q), a learning algorithm for autonomous agents that
offers exponential speed-ups over traditional RL in domains
where the state space is defined as a collection of indepen-
dent objects. OF-Q requires less domain knowledge than
earlier relational algorithms, being therefore better suited
for use by multipurpose autonomous agents. We proposed
a novel arbitration approach that is based on learning the
Q-functions with respect to non-optimal policies to measure
the risk that ignoring different dimensions of the state space
poses and we explained why this arbitration performs bet-
ter than earlier alternatives. Using two videogame domains,
including a version of Space Invaders, we show that our al-
gorithm indeed performs significantly better than previously
proposed approaches. In future work, we plan to extend our
algorithm to handle more complex domains where different
non-agent objects may interact with each other and to study
the interactions of OF-Q with function approximation.
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