
Distributed Relational Temporal Difference Learning

Qiangfeng Peter Lau♠, Mong Li Lee† and Wynne Hsu§

Department of Computer Science
National University of Singapore

13 Computing Drive, Singapore 117417, Republic of Singapore

{plau♠,leeml†,whsu§}@comp.nus.edu.sg

ABSTRACT

Relational representations have great potential for rapidly
generalizing learned knowledge in large Markov decision pro-
cesses such as multi-agent problems. In this work, we intro-
duce relational temporal difference learning for the distribu-
ted case where the communication links among agents are
dynamic. Thus no critical components of the system should
reside in any one agent. Relational generalization among
agents’ learning is achieved through the use of partially
bound relational features and a message passing scheme. We
further describe how the proposed concepts can be applied
to distributed reinforcement learning methods that use value
functions. Experiments were conducted on soccer and real-
time strategy game domains with dynamic communication.
Results show that our methods improve goal achievement
in online learning with a greatly decreased number of pa-
rameters to learn when compared with existing distributed
learning methods.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, Search;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms

Algorithms, Performance, Experimentation

Keywords

distributed; relational; multi-agent; reinforcement learning

1. INTRODUCTION
Reinforcement learning (RL) for the multi-agent setting

is a challenging task. The state and action space of the
learning problem increases exponentially with the number
of agents. This gives rise to the problem of high model
complexity that usually translates to a large number of pa-
rameters to be learned. In turn, online RL requires more
time for exploration of the environment, jeopardizing overall

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(a)

1

2 N NE

E

SESSW

W

NW

(b)

Figure 1: (a) Example tactical RTS game. (b) Two
white marines and their actions (gray arrows) that
lead to NotAligned being true with respect to the
oncoming gray enemy.

goal achievement as less time is spent on exploiting learned
knowledge.

Relational representations [8, 10, 19, 6] have the poten-
tial to greatly reduce the number of learning parameters for
cooperative multi-agent learning problems. They are also
an intuitive way of encoding background knowledge to a
problem. In particular, relational temporal difference (TD)
learning [3] generalizes propositional state based features
that are defined from relational predicates by combining
them to give a single relational feature (RF). Such features
can be used to model the value function of a policy with less
parameters to learn.

Let us illustrate the generalization capability of RFs. Fig.
1a shows an example from the tactical real-time strategy
(RTS) domain where the goal is to destroy the enemy team
of marines. We use capital letters to denote first order
predicate variables, and small letters to denote bound vari-
ables. Suppose we have a predicate that is true whenever
two marines are not aligned relative to their nearest enemy
as follows:

NotAligned(Sx, Sy , Ax, Ay) := SameNearestEnemy(Sx, Sy)

∧ DistanceIncreased(Sx, Ax, Sy , Ay) (1)

where Sx, Sy are the state variables of any agents x and y
respectively, and Ax, Ay are their action variables, Same-

NearestEnemy indicates that the enemy nearest to the two
marines are the same, whileDistanceIncreased indicates that
the difference of each marines’ distance to their nearest en-
emy increases after taking actions Ax and Ay.

Fig. 1b shows the actions (indicated by the gray arrows)
that will result in NotAligned(s1, s2, a1, a2) being true for
marines 1 and 2. This allows the system to learn to penalize
actions that will result in marine 1 being further unaligned
with marine 2. Such actions are undesirable as marines 1

1077

and 2 will not be able to shoot at their nearest common
enemy at the same time.
To model this knowledge of alignment, traditional RL sys-

tems may employ a linearly approximated action value func-
tion, Q(s,a) ≈

∑
i
wiρi(s,a), where ρi is a propositional

feature. For example, NotAligned propositions defined for
all pairs of agents gives:

ρ1(s,a) = NotAligned(s1, s2, a1, a2),

ρ2(s,a) = NotAligned(s1, s3, a1, a3),

ρ3(s,a) = NotAligned(s2, s3, a2, a3), etc · · · ,

where s = 〈s1, ..., sN 〉 and a = 〈a1, .., aN 〉 denote the states
and actions for N agents respectively. Hence, the system
learns a weight for each pair of agents x, y.
In contrast, if we use a relational approach and make use

of predicate NotAligned as an RF, ̺′, that is based on the
count of valid bindings of agents to NotAligned, the RF is
given by:

̺′(s,a) =
∑

x∈[1,N]

∑

y∈[1,N]

NotAligned(sx, sy, ax, ay) (2)

We need only learn a single weight for ̺′. Consequently,
the experience from pairs of agents will contribute to the
same weight and learning can be generalized to all pairs of
agents x, y. This makes learning efficient, especially when
the concept of alignment is similarly important between any
pair of marines. Further, this form of RFs is flexible as it
allows them to be combined with other kinds of features for
function approximation. RFs also allow easy generalization
of the learned parameters to closely related situations. For
example, the parameter learned for ̺′ can be useful for sit-
uations involving teams of marines of varying sizes such as,
four versus four, or six versus five marines.
To date, the use of relations are mostly limited to central-

ized RL where a designated controller is tasked to compute
and store the learned parameters [10, 7]. Unfortunately, in
a highly dynamic decentralized scenario, there is no such
controller as the communication links among agents change
over time. For example, in the RTS game, marines lose com-
munication when destroyed or when out of range. Thus it is
important that the learning system be distributed such that
critical components do not reside in any one agent.
This paper addresses the challenge of providing relational

generalization in a distributed environment. We propose a
novel distributed approach to relational TD learning where
there are dynamic communication links between agents. Our
approach first obtains RFs from predicates that are local to
each agent. Unlike the global centralized RFs, local RFs
allow an agent based decomposition of the global relational
value function. This scheme enables agents to generalize
their interactions with other agents within themselves, and
greatly decreases the number of parameters to be learned.
Furthermore, there are no critical agents in the learning sys-
tem. Second, message passing between neighboring agents
is used to transfer current knowledge (learned weights) be-
tween agents’ features that share relational semantics. This
allows learning from interactions within a group of agents to
be transferred to other groups whenever agents in separate
groups come into contact with each other.
To the best of our knowledge, this is the first work that

incorporates RFs involving multiple agents for distributed
TD learning. We further describe how the proposed ap-
proach can be applied to value function based RL methods.

Experiments show that the utilizing distributed relational
generalizations improves the learning rates of existing dis-
tributed RL methods [13, 14] and reduces the number of pa-
rameters to learn. These results illustrate the utility of our
approach, especially on domains where we expect agents to
benefit from sharing learned knowledge with relational se-
mantics.

2. PRELIMINARIES
We begin with the problem formulation. Given N number

of agents, a decentralized Markov decision process (DEC-
MDP) [4] is a tuple 〈S,A,P,R〉 where

1. S = S0×S1×...×SN is the joint state space consisting
of state variable s0 ∈ S0 that is observable by all agents
and variables s1 ∈ S1, ..., sN ∈ SN that are local for
each agent. A state is s = 〈s0, s1, ..., sN 〉 ∈ S.

2. A = A1×...×AN is the joint action space with one vari-
able for each agent. A joint action is a = 〈a1, ..., aN 〉 ∈
A.

3. P : S ×A×S 7→ [0, 1] is the global transitional model,
i.e., P(s,a, s′) = Pr(s′|s,a) is the probability of reach-
ing state s′ by taking a in s.

4. R : S×A×S 7→ R is the global reward function, giving
the reward for taking action a in state s and reaching
state s′. R is decomposable into a sum of local rewards
for each agent, i.e., R(s,a, s′) =

∑N

x=1 Rx(s,a, s
′).

The communication structure defined by a state s can be
represented as a coordination graph (CG) where agents are
vertices and edges represent communication links between
agents. Let Γ(sx) be the set of neighbors for an agent x
identifiable through its state sx. Each agent x may commu-
nicate with its neighbors y ∈ Γ(sx) and access their state
and action variables. In general, a CG may consist of dis-
joint sub-graphs. Further, agents within the same sub-graph
may synchronize their action selection by sending messages.

2.1 Distributed Model-Free RL
In model-free RL, the transition model P is neither learned

nor required to find the policy (solution) to the DEC-MDP.
Instead the global policy π : S 7→ A is indirectly expressed
as an action value function that encodes the expected re-
turn of taking an action in the current state while following
π with discount rate γ , i.e., it is the Bellman equation

Qπ(s,a) =
∑

s′∈S

P(s,a, s′)[R(s,a, s′) + γQπ(s′, π(s′))]. (3)

Then, policies can be computed usingQπ, e.g., for the greedy
policy, π(s) = argmax

a
Qπ(s,a).

For distribution in a DEC-MDP, there are a variety of ap-
proaches to express the function Qπ in local parts [5, 17, 9,
11] with different assumptions about coordination. In par-
ticular, agent-based decomposition [13] additively decom-
poses Qπ into one local action value function per agent x,

Qπ(s,a) =

N∑

x=1

Qπ
x(sx,ax), (4)

where sx and ax are the respective projections of the global
s and a on the variables that agent x may access in state s.
Suppose each agent’s local function is a linear function ap-
proximation, Qπ

x(sx,ax) ≈
∑

i
wi,xφi,x(sx,ax). Then, each

1078

agent x performs on-policy TD updates for each weight wi,x

locally with the step size parameter α,

wi,x ← wi,x + α[rx + γQπ
x(s

′
x,a

′
x)−Qπ

x(sx,ax)]φi,x(sx,ax)
(5)

where s′x and a′
x are the respective next state and action, and

rx is the observed decomposed reward for agent x. In gen-
eral, TD updating makes use of incremental data between
two consecutive time points to estimate the value function.

2.2 Coordination Guided RL
The work in [14] enabled background coordination knowl-

edge to be used as a means to guide exploration via a system
called distributed coordination guided RL (CGRL). Such co-
ordination knowledge takes on the form of a set of coordina-
tion constraints (CCs). Each CC when activated, prevents
the system from selecting certain actions in the state. De-
ciding when to activate constraints is part of the learning
process, hence CCs are dynamic. This mechanism was re-
alized through a distributed two-level RL system where the
top level learned a policy to activate a subset of the CCs
while the bottom level learned the actual actions to perform
in the environment subject to the activated CCs.

The top level joint action space, A0, consists of one action
variable for each CC with the domain {activate, deactivate}.
The global greedy top and bottom policies are, π⊤(s) =
argmax

b∈A0
W (s,b) and π⊥(b, s) = argmax

a∈A(b,s) U(s,a),
where W and U are global top and bottom action func-
tions respectively, b ∈ A0 is a top joint action that selects
a subset of CCs to be activated, and A(b, s) is the origi-
nal joint action space constrained by the top action b in
state s. Both action functions were distributed similarly
like in Eq. (4) to give local linearly approximated func-
tions, Wx(sx,bx) ≈

∑
j
wW

j,xφ
W
j,x(sx,bx) and Ux(sx,ax) ≈∑

i
wU

i,xφ
U
i,x(sx,ax). Then, the weights wW

j,x and wU
i,x were

estimated online using TD updating.
CCs are closely related to predicates used for RFs as they

are negated propositions created from binding the predicates
to specific agent variables. For example in Fig. 1b, we can
specify the ¬NotAligned(s1, s2, a1, a2) proposition as a CC
for agents 1 and 2. When this CC is activated, the bottom
level action selection is subjected to the constraint that the
agents may not take any of the actions specified by the gray
arrows in Fig. 1b. If the top level of the system activates
the NotAligned CCs frequently, exploration will be directed
more often towards states where the agents are aligned.

Propositional features (PFs) for the agent based top level
action functions Wx were also created by predicates. For
example, a top level predicate may be defined to learn if it
is better to deactivate the NotAligned constraint to allow a
wounded agent flexibility to hide behind others as follows.
Let Bx,y be the action variable referring to the NotAligned

CC for agent x and agent y. Then Pred(Sx, Sy, Bx,y) :=
[Wounded(Sx) ∨Wounded(Sy)] ∧Deactivated(Bx,y), where
Deactivated is true if the value of Bx,y is deactivated. It is
straightforward to see that in the case of a centralized con-
troller, if Pred is used as an RF like in Eq. (2), as opposed
to N(N−1)/2 weights for PFs, we can reduce the number of
weights to one. This allows learning to activate NotAligned

for a pair of agents to be generalized to any pairs of agents
in the centralized case. Hence there is great potential to im-
prove distributed CGRL if similar relational generalizations
can be devised for the distributed case.

3. DISTRIBUTED RELATIONAL GENER-

ALIZATIONS
In this section, we first present the centralized model-free

relational TD learning. Then we describe how it is distribu-
ted using an approach internal to each agent and an external
approach that requires passing messages.

We adapt the work in [3] for centralized TD learning us-
ing RFs for the action value function. We define agent ar-
ity as the number of unique agents from which the vari-
ables of a predicate come from. For example, the pred-
icate EgPred(Sx, Ax, Sy, Ay) for any two agents x and y
has an agent arity of η(EgPred) = 2. Let ̺ρ represent
an RF based on the predicate ρ. Further let the func-
tion Perm(N,n) return the set of n-permutations from the
set of all N agents where the number of permutations is
|Perm(N,n)| = NPn = N !

(N−n)!
. For a predicate ρ, the con-

struction of an RF for N agents in the centralized case is

̺ρ(s,a) = τρ ·
NPn∑

i=1

ρ(si1 , ..., sin , ai1 , ..., ain) (6)

where n = η(ρ), τρ is a scaling factor for predicate ρ, and
si1 , ..., sin , and ai1 , ..., ain are projections on s and a respec-
tively, ordered by some unique i-th n-permutation of the
agents. Eq. (6) states that predicates may consist of the
state variables and action variables of n ≤ N number of
agents. When the τρ = 1, Eq. (6) describes the RF as the
count of number of true propositions for every valid binding
of variables to the predicate ρ.
Let F be the set of predicates. Then the global relational

action value function, approximated as a linear function, is

Q(s,a) =
∑

ρ∈F

wρ̺ρ(s,a) (7)

and the weights can be updated globally using

wρ ← wρ + α[r+ γQ(s′,a′)−Q(s,a)]̺ρ(s,a) (8)

for a centralized system where r is the global reward.
Next, we describe how partial relational generalization is

achieved for the individual agent’s local action value func-
tions for the distributed case. Without loss of generality, we
take the presence of the action variable ax to also indicate
the presence of the accessible state variables sx.

3.1 Internal Relational Generalization
For distributed RL, each agent x carries the local Qx func-

tion that are approximated using PFs. We observe that
agents may internally generalize the weights between related
PFs involving themselves and other agents. This is achieved
by the partial binding of predicates to give RFs local to each
agent. The result enables the sharing of learned parameters
from an agent x’s interactions with another agent y in a par-
ticular state with x’s interaction with other agents z 6= y.
Consider the NotAligned predicate in Eq. (1). Suppose

we have an RTS game with 4 agents and each agent has
PFs created from predicates that involve themselves. Then
agent 1 will have the pairwise PFs,
{NotAligned(a1, a2),NotAligned(a1, a3),NotAligned(a1, a4)},

and agent 2 has
{NotAligned(a1, a2),NotAligned(a2, a3),NotAligned(a2, a4)},

and likewise for the other agents. A partially bound predi-
cate may be defined based on NotAligned by fixing the first

1079

agent variable such that x = 1, e.g., NotAligned(a1, Ay)
where y is any other agent. Then, the internal NotAligned

RF for marine x is

̺NotAligned,x(ax) =
∑

y∈[1,4]−{x}

NotAligned(ax, ay), (9)

where NotAligned is assumed to be symmetrical, i.e.,
NotAligned(ax, ay) = NotAligned(ay, ax).

This example indicates that agent 1 may generalize its
knowledge of NotAligned from interaction with agent 2 to
the other agents 3 and 4 as these interactions contribute
towards updating the same feature weight. Furthermore, for
N agents, we see that generalizing internally for pairwise
predicates reduces the quadratic in N number of feature
weights to a linear in N number of weights to be learned.

In general, for each predicate ρ, the partially bound, agent
based local RF for agent x is defined as

̺ρ,x(ax) =
τρ

n

n∑

j=1

N−1Pn−1∑

i=1

ρ(ȧx,j,n) (10)

where there are N agents, n = η(ρ), ȧx,j,n = 〈ai1 , ..., aij−1 ,
ax, aij+1 , ..., ain−1〉 is a n-permutation of the values in the
tuple ax, and τρ is a scaling factor which we will assume to
be 1 from here on. The double summations indicate that
the variable ax is inserted at the various positions j of the
predicate ρ with respect to each (n− 1)-permutation drawn
from the other N − 1 agents. That is, while the other n− 1
agents’ action variables may be drawn from the set of all
other N−1 agents, agent x’s participation in the RF is fixed.
Note that the predicate is false for agent action values not
found in ax, i.e., ρ(·) returns false (zero) for agents that are
out of communication range.

With Eq. (10) and a set of predicates F , local action
value functions can be specified for each agent x as a linear
function approximation,

Qx(ax) =
∑

ρ∈F

wρ,x̺ρ,x(ax) =

N∑

n=1

∑

ρ∈Fn

wρ,x̺ρ,x(ax) (11)

where Fn ⊆ F is the set of predicates {ρ ∈ F | η(ρ) =

n} that is a partition of F such that F =
⋃N

n=1 Fn. Eq.
(11) essentially groups the sums based on the agent arity
of the RFs, assuming that the maximum agent arity is N .
Each wρ,x may then be updated using Eq. (5). Next, we
present the theoretical result that shows the agent based
decomposition in Eq. (11) is an additive decomposition of
the global relational action value function in Eq. (7).

Theorem 1. Given the set of predicates F and N agents,
Q(s,a) =

∑N

x=1 Qx(sx,ax) if wρ = wρ,x for all ρ ∈ F, x ∈
[1, N], where wρ,x is the local weight of the local RF ̺ρ,x and
wρ is the global weight for the global RF ̺ρ.

Proof. Assuming that the scaling factor for local and
global value functions is τ = 1, we have

N∑

x=1

Qx(ax) =

N∑

x=1

N∑

n=1

∑

ρ∈Fn

wρ,x̺ρ,x(ax) (12)

=
N∑

n=1

∑

ρ∈Fn

N∑

x=1

wρ,x

n

n∑

j=1

N−1Pn−1∑

i=1

ρ(ȧx,j,n) (13)

=

N∑

n=1

∑

ρ∈Fn

wρ

N∑

x=1

n∑

j=1

N−1Pn−1∑

i=1

ρ(ȧx,j,n)

n
(14)

=
N∑

n=1

∑

ρ∈Fn

wρ

NPn∑

i=1

n∑

j=1

ρ(ai1 , ..., ain)

n
(15)

=
N∑

n=1

∑

ρ∈Fn

wρ̺ρ(ai1 , ..., ain) (16)

=
∑

ρ∈F

wρ̺ρ(a) = Q(a) (17)

Theorem 1 shows that the local relational agent based de-
composition is able to represent the same function values as
the ideal global case. This indicates that representational
power is maintained when using the local value functions.
Consequently, if the true global value function is well ap-
proximated by a linear combination of global RFs, we ex-
pect the same error bound to apply when using the local
value functions with local RFs. Hence we have addressed
the distributed requirement while retaining some relational
generalization capability.

To represent relations, complex predicates can be con-
structed from logical operators on simpler predicates. Com-
puting the valid bindings to give the grounded literals of
these predicates, i.e., count of true bindings, may be per-
formed by an inference engine or a customized implementa-
tion. Joint action selection with local Qx functions approx-
imated by local RFs can be solved using standard message
passing methods [13, 18]. In our experiments, we use pred-
icates with an agent arity of at most two. This results in
efficient computation of the RFs.

3.2 External Relational Generalization
Internal generalization allows an agent to generalize learn-

ing between its individual interactions over various agents.
While this introduces a form of shared experience and re-
duces the number of learning parameters in the system as a
whole, there is still room for further generalization.

For example, consider the centralized NotAligned RF in
Eq. (1). It allows all interactions between any two agents
to share experience, i.e., whenever NotAligned for (a1, a2),
(a2, a3), or (a3, a4) are true, they participate in updating the
same weight. In contrast, Eq. (9) only allows agent 1’s indi-
vidual experience to be generalized within itself, i.e., when-
ever NotAligned(a1, a2) or NotAligned(a1, a4) are true they
update the same weight in agent 1, but NotAligned(a2, a3)
and NotAligned(a3, a4) do not play a part in that update
when using the local RF in Eq. (10). Short of neighboring
agents’ influences during coordinated action selection, there
is no other mechanism to pass on learned knowledge to other
agents, as local updating shown in Eq. (5) does not involve
the value functions (learned parameters) of other agents.

To further generalize the learned parameters of local RFs,
we devise a message passing method to share the learned
weights of the RFs based on the relations that they repre-
sent. From Theorem 1, the condition wρ,x = wρ suggests
that the goal of sharing is to tend towards equal weights for
local RFs that are based on the same predicate.

In a synchronized message passing system, messages are
passed for a number of iterations within each time step. At
each iteration, agent x computes and sends the messages
κx,y(ρ) for each predicate, ρ, to its neighbor y ∈ Γ(sx),

κx,y(ρ) = cx,y + wρ,x +
∑

z∈Γ(sx)−{y}

κz,x(ρ) (18)

1080

where cx,y is a normalizing value to ensure messages do not
go to infinity in a graph with cycles [20]. The agent x sends
the message κx,y(ρ) to agent y that is an aggregation of the
messages it received from its other neighbors, i.e., Γ(sx) −
{y}, from the previous iteration.

Once the desired iteration is achieved or the κ messages
have converged, each agent x updates the weight wρ,x for
each local RF ̺ρ,x with

wρ,x ← β · [wρ,x +
∑

y∈Γ(sx)

κy,x(ρ)], (19)

where β is used to normalize the messages.
In this message passing scheme, a fixed point exists in

a CG without cycles. After applying Eq. (19) with β =
1/N , if the CG is connected, each local RF’s weight will be
the global average of all agents’ weights for the RF. In the
general case of a graph with cycles, the messages may not
converge but the intermediary result from Eq. (19) at every
iteration is usually useful in practice [13].

CGs are usually disjoint since agents rarely form a con-
nected CG. Further, messages have to be sent for each RF’s
weight which may pose a problem when the number of RFs
is large. To address these issues, we adapt an asynchronous
message and update scheme as follows. In each time step,
each agent x immediately sends the weight wρ,x of the local
RF ̺ρ,x as a message to its neighbors. Upon receiving any
message wρ,y from a neighbor y ∈ Γ(x), agent x immediately
updates the weight of ̺ρ,x using the convex combination,

wρ,x ← (1− β)wρ,x + βwρ,y = wρ,x + β[wρ,y − wρ,x] (20)

where β controls the magnitude of the update. One added
advantage of this scheme is that agents may send any subset
of its weights as messages to its neighbors as permitted by
its communication channel.

The update in Eq. (20) echoes that of the TD updates
using a step size parameter α described in Eq. (5). The
intent of both equations is to compute a form of averaging
over streaming data. In the case of TD learning, the data
comes in the form of one step transition and reward, where
the goal is to estimate the expected return. In the case
of external generalization, the data comes in the form of
neighboring agents’ weights and the goal is to estimate the
mean of these weights.

External generalization messages can be sent in distribu-
ted TD learning algorithms right after the TD updating step.
Our experiments apply internal generalization to the value
functions of distributed RL and distributed CGRL described
in Section 2. At each time step, after TD updates are per-
formed, each agent sends their weights to their neighbors
once. Received weights are combined using Eq. (20) ac-
cording to their respective predicates ρ.

4. EXPERIMENTS
We carry out two sets of experiments to evaluate our pro-

posed solution. The first set of experiments investigates the
use of relational generalizations on distributed RL in two
domains, simplified soccer and tactical RTS. Example pred-
icates used are shown in Fig. 2 and 3 for soccer and RTS
respectively. The second set of experiments demonstrate the
utility of relational generalizations with distributed CGRL
in the tactical RTS domain.
We implemented 3 RL methods: (a) independent refers to

independent learners [5], (b) coordinated refers to distribu-

FlankOffensive(Ax,Ay) :=Flank(Ax) ∧ Flank(Ay)

∧ Forward(Ax) ∧ Forward(Ay)

Defensive(Ax,Ay) :=FrontQuarter(Ax) ∧ FrontQuarter(Ay)

∧ MidField(moveTo(Ax)) ∧ MidField(moveTo(Ay))

Collide(Ax,Ay) :=moveTo(Ax) = moveTo(Ay)

GoodPass(Ax,Ay) :=IsPass(Ax,Ay) ∧ ¬MoveWithinEnemyIntercept(Ax)

Figure 2: Example soccer predicates

PairAttack(Ax,Ay) := TargetInRange(Ax) ∧ TargetInRange(Ay)

∧ target(Ax) = target(Ay)

PairCloser(Ax,Ay) := Closer(Ax, e) ∧ Closer(Ay, e)

∧ SameNearestEnemy(Ax,Ay) ∧ nearestEnemy(Ax) = e

OneOfTwoAttack(Ax,Ay) := ¬PairAttack(Ax,Ay)

∧ [TargetInRange(Ax) ∨ TargetInRange(Ay)]

WeakerMoveCloser(Ax,Ay) := SameNearestEnemy(Ax,Ay)

∧ Closer(weaker(Ax,Ay), nearestEnemy(Ax))

Figure 3: Example RTS predicates

Figure 4: Example state in simplified soccer

RL Method # Weights % Weights
independent 1888 60.5
coordinated 3120 100.0

coordinated(β ≥ 0) 2064 66.2

Table 1: Weights to learn for soccer

ted RL (Section 2.1), and (c) DistCGRL refers to distribu-
ted CGRL (Section 2.2). Relational generalizations are ap-
plied to both coordinated and DistCGRL learners with var-
ious values for the external generalization parameter, β ≥ 0.
β = 0 indicates that only internal generalization is used.
All agents use ǫ-greedy policies for on-policy TD updating.
Such policies select the maximum action with probability
1− ǫ and a random action with probability ǫ.

Fig. 4 shows an example state of the simplified soccer
domain. A 15× 10 grid is used with two teams of 8 players
each, gray and black. The objective is to score the first
goal. Players may move in 4 directions, and pass or shoot
when in possession of the ball. Communication is allowed
only at a Manhattan distance of 5. The lines in Fig. 4
describe the current CG based on the state. We pit the RL
players against a scripted opponent that defends their goal
and counterattacks once the ball is intercepted. The total
number of weights to learn for function approximation for
each type of learner is given in Table 1. The learners use
γ = 0.99 with decaying step size, α = {10−2, 10−4, 0.998},
and exploration, ǫ = {1, 10−2, 0.998}, parameters written
as param = {initial, final, decay rate}. The player that
scores a goal receives a reward of 1 while a reward of -1 is
evenly divided among soccer players nearest to their home
goal when the opponent scores.

Fig. 5a shows the results for online learning using cumu-
lative average reward. Each plot is an average of 10 learn-
ing runs. We observe that internal relational generalization

1081

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 D

is
c
o

u
n

te
d

 R
e

w
a

rd

Episodes (x10)

independent (87.6%)
coordinated (90.6%)

coordinated(β=0) (93.5%)
coordinated(β=0.06) (93.3%)

(a) Best relational TD results, final win rate
in brackets

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0
2
4
6
8
10

20

30

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

∆
 C

u
m

u
la

ti
v
e
 A

v
e
ra

g
e
 R

e
w

a
rd

Episodes

β (x 10
-2

)

∆
 C

u
m

u
la

ti
v
e
 A

v
e
ra

g
e
 R

e
w

a
rd

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

(b) Change in reward over coordinated learner for
various β

Figure 5: Soccer experiment results.

(β = 0) is beneficial to soccer over the coordinated learner,
while external generalization (β = 0.06) does not yield any
benefit as its curve overlaps with β = 0. In Fig. 5b we plot
the change in reward, i.e., the reward for the relational learn-
ers subtract the coordinated learner for each episode. We
observe that both forms of relational generalization give rise
to high benefit at the start. But, the benefit is lost over time
for most settings of β > 0. This is expected as generalization
allows fast initial learning, yet it is role specialization that
gives a soccer team an edge over time. Nevertheless better
performance is achieved using only 66.2% of the quantity of
learning parameters of the coordinated player (see Table 1).

For the tactical RTS domain, we use a 240×240 point
based world as shown in Fig. 1a. There are 10 RL marines,
each may move in 8 directions and shoot at any enemy
within range, thus the joint action space is massive. Marines
may only communicate within a range of 30 points. We pit
the RL marines against scripted marines that move towards
their nearest enemy and start shooting. Rewards are -1 per
time step and 1000 for winning that are equally divided
among surviving marines. For RTS, learners used constant
α = 10−4 and ǫ = 〈0.5, 10−2, 0.998〉. No discounting is used,
i.e., γ = 1. The number of weights and RL parameters are
shown in Table 2. Note that the use of internal generaliza-
tion reduces the weights for the coordinated(β ≥ 0) learners
to 26.9% of the coordinated learner. This is because most
predicates are multi-agent, involving pairs of agents.

Fig. 6 shows the results for the coordinated learners ver-
sus 10 enemy marines. From Fig. 6a, it is clear that rela-
tional generalization is highly desirable in the tactical RTS
domain where formation among marines is of paramount im-
portance. We see improvement from internal generalization

Weights
RL Method Bottom Top Total %
independent 350 0 350 17.8
coordinated 1970 0 1970 100.0

coordinated(β ≥ 0) 530 0 530 26.9
CentCGRL 53 45 98 2.1
DistCGRL 1970 2690 4660 100.0

DistCGRL(β ≥ 0) 530 450 980 21.0

Table 2: Weights to learn for RTS. Bottom indicates
the weights for flat RL, e.g, the Q function, or the U
function in CGRL while Top indicates the weights
for top level function W in CGRL.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 R

e
w

a
rd

Episodes (x10)

independent (13.3%)
coordinated (23.4%)

coordinated(β=0) (41.9%)
coordinated(β=0.06) (60.8%)

(a) Best relational TD results, final win rate in brackets

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 10000

0246810

20

30
-150
-100

-50
 0

 50
 100
 150
 200
 250
 300
 350
 400

∆
 C

u
m

u
la

ti
v
e

 A
v
e

ra
g

e
 R

e
w

a
rd

Episodes

β (x 10
-2

)

∆
 C

u
m

u
la

ti
v
e

 A
v
e

ra
g

e
 R

e
w

a
rd

-150
-100
-50
 0
 50
 100
 150
 200
 250
 300
 350
 400

(b) Change in reward over coordinated learner for var-
ious β

Figure 6: RTS experiment against 10 enemy marines
using coordinated learners for 10K episodes.

in the coordinated (β = 0) learner and further improvement
when external generalization messages are exchanged. Fig.
6b shows the change in reward over the coordinated learner
without RFs. We observe that distributed relational TD
learning is beneficial for most values of β.

For the second set of experiments on distributed relational
TD learning applied to DistCGRL, we use the same tacti-
cal RTS setup of 10 RL marines versus 10 scripted marines.
Fig. 7 shows the results. We compared our results with
centralized CGRL (CentCGRL) that made use of RFs [15].
From Fig. 7a, we observe that DistCGRL without RFs is
superior to coordinated (β = 0.06), but its performance is
nowhere near that of CentCGRL. However, once relational
TD is introduced, DistCGRL outperforms CentCGRL and
almost achieves a perfect win rate of 98.7% when β = 0.06,
achieved with only 21% of the number weights in DistC-
GRL without RFs. The largest reduction comes from the
top level function (see Table 2). The improved performance

1082

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

C
u
m

u
la

ti
v
e
 A

v
e
ra

g
e
 R

e
w

a
rd

Episodes (x10)

independent (13.3%)
coordinated(β=0.06) (60.8%)

DistCGRL (78.7%)

DistCGRL(β=0) (96.9%)
DistCGRL(β=0.06) (98.7%)

CentCGRL (92.6%)

(a) Best relational TD results, final win rate in brackets

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 10000

0246810

20

30
-600

-400

-200

 0

 200

 400

 600

 800

 1000

∆
 C

u
m

u
la

ti
v
e
 A

v
e
ra

g
e
 R

e
w

a
rd

Episodes

β (x 10
-2

)

∆
 C

u
m

u
la

ti
v
e
 A

v
e
ra

g
e
 R

e
w

a
rd

-600

-400

-200

 0

 200

 400

 600

 800

 1000

(b) Change in reward over DistCGRL learner for vari-
ous β

Figure 7: RTS experiment against 10 enemy marines
using DistCGRL learners for 10K episodes.

over CentCGRL may be due to agent decomposed rewards
that provide fine-grained information for DistCGRL in con-
trast to the global reward scheme in CentCGRL. Generally,
external generalization further improves learning for most
values of β as shown in Fig. 7b.

To further demonstrate the benefits of our relational TD
concepts, we pit the RL marines against a harder scenario
with 13 enemy marines. The results are shown in Fig. 8.
In this scenario, independent, coordinated, and DistCGRL
methods without RFs are unable to learn to overcome their
opponent within 10K episodes as shown in Fig. 8a. How-
ever, relational generalization eventually enables DistCGRL
to learn better policies than CentCGRL. This illustrates
that rapid generalization is crucial for a fast-paced domain
like tactical RTS whereby marines are destroyed easily re-
sulting in few samples of winning episodes to explore. In
Fig. 8b, we see that external generalization improves learn-
ing throughout the episodes with the best improvement at
β = 0.2.

5. DISCUSSION & RELATED WORK
Our experiments employed a coarse-grained approach to-

wards the specification of local RFs for internal generaliza-
tion by applying it to all predicates. We expect results to
improve further especially for domains that require special-
ized roles, e.g., soccer, if the user carefully defines a subset
of predicates to apply internal generalization. Furthermore,
the results in Fig. 5b suggest that for domains like soccer,
we should perform generalization early but decrease it over
time to allow agents to develop specialized value functions.

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 R

e
w

a
rd

Episodes (x10)

independent (2.1%)
coordinated (0.1%)

DistCGRL (0.4%)
DistCGRL(β=0) (11.6%)

DistCGRL(β=0.2) (33.3%)
CentCGRL (27.1%)

(a) Best relational TD results, final win rate in
brackets

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 10000

0246810

20

30
-50

 0

 50

 100

 150

 200

 250

 300

 350

∆
 C

u
m

u
la

ti
v
e

 A
v
e

ra
g

e
 R

e
w

a
rd

Episodes

β (x 10
-2

)

∆
 C

u
m

u
la

ti
v
e

 A
v
e

ra
g

e
 R

e
w

a
rd

-50

 0

 50

 100

 150

 200

 250

 300

 350

(b) Change in reward over DistCGRL learner for vari-
ous β

Figure 8: RTS experiment against 13 enemy marines
using DistCGRL learners for 10K episodes.

For domains with homogeneous agents, such as tactical
RTS, relational generalization allows experience to be shared
rapidly. Results show better goal achievement while having
less parameters (weights) to learn and store. In some cases
the performance improvement is dramatic as we have seen
in Fig. 7 using only 21% of the number of weights of a
propositional DistCGRL approach.

Distributed relational TD learning may also be preferred
for a centralized application when it is feasible to provide
agent decomposed rewards from the MDP. From this per-
spective, the β parameter in external generalization gives
the user some control over the amount of relational gener-
alization for each agent’s learning, i.e., agents may retain
some form of individuality. Results in RTS have shown that
it is possible to outperform even centralized approaches with
RFs when using certain settings for β. Last, almost all set-
tings of β demonstrate improvement over learning without
external generalization, hence the user need not fine-tune
the value of β if the current goal achievement is acceptable.

Relational generalization for RL arose with the need to
compactly represent state and action spaces in combinato-
rial domains such as the blocks (un)stacking domain [8, 12].
We have used the general linear function approximation ap-
proach to model value functions. This is more akin to the
work in [3] as opposed to relational regression tree family
of methods used in [8, 7, 6]. The benefits of our approach
include the fast update time that grows linearly with the
number of weights, and the ability to include non-predicate
based features. In the event that the user specifies poor
predicates, the effect is similar to having poor features in

1083

function approximation that do not discriminate well be-
tween state action pairs. The work on multi-agent relational
RL in [16] investigated learning to communicate with ex-
perts when communication between agents is costly, expert
agents exists, and tasks are solved individually. In contrast,
our approach begins with no known expert, agents solve
their task jointly and may interfere with each other.

Our proposed method is different from other multi-agent
RL works that incorporate parts of the local value functions
of other agents within each agent as the relational seman-
tics determines the experience to be shared among agents.
In [17], agents’ updates incorporate tabular Q-values from
other agents’ local value functions based on the current state
and action values. However, in our approach agents may
share learned weights for RFs that are not limited to the cur-
rent state and action. [1, 2] showed that averaging tabular
action value functions between agents can improve learning
performance when some agents are experts . However, this
is prohibitive for large value functions and heterogeneous
agents that do not share the same state-action pairs.

The relational predicates are currently provided by the
user. No distinction was made between the base level liter-
als, that encode the basic relational representation for states
and actions, from higher level predicates such as NotAligned.
Both are regarded as similar background knowledge since we
do not assume a readily encoded domain is available. Works
in centralized single agent relational TD have discussed pos-
sible solutions for automated construction of higher level
predicates from lower level predicates [12, 3]. Adapting these
ideas to the communication requirements of the distributed
environment will reduce dependence on the human expert.

6. CONCLUSION
To the best of our knowledge, this is the first work to

bring the generalization capabilities of relational TD learn-
ing to the distributed case with dynamic communication.
This was achieved using two parts, internal and external
relational generalization. Internal generalization creates lo-
cal RFs from partially bound predicates, enabling individ-
ual agents to generalize over their interactions with vari-
ous agents and greatly reduces the number of parameters
to learn in the system as a whole. External generalization
involves message passing of learned parameters that share
relational semantics, allowing different groups of agents to
share their experience with others. Experiment results on
two domains show that the proposed methods leads to better
online learning through rapid generalization of experience.
Exceptional results are achieved when the domain involves
homogeneous agents like the tactical RTS domain. Rela-
tional generalizations were applied to various value function
based RL methods to illustrate the general applicability of
the proposed concepts. Furthermore, the competitive re-
sults with centralized approaches shows that the challenge
of distribution can be resolved while retaining much of the
benefits of relational TD learning.

Possible directions for future work include: (a) adaptively
adjusting the amount of relational generalization over time
for domains where specialized roles are important; (b) au-
tomatically creating new predicates in a distributed envi-
ronment; (c) extending this work to domains with varying
communication cost or where communication has to be ex-
plicit from agents’ actions.

7. ACKNOWLEDGMENTS
This work was supported by A*STAR Exploit Flagship

Grant ETPL/10-FS0001-NUS0.

8. REFERENCES
[1] M. Ahmadabadi and M. Asadpour. Expertness based

cooperative Q-learning. IEEE Trans. Syst., Man, Cybern.,
Syst., Part B, 32(1):66 –76, 2002.

[2] B. Araabi, S. Mastoureshgh, and M. Ahmadabadi. A study
on expertise of agents and its effects on cooperative
Q-learning. IEEE Trans. Syst., Man, Cybern., Syst., Part
B, 37(2):398 –409, 2007.

[3] N. Asgharbeygi, D. J. Stracuzzi, and P. Langley. Relational
temporal difference learning. In ICML, pages 49–56, 2006.

[4] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control of
Markov decision processes. Math. Oper. Res., 27:819–840,
2002.

[5] C. Claus and C. Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. In AAAI/IAAI,
pages 746–752, 1998.

[6] T. Croonenborghs, J. Ramon, H. Blockeel, and
M. Bruynooghe. Online learning and exploiting relational
models in reinforcement learning. In IJCAI, pages 726–731,
2007.

[7] T. Croonenborghs, K. Tuyls, J. Ramon, and
M. Bruynooghe. Multi-agent relational reinforcement
learning. In LAMAS, pages 192–206, 2005.

[8] S. Džeroski, L. De Raedt, and K. Driessens. Relational
reinforcement learning. Mach. Learn., 43(1/2):7–52, 2001.

[9] E. Ferreira and P. Khosla. Multi agent collaboration using
distributed value functions. In IEEE Int. Veh. Sym, pages
404 –409, 2000.

[10] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia.
Generalizing plans to new environments in relational
MDPs. In IJCAI, pages 1003–1010, 2003.

[11] C. Guestrin, M. G. Lagoudakis, and R. Parr. Coordinated
reinforcement learning. In ICML, pages 227–234, 2002.

[12] K. Kersting and L. De Raedt. Logical Markov decision
programs and the convergence of logical TD(λ). In ILP,
volume 3194 of LNCS, pages 103–116. Springer, 2004.

[13] J. R. Kok and N. Vlassis. Collaborative multiagent
reinforcement learning by payoff propagation. J. Mach.
Learn. Res., 7:1789–1828, 2006.

[14] Q. P. Lau, M. L. Lee, and W. Hsu. Distributed coordination
guidance in multi-agent reinforcement learning. In ICTAI,
pages 456–463. IEEE Computer Society, 2011.

[15] Q. P. Lau, M. L. Lee, and W. Hsu. Coordination guided
reinforcement learning. In AAMAS, volume 1, pages
215–222. IFAAMAS, 2012.

[16] M. Ponsen, T. Croonenborghs, K. Tuyls, J. Ramon,
K. Driessens, J. van den Herik, and E. Postma. Learning
with whom to communicate using relational reinforcement
learning. In ICIS, volume 281 of SCI, pages 45–63. 2010.

[17] J. G. Schneider, W.-K. Wong, A. W. Moore, and M. A.
Riedmiller. Distributed value functions. In ICML, pages
371–378, 1999.

[18] R. Stranders, F. M. D. Fave, A. Rogers, and N. R.
Jennings. A decentralised coordination algorithm for mobile
sensors. In AAAI, pages 874–880, 2010.

[19] P. Tadepalli, R. Givan, and K. Driessens. Relational
reinforcement learning: An overview. In ICML Workshop
on Relational RL, pages 1–9, 2004.

[20] M. Wainwright, T. Jaakkola, and A. Willsky. Tree
consistency and bounds on the performance of the
max-product algorithm and its generalizations. Statistics
and Computing, 14(2):143–166, 2004.

1084

