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ABSTRACT

This paper presents a team plan specification language that
combines work in the creation of generic team plans and de-
sign of intelligent interfaces. Two motivations the language
are (1) to combine inter-agent cooperation and operator in-
teraction of complex behaviors into a single plan, and (2)
to separate plan design and UI design such that they are
created by application domain experts and human interac-
tion experts, respectively. The result is a generic language
for multi-robot plans that defines tasks to be performed, in-
teractions for maintaining situational awareness, and mixed
initiative reactions to operator workload.

Categories and Subject Descriptors:

I.2.9 [Robotics]: Operator interfaces

Keywords: Robotic agent languages and middleware for
robot systems; Intelligence for human-robot interaction; Robot
teams, multi-robot systems

1. INTRODUCTION
Many exciting, emerging applications of robots involve

multiple robots working together on complex tasks under
the control of a single human. In such domains, the robots
will need to execute sequences of activities in parallel with
contingencies, runtime options, and other deviations from a
simple linear progression of tasks. An operator is involved
to oversee the execution and is responsible for choosing op-
tions, approving actions, making go/no-go decisions, assist-
ing robots in difficult positions, and selecting strategies.

Substantial research effort has looked at the issues of how
to have cooperative robots controlled by a single operator.
Parasuraman[5], Arkin[2], Tambe[6], and others have shown
the potential to have some representation of a team plan
be invoked by a human and executed by the team. The in-
frastructure for executing plans can be created once and the
team empowered to do different things by developing new
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plans. Ziparo[9] and Xu[8] demonstrate the use of Petri Nets
to describe multi-robot plans without human interaction.

From the perspective of the human, researchers such as
Cummings[1], Lewis[7], and Goodrich[3] have shown how
intelligent graphical user interfaces (UIs) can dramatically
increase a human’s ability to understand and interact with
robot teams. These interfaces utilize domain specific strate-
gies for maintaining operator situational awareness and defin-
ing parameters for mixed initiative adjustable autonomy, al-
lowing larger and more sophisticated teams to be used.

While these interfaces and others incorporate mixed ini-
tiative adjustable autonomy and adapt based on operator
workload, they do not adapt based on what plans are being
executed. Each instance of a type of interaction is treated
the same, despite differences in how the result of the inter-
action will be used. To address this, the presented language
includes Situational Awareness and Mixed Initiative (SAMI)
markup that provides details about what information should
be presented to the human and how important it is.

2. PETRI NET OVERVIEW
Petri Nets consist of places connected to transitions, sim-

ilar to states and transitions in state machines. Petri Nets
also have a variable number of tokens that move between
places when transitions fire; the token locations jointly rep-
resent the state. The edges between places and transitions
specify the number of tokens that must be present in the
place for the transition to trigger (“incoming” edges from a
place to a transition) or will be put in the place when the
transition triggers (“outgoing” edges from a transition to a
place). Transitions with multiple incoming and outgoing
edges and multiple tokens allows for more representational
power than state machines and allows parallelism, synchro-
nization and even counters to be implemented compactly.
Below are descriptions of additional extensions.

2.1 Events
These Petri Net models interact with the environment

through input and output events. Input events, received
as a result of an action taken by some part of the system,
can be placed on transitions as a trigger requirement, in
addition to token requirements on incoming edges. Output
events, which represent commands or requests, are added to
places and are executed when new, relevant tokens arrive.

Parameters: When a plan is being developed, there will
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typically be details for output events that are intended to
be provided at runtime. For example, a plan for searching
an area will need to know the boundaries, but defining those
should occur when the plan starts. Parameters allow for the
design of a generic plan with details filled in at runtime.

Variables: During the execution of a plan, team members
may provide information needed by future events in the plan.
For example, a robot might find a location of interest that
should be given to a path planner. This is handled with
variables, which allow the mapping of some component of
an input event to components of one or more output events.

2.2 Specialized Tokens
In traditional Petri Nets, all tokens are equivalent and

anonymous. A useful extension is colored Petri Nets, which
allow individual tokens to be associated with data useful to
the plan. The SAMI plan formulation makes use of several
specialized tokens which each contain different kinds of data.

Generic tokens are traditional tokens and do not have
unique identities or data attached to them.

Proxy tokens contain a robot proxy’s name and are used
to invoke and receive environmental actions on a proxy basis.

Task tokens contain a task’s name and the proxy (if as-
signed) that will perform it and are used to invoke and re-
ceive environmental actions on a task basis.

2.3 Contingencies
Models based on Petri Nets can run multiple plans in par-

allel, allowing for contingency plans that recognize and react
to unexpected behavior or variables beyond the scope of the
currently executing plan. Typical problems which would
be addressed by contingency plans include low power levels,
sensor failures, and reacting to members of the team plan
aborting their tasks. In team plans defined visually without
parallelism, handling a single mode of failure causes a large
increase in size and complexity.

2.4 SAMI Markup
To allow interfaces to dynamically adjust to plans, several

types of SAMI markup can be added to the plans at devel-
opment time. An important concept for the interface is that
it does not need to be known when the plans are designed
and can be developed independently of the plans, provided
it can interpret the SAMI markup.

Information Markup: The first type of information
markup tells the UI about environmental events and robot
actions important to the operator. The second type tells the
UI about the progress of the overall plan, e.g., phases of the
plan or invoked contingencies. These messages allow the UI
to keep the human aware of the progress of the plan. Each
piece of information markup can also be associated with spe-
cific objects or areas in the environment to allow the UI to
be intelligent about the presentation of the messages.

Directives Markup: Directives can give more general
situational awareness help than information messages. For
example, a plan developer might understand that it will be
useful for the human to have a zoomed out map view or a
particular robot’s video feed at a particular point in the plan.
Allowing the designer to embed this sort of information in
the plan allows the interface to help the human maintain
situational awareness, a critical aspect of effective control[4].

Options Markup: Options markup can modify the set of
options presented to the human and specify mixed-initiative

parameters that are suited to that particular point in the
plan. The first type of mixed-initiative parameters con-
trols the number of options requested from services, with
the amount chosen by the plan developer to suit the situa-
tion and the likely state of the human at that point in time.
The options markup can also tell the UI how to handle tak-
ing autonomous action, such as giving the human a period
of time to make a decision before selecting an option.

Importance Markup: The importance markup is used
with any of the messages to the UI to describe the impor-
tance of the message relative to other things. The impor-
tance markup uses a temporal function to indicate to the
UI how the importance will change over time. The markup
can specify a set of assets for which it applies, so that when
the human is micro-managing a robot, only the messages
important to that robot can be displayed.

3. CONCLUSION
This paper described a novel, generic language for jointly

specifying multi-robot coordinated tasks and operator in-
teraction. In future work a set of fully realized plans and
markup compatible UI will developed and evaluated.
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