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ABSTRACT
In multiagent scheduling, each agent has to schedule its ac-
tivities to respect its local (internal) temporal constraints,
and also to satisfy external constraints between its activities
and activities of other agents. A scheduling problem is de-
coupled if each agent can independently (and thus privately,
autonomously, etc.) form a solution to its local problem such
that agents’ combined solutions are guaranteed to satisfy
all external constraints. We expand previous work that de-
couples multiagent scheduling problems containing strictly
conjunctive temporal constraints to more general problems
containing disjunctive constraints. While this raises a host
of challenging issues, agents can leverage shared information
as early and as often as possible to quickly adopt additional
temporal constraints within their local problems that sacri-
fice some local scheduling flexibility in favor of decoupled,
independent, and rapid local scheduling.
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1. MOTIVATION
Many scheduling problems can be represented using tem-

poral constraint networks, where events are represented as
variables whose domains are the possible execution times,
and where constraints restrict the timings between events
in terms of bounds on the differences between variables’ val-
ues. Figure 1(a) represents one such scheduling problem
involving four tasks, with constraints between the variables
representing the start and end times of each task. For in-
stance the edge from T3B

ST to T3B
ET represents the constraint

T3B
ET − T3B

ST ∈ [50, 80], that is, the duration of task T3 is
between 50 and 80 minutes. The Disjunctive Temporal
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Figure 1: An example MaDTP (a) and correspond-
ing temporal decoupling (b)

Problem (DTP) [4] is a general version of such problems,
where constraints represent a choice among many constituent
temporal difference constraints, each of which has its own
bounds expressed over its own pair of timepoints. The dis-
junctive constraints in Figure 1(a) are represented with dou-
ble lines, where all edges belonging to a single disjunctive
constraint intersect (e.g., T1 must follow T2 by 60 minutes
or precede T2 by 45). A consistent DTP is one that has a
solution—a scheduling of specific times to each variable that
respects all constraints. There are flexibility benefits to rep-
resenting DTP solution spaces—sets of solutions naturally
captured within the flexible ranges of times between tempo-
ral bounds—rather than a single, possibly brittle solution.
The DTP is known to be an NP-hard problem, where for
general DTPs with |C| disjunctive temporal constraints each

with k possibilities, each of the O(k|C|) possible networks
of constraints must be explored in the worst case [4]. A
multiagent DTP (MaDTP) [2] is one whose variables, and
constraints among them, are partitioned among n agents. For
example, the top and bottom rows in Figure 1(a) represent
tasks belonging to two different agents, A and B respec-
tively. The DTPs of different agents are constrained through
external constraints, represented using dashed lines.

While external constraints capture key relationships be-
tween different agents’ activities, they also introduce coupling
between agents’ local problems. For example, to modify the
completion time for a deliverable (e.g., a data analysis or
query answer), an agent needs to check that others can adjust
their schedules to accommodate the change, which can trig-
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ger a further cascade of adjustments by other agents to their
schedules. Here we extend the original definition of the Mul-
tiagent Temporal Decoupling Problem (MaTDP) [3, 1],
which was previously defined based on problems containing
strictly conjunctive constraints. Agents’ local DTP subprob-
lems form a temporal decoupling of a consistent MaDTP
D if (i) each agent’s local DTP subproblem is consistent; and
(ii) any combination of solutions to each agent’s local DTP
subproblem yields a joint solution to D. The MaTDP is de-
fined as finding, for each agent, a set of additional constraints
(e.g., tighter bounds on the timings of activities) that, when
added to the agent’s local DTP, creates a temporal decou-
pling of MaDTP D. Figure 1(b) represents a decoupling of
the MaDTP in Figure 1(a), where any solution to agent A’s
DTP in the top row can be combined with any solution to
agent B’s DTP in the bottom row to form a joint solution. A
challenge is that finding a decoupling requires ensuring that
at least one of the solutions to the MaDTP, if any exist, must
survive the decoupling [3], and so is an NP-hard problem.
A second challenge is that disjunctive temporal constraints
involve arbitrarily many pairs of variables, and so may induce
combinatorially many different network structures, making
efficient representation of the set of these possible structures
particularly challenging.

2. INFLUENCE-BASED DECOUPLING
Our approach for decoupling the MaDTP builds on our

distributed MaDTP Local Decomposability (MaDTP-LD)
algorithm [2] for computing the entire MaDTP solution space.
The MaDTP-LD algorithm recognizes that not all local so-
lutions qualitatively change how an agent’s problem will
impact other agents. Thus, instead of computing its entire
solution space, an agent can instead focus on computing
its influence space , the space of solutions that lead to dis-
tinct assignments of its externally constrained variables. An
agent’s influence space summarizes how its local constraints
impact other agents so that all coordination can be limited to
these smaller influence spaces. Our approach differs from the
MaDTP-LD algorithm by incorporating information from the
shared DTP as early and often as possible, rather than wait-
ing for each agent to completely enumerate its local influence
space before shared reasoning occurs. Incorporating shared
information has the effect of pruning globally infeasible sched-
ules from an agent’s local search space early on and then,
once a temporal decoupling as been found, short-circuiting
agents’ reasoning by eliminating those local schedules that
are no longer consistent with respect to the new decoupling
constraints. The shared DTP solution space can be thought
of as the cross-product of agents’ influence spaces. Thus, as
agents construct their local influence spaces, they can also
build the shared DTP solution space in a way that is provably
sound and progressively more complete over time. Then, as
soon as a solution to the shared DTP is found, it can be used
to construct and install a temporal decoupling, which in turn
saves computing the entire joint solution space, representing
a potentially combinatorial savings. Our approach is both
provably sound and complete.

3. DISCUSSION
We compare our new decoupling approach against our

MaDTP-LD algorithm that computes the entire joint solu-
tion space, replicating our previous experimental setup [2].
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Figure 2: Decoupling vs. complete approaches

We measure the maximum processing time across agents (i.e.,
the time the last agent completes execution) and the number
of distinct, consistent local temporal constraint networks.
As shown in Figure 2, for problems containing just two
agents, as the proportion of external constraints increases
(p), our decoupling approach demonstrates upwards of a
four orders-magnitude decrease in runtime over the complete
MaTDP-LD algorithm. This is because as soon as agents
find a decoupling, they immediately commence with finding
only solutions that are consistent with the new decoupling
constraints rather than fully enumerating the entire joint
solution space. However, Figure 2 also illustrates that these
gains come at the cost of limiting the completeness of local
solution spaces as measured by the number of distinct con-
sistent local temporal networks. This limits the amount of
flexibility an agent has to react to scheduling disturbances.

In conclusion, we discuss a new distributed, decoupling
approach for calculating solution spaces to MaDTPs where
agents independently and incrementally build their influ-
ence spaces until a valid temporal decoupling can be found.
Overall, we believe the gains in runtime efficiency of our
decoupling approach over the MaDTP-LD algorithm outpace
the relative sacrifices in solution space completeness—our ap-
proach solves loosely-coupled problems containing 64 agents
in under a second while maintaining at least a tenth of all
consistent local temporal networks, whereas the MaDTP-LD
algorithm consistently exceeds 100 seconds for problems with
only 4 agents. In the future, we would like to investigate
optimal and heuristic variants of our decoupling approach
where, for example, agents produce influence spaces in a
best-first manner in an attempt to guide the coordinator to
a more flexible temporal decoupling in an anytime manner.
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