
SA-MAS: Self-Adaptation to Enhance Software Qualities in
Multi-Agent Systems

(Extended Abstract)
Didac Gil de la Iglesia

CeLeKT, Linnaeus University, Sweden
didac.gil-de-la-iglesia@lnu.se

Danny Weyns
DFM, Linnaeus University, Sweden

danny.weyns@lnu.se

ABSTRACT
Engineering multi-agent systems (MAS) is known to be a
complex task. One of the reasons lays in the complexity
to combine multiple concerns that a MAS has to address,
such as system functionality, coordination, robustness, etc.
A well-recognized approach to manage system complexity is
the use of self-adaptation (SA). Self-adaptation extends a
system with support to monitor and adapt itself to realize a
concern of interest (optimization, fault-tolerance, etc.). We
present SA-MAS, an architectural approach that integrates
MAS with SA. We present a reference model for SA-MAS
and illustrate it with an excerpt from our research.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

Keywords
Multi-agent systems, self-adaptation, reference model

1. COMPLEXITY IN ENGINEERING MAS
Multi-agent systems (MAS) have been applied in a broad

number of fields, such as e-commerce, traffic, robotics, learn-
ing applications, etc. Among the benefits of these systems
are autonomy of interacting entities, flexibility of entities
that can come and go at will, efficiency as a result of local
decision making, etc. Despite the benefits of MAS, engineer-
ing such systems pose huge engineering challenges because of
their distributed behavior and the need to deal with multi-
ple concerns [1]. One recognized approach to manage com-
plexity in MAS is by means of employing domain-specific
middleware, where (parts of) the coordination is separated
from agents that realize the system functions [2].

Fig. 1 shows the traditional design of a MAS on top of
a communication middleware. The agent behavior provides
the required domain functions for the system at hand, while
the (optional) coordination module deals with coordination
concerns. The coordination module is optional as a MAS
may be designed with purely agents that communicate via
exchanging messages. Established approaches for coordina-
tion are electronic institutions, stigmergic coordination, and

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

middleware support for organization management. Provid-
ing distinct modules for agent behavior and coordination
offers a separation of concerns. However, this separation
does not consider quality properties as first class concerns.

For example, a common approach to improve performance
in the face of uncertainty is using a learning approach. How-
ever, when it comes to engineering, support for learning is
often interwoven with the regular agent behavior, which may
lead to complex agent architectures. [3] proposes a basic ar-
chitecture for a learning agent that contains separate com-
ponents that allow an agent to observe its behavior and the
environment and make improvements on its behavior.

As another example, consider a situation where a deployed
MAS has initially been designed without taking into account
particular types of faults. A typical way to deal with such
problem would be to extend the agent behavior and possibly
the coordination module making the system fault tolerant.
However, scattering support over agents and coordination
modules, is error prone and may lead to complex designs
that are difficult to understand and maintain.

ComponentNodeKEY

Agent 
Behavior

Communication
Middleware

MAS
Layer

NODE 

Coordination 
Module

Com.
Layer

Agent 
Behavior

Communication
Middleware

NODE 

Coordination 
Module

Figure 1: Traditional agent structure

2. SA-MAS
Self-adaptation (SA) is a well recognized approach for

managing system complexity [4, 5, 6]. SA is used for
adding so called self-* properties (self-configuration, self-
optimization, self-healing, self-protection) to a system to
address changing operating conditions in the system or its
environment. SA is based on the design principle of sepa-
ration of concerns. SA is a promising approach to tackle
the complexity of engineering MAS by separating the logic
that deals with selected quality concerns from the domain
functions provided by agents and supporting coordination
modules. SA can be either used as a principle for greenfield
design of MAS, or as an approach to extend a legacy MAS.

Self-adaptation has been applied to MAS in a number
of research and engineering efforts, some recent examples
are [7, 8, 9]. From these and other studies, we present a
reference model for a SA-MAS. Fig. 2 shows the model that

1159



is conceived as a modular architecture, where different con-
cerns of the MAS are clearly separated.

The Agent Behavior encapsulates the functionality of the
domain at hand. The Coordination Module encapsulates
coordination concerns, as explained in the previous section.
The Self-Adaptation Module encapsulates the logic to deal
with a particular quality concern of interest, e.g., enable to
learn over time, deal with particular types of errors, handle
security vulnerabilities, etc. Together these three modules
comprise the logic of an agent that provides the required
functions (agent behavior and coordination module) and is
able to monitor and adapt itself (self-adaptation module)
to enhance it with a particular quality concern. Note that
the reference model does not impose any particular agent
architecture or type of coordination support.

Agent 
Behavior

Communication
Middleware

MAS
Layer

NODE 

Coordination 
Module

Com.
Layer

A P
EM

Self-Adaptation
Module

Knowledge 

Repository

Component

Node

Interaction

KEY

K

Figure 2: Reference model for SA-MAS

A common approach to realize SA is by a MAPE feedback
loop [4], as shown in Fig. 2. A knowledge component (K)
maintains relevant knowledge w.r.t. the agent behavior and
coordination, as well as the adaptation goals. A monitor
component (M) gathers particular data from the underlying
components and possibly the system’s environment in order
to update the K component, providing the subsequent com-
putations of the MAPE loop with the necessary data. An
analyze component (A) examines the knowledge gathered
by the monitor, and based on the adaptation goals draws
conclusions on which actions should be undertaken by the
SA module. A plan component (P) puts together a series of
adaptation actions to resolve the problem identified by the
analyzer. These actions are then carried out by an execution
component (E), allowing adaptation of the agent behavior
and coordination module to realize the adaptation goals.

Sometimes, multiple quality concerns need to be consid-
ered when designing a MAS, e.g., performance and robust-
ness. This requires several MAPE loops to address the dif-
ferent concerns. As these quality concerns may be cross-
cutting, it is important to keep the self-adaptation com-
ponents separated to reduce their complexity and improve
scalability and reuse. [8] discusses inter-loop and intra-loop
coordination in a SA-MAS application.

3. A MOBILE LEARNING EXAMPLE
In previous work [10], we developed a MAS application

that provides pupils with GPS-enabled mobile devices to
do outdoor learning activities. For example, three students
have to work together to calculate distances using triangula-
tion techniques. From experience, we learned that the GPS
quality is critical to avoid misleading conclusions from the
pupils. However, the initial design did not consider vary-
ing GPS sensitivity over time. To deal with this problem,
we extended the MAS application with support for self-

adaptation. Fig. 3 shows the top-level design of one mobile
device of the distributed system.

MAS

Layer

PHONE (NODE)

Com.

Layer 

GPS

Module

ComponentNode InteractionKEY

Communication

Infrastructure

Knowledge 

Repository

Monitor Knowledge

Mobile 

Learning 

Application

Analyze Plan

Execute Monitor

Analyze Plan

Execute

Probe Effector Probe Effector

GPS Service Concern MVD Concern

Knowledge

Legacy MAS

Device

Agent

MVD

Manager

Figure 3: Example instance of SA-MAS architecture

The device agent is responsible for managing the tasks
pupils have to perform (interacting with a server and devices
of team members) and for performing measurements (using
the GPS module). The MVD manager deals with organi-
zation management, that is, devices of a team are grouped
as an organization, what we call a Mobile Virtual Device.
Self-adaptation to handle robustness of the GPS module is
conceived as two MAPE loops. The first loop (GPS ser-
vice concern) monitors the quality of the local GPS module,
compares it with the required quality, and based on that,
activates or deactivates the GPS service. When a GPS ser-
vice is deactivated, it triggers the second MAPE loop (MVD
concern) to start a self-healing process, that is, find a new
device and add this to the MVD. Probes and effectors enable
the MAPE loops gathering the relevant data of the under-
lying system and applying the planned adaptations actions.

In our ongoing research, we study the use of formal meth-
ods for the self-adaptation design and apply model checking
to verify the required properties.

4. REFERENCES
[1] D. Weyns and M. Georgeff, “Self-Adaptation using

Multiagent Systems,” in IEEE Software, 2010.

[2] D. Weyns, A. Omicini, and J. Odell, “Environment as
a first-class abstraction in multiagent systems,”
JAAMAS, vol. 14, no. 1, 2007.

[3] S. J. Russell and P. Norvig, Artificial intelligence: a
modern approach, 2003.

[4] J. Kephart and D. Chess, “The vision of autonomic
computing,” IEEE Comp. Soc., vol. 36, no. 1, 2003.

[5] J. Kramer and J. Magee, “Self-managed systems: an
architectural challenge,” FOSE, pp. 259–268, 2007.

[6] D. Weyns, S. Malek et al., “FORMS: a formal
reference model for self-adaptation,” in ICAC, 2010.

[7] S. Lynch, “Using Meta-Agents to Build MAS
Platforms and Middleware,” in ICAART, 2011.

[8] P. Vromant et al., “On Interacting Control Loops in
Self-Adaptive Systems,” in SEAMS, 2011.

[9] M. U. Iftikhar and D. Weyns, “A Case Study on
Formal Verification of Self-Adaptive Behaviors in a
Decentralized System,” EPTCS, vol. 91, 2012.

[10] D. Gil de la Iglesia, Uncertainties in Mobile Learning
applications: Software Architecture Challenges.
Linnaeus University, 2012.

1160




