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1. INTRODUCTION
Cascading processes on a network have been studied in

a variety of disciplines, including computer science [3], biol-
ogy [4], sociology [2], and economics [5]. Much existing work
in this area is based on pre-existing models. However, recent
examinations of social networks – both analysis of large data
sets and experimental – have indicated that there may be
additional factors to consider that are not taken into account
by these models [1]. In this paper we introduce MANCaLog,
a logical framework designed to describe cascades in complex
networks that meets seven desiderata we selected based on a
thorough review of the relevant literature. First, the frame-
work must consider multiply labeled and weighted nodes and
edges. This aspect is due to the fact that cascades in real-
world networks do not only seem to depend on topological
properties (i.e., an individual adopts a behavior after a cer-
tain number of his friends do) but also due to characteristics
of that individual as well. Second, time should be explicitly
represented, and (third) it should be non-Markovian, mean-
ing that a node may choose to adopt or not adopt a behavior
based on any previous time point (not simply the last one).
Fourth, there must be some representation of uncertainty.
Fifth, we must allow for competing cascades as has been
previously done in the classic work of [4]. Sixth, cascades
should be able to be non-monotonic, meaning that the num-
ber of nodes with a given property may increase or decrease
in a given time period. Finally, such a framework should be
tractable and allow for the computation of the outcome of
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the cascade in polynomial time. In this extended abstract,
we introduce the MANCaLog language, which meets all of
these properties.1

2. FRAMEWORK
We assume that agents are arranged in a directed graph

(or network)G = (V,E), where V is the set of nodes (agents)
and E the set of edges (their relationships). We also assume
a set of labels L, which is partitioned into two sets: fluent
labels Lf (labels that can change over time) and non-fluent
labels Lnf (labels that do not); labels can be applied to both
the nodes and edges of the network. We will use G = V ∪E
to denote the set of all components (nodes and edges) in the
network.

Our logical language uses atoms, referring to labels and
weights, to describe properties of the nodes and edges. The
first piece of the syntax is the network atom. Given la-
bel L ∈ L and weight interval bnd ⊆ [0, 1], then 〈L, bnd〉
is a network atom. An atom is fluent (resp., non-fluent)
if L ∈ Lf (resp., L ∈ Lnf ). NA is the set of all possi-
ble network atoms. The definition is intuitive: L represents
a property of the vertex or edge, and associated with this
property is some weight that may have associated uncer-
tainty – hence represented as an interval bnd , which can be
open or closed. An invalid bound is represented by ∅. A set
of these atoms is a world. For a given world W , we im-
pose the requirement that for each L ∈ L there is no more
than one atom of the form 〈L, bnd〉 in W (and bnd 6= ∅).
A network formula over NA is defined using conjunction,
disjunction, and negation in the usual way. If a formula con-
tains only non-fluent (resp., fluent) atoms, it is a non-fluent
(resp., fluent) formula. The satisfaction relationship is de-
fined as follows. If f is an atom of the form 〈L, bnd〉 then
W |= f iff there exists 〈L, bnd ′〉 ∈ W s.t. bnd ′ ⊆ bnd . The
satisfaction of conjunctions, disjunctions, and negations of
formulas is then defined in the normal inductive manner.

For some arbitrary label L ∈ L, we will use the nota-
tion Tr = 〈L, [0, 1]〉 and F = 〈L, ∅〉 to represent a tautology
and contradiction, respectively. For ease of notation (and
without loss of generality), we say that if there does not
exist some bnd s.t. 〈L, bnd〉 ∈ W , then this implies that
〈L, [0, 1]〉 ∈ W . The idea is to use MANCaLog to describe
how properties (specified by labels) of the nodes in the net-
work change over time. We assume that there is some nat-
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ural number tmax that specifies the total amount of time we
are considering, and we use τ = {t | t ∈ [0, tmax ]} to denote
the set of all time points. How well a certain property can
be attributed to a node is based on a weight (to which the
bnd bound in the network atom refers). As time progresses,
a weight can either increase or decrease and/or become more
or less certain. Next, MANCaLog facts state that some net-
work atom is true for a node or edge during certain times. If
[t1, t2] ⊆ [0, tmax ], c ∈ G, and a ∈ NA, then (a, c) : [t1, t2] is a
MANCaLog fact. A fact is fluent (resp., non-fluent) if atom
a is fluent (resp., non-fluent). All non-fluent facts must be
of the form (a, c) : [0, tmax ]. Let F be the set of all facts and
Fnf ,Ff be the set of all non-fluent and fluent facts, respec-
tively. Likewise, we introduce integrity constraints (ICs) as
follows: given fluent network atom a and conjunction of net-
work atoms b, an integrity constraint is of the form a ←↩ b.
Intuitively, integrity constraint 〈L, bnd〉 ←↩ b means that if
at a certain time point a component (vertex or edge) of the
network has a set of properties specified by conjunction b,
then at that same time the component’s weight for label L
must be in interval bnd .

We now define MANCaLog rules. The idea behind rules is
simple: an agent that meets some criteria is influenced by
the set of its neighbors who possess certain properties. The
amount of influence exerted on an agent by its neighbors is
specified by an influence function, whose precise effects will
be described later on when we discuss the semantics. As a
result, a rule consists of four major parts: (i) an influence
function, (ii) neighbor criteria, (iii) target criteria, and (iv) a
target. Intuitively, (i) specifies how the neighbors influence
the agent in question, (ii) specifies which of the neighbors
can influence the agent, (iii) specifies the criteria that cause
the agent to be influenced, and (iv) is the property of the
agent that changes as a result of the influence. We will dis-
cuss each of these parts in turn, and then define rules in
terms of these elements. First, an influence function, which
is a function ifl : N ×N → [0, 1] × [0, 1] that satisfies the
following two axioms: (1) it can be computed in PTIME
and (2) for x′ > x we have ifl(x′, y) ⊆ ifl(x, y). This func-
tion takes the number of qualifying and eligible influencers
and returns a bound on the new value for the weight of the
property of the target node that changes. The next part of
a rule is the neighborhood criterion: (gedge, gnode, h)ifl .
Formulas gnode and h are non-fluent/fluent formulas that
specify the (non-fluent and fluent, respectively) criteria on a
given neighbor, while the non-fluent formula gedge specifies
the non-fluent criteria on the directed edge from that neigh-
bor to the node in question. The next component is the
“target criteria”, which are the criteria that an agent must
satisfy in order to be influenced by its neighbors. Ideas such
as “susceptibility” [1] can be integrated into our framework
via this component. We represent these criteria with a for-
mula of non-fluent network atoms. The final component, the
“target” (denoted with fluent label L), is simply the label of
the target agent that is influenced by its neighbors. Along
with ∆t, which specifies the time until the target is affected,
we now have all the pieces to define a rule:

r = L
∆t← f, (gedge, gnode, h)ifl

Note that the target (also referred to as the head) of the
rule is a single label; essentially, the body of the rule charac-
terizes a set of nodes, and this label is the one that is modi-
fied for each node in this set. More specifically, the rule says

that when certain conditions for an agent and its neighbors
are met, the bnd bound for the network atom formed with
label L on that agent changes. Later, in the semantics, we
introduce network interpretations, which map components
(nodes and edges) of the network to worlds at a given point
in time. The rule dictates how this mapping changes in the
next time step. Hence a MANCaLog program, P , is a set
of rules, facts, and integrity constraints s.t. each non-fluent
fact F ∈ Fnf appears no more than once in the program. P
is the set of all programs.

Our first semantic structure: the network interpreta-
tion is a mapping of network components to sets of net-
work atoms, NI : G → NA. We will use NI to denote
the set of all network interpretations. We note that not all
labels will necessarily apply to all nodes and edges in the
network. For instance, certain labels may describe a rela-
tionship while others may only describe a property of an
individual in the network. If a given label L does not de-
scribe a certain component c of the network, then in a valid
network interpretation NI, 〈L, [0, 1]〉 ∈ NI(c). Now we can
define a MANCaLog interpretation as a mapping of natural
numbers in the interval [0, tmax ] to network interpretations,
i.e., I : N→ NI. Let I be the set of all possible interpreta-
tions.

In the full version of the paper, we formally define what
it means for an interpretation I to satisfy a program P .
We then define the problems of consistency and entailment.
Program P is consistent if there exists an interpretation that
satisfies all elements in P . Likewise, P entails fact F iff for
all models I of P , it holds that I |= F . In the full paper,
we define an ordering over models and define the concept of
minimal model – the interpretation that assigns components
of the network the tightest bound possible on the weight. If
we can find the minimal model, the questions of consistency
and entailment can be answered easily. We prove, using a
fixed-point operator (a technique common in logic program-
ming) that the minimal model of a MANCaLog program can
be found in polynomial time. Currently, we are creating an
implementation for this framework and designing methods
to automatically learn these programs from data.
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