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ABSTRACT
We are interested in the following general question: is it pos-
sible to abstract knowledge that is generated while learning
the solution of a problem, so that this abstraction can ac-
celerate the learning process? Moreover, is it possible to
transfer and reuse the acquired abstract knowledge to ac-
celerate the learning process for future similar tasks? We
propose a framework for conducting simultaneously two lev-
els of reinforcement learning, where an abstract policy is
learned while learning of a concrete policy for the problem,
such that both policies are refined through exploration and
interaction of the agent with the environment. We explore
abstraction both to accelerate the learning process for an op-
timal concrete policy for the current problem, and to allow
the application of the generated abstract policy in learning
solutions for new problems. We report experiments in a
robot navigation environment that show our framework to
be effective in speeding up policy construction for practical
problems and in generating abstractions that can be used to
accelerate learning in new similar problems.
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1. INTRODUCTION
In reinforcement learning (RL) an agent repeatedly ob-

serves the state of its environment and selects actions. Per-
forming an action changes the state of the world, and the
agent also obtains an immediate numeric payoff as a result.
The agent must learn to select actions so as to maximize a
long-term sum or average of the future payoffs it will receive.
In the conventional RL framework, the agent does not ini-
tially know what effect its actions have on the state of the
world, nor what immediate payoffs its actions will produce.
In particular, the agent does not know which action is best
to select at any given time. Rather, it must try out various
actions in various states, and must gradually learn which
action is best at each state so as to maximize the long run
payoff. Alas, this whole process can be very time-consuming.
Hopefully an agent can improve its learning abilities if so-
lutions for similar past problems can be used in the current
problem.

Indeed, much research in RL has improved learning speed
by exploiting factored state representation. A factored state
allows agents to share experiences among similar states [1,
14]. Some algorithms learn an abstract value function which
accelerates learning, but may deteriorate policy quality [17].
Seeking to solve this problem, researchers have investigated
how to define an abstraction that guarantee a good pol-
icy[16, 9, 20, 8]. Factored state can also be used to define
temporal hierarchical abstractions, by solving smaller sub-
problems and obtaining a policy to the original problem [10,
3]. Because under abstraction the Bellman’s principle of op-
timality may not be observed, search directly in the space
of abstract policies has played a key role to obtain optimal
abstract policies [19, 4, 5, 2]. Abstract policies allow trans-
fer of knowledge among different problems with the same
factored representation or transfer of knowledge among dif-
ferent representations of the same problem [11, 21, 13, 7,
6].

In this paper we are interested in the following general
question: is it possible to abstract knowledge that is gener-
ated while learning the solution of a problem, so that this
abstraction can accelerate the learning process? Moreover,
is it possible to transfer and reuse the acquired abstract
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knowledge to accelerate the learning process in future simi-
lar tasks? We propose a framework for simultaneously con-
ducting two levels of reinforcement learning, where an ab-
stract policy is built while learning a concrete policy for a
practical problem, and both policies are refined through ex-
ploration and interaction of the agent with the environment.
The abstract level must generalize knowledge learned in the
concrete level; the abstract space must be smaller than the
concrete space in ways that allow faster learning in the ab-
stract level. The knowledge learned in the abstract level is
then fed back into the concrete level, directing the search for
an optimal solution; additionally, the abstract level builds
an abstract policy that can be transferred to a number of
similar problems. We explore these ideas in the remainder
of the paper.

Our work is based on the fact that many domains can
be described in terms of objects and the relations among
them. Tasks in different domains can be represented in a
similar relational form, leading to direct and elegant way to
abstract knowledge through the use of logical variables. In
doing so, concrete states are grouped into abstract states by
the use of variables, allowing us to define abstract policies
to represent knowledge about the solution of the concrete
problem. Once an abstract policy is produced, it can be used
in other learning problems as starting point. We explore the
intuition that generalization from closely related, but solved,
problems can produce policies that make good decisions in
many states of a new unsolved problem.

Our experiments show that our proposed framework pro-
duces excellent results. An abstract policy can offer effec-
tive guidance; moreover, learning in the abstract level indeed
converges faster than in the concrete level.

The paper is organized as follows. Section 2 reviews basic
concepts of relational Markov decision processes (RMDP)
and reinforcement learning. RMDPs form the basis for the
concepts of abstract states and abstract policies. Section 3
discusses abstract states and how to learn and use abstract
policies. Section 4 presents our framework for knowledge
transfer from a source concrete problem to a target one, and
for learning simultaneously in abstract and concrete levels.
Section 5 reports experiments that validate our proposals,
and Section 6 summarizes our conclusions.

2. RMDP AND RL
A formalism widely used for modeling sequential decision

problems is the Markov Decision Process (MDP) [18]. A Re-
lational MDP (RMDP) [15] is an extension of the MDP that
uses a relational vocabulary to describe states and actions.

A relational vocabulary Σ = C ∪ PS ∪ PA is a set of con-
stants C that represent the objects of the environment; pred-
icates PS used to describe properties of and relations among
objects; and action predicates PA. We assume a finite rela-
tional vocabulary, with nC constants, nS predicates in PS

and nA predicates in PA.
If t1, . . . , tn are terms, i.e. each one is a constant (depicted

with lower-case letter) or a variable (depicted with capital
letter), and if p/n is a predicate symbol with arity n ≥ 0,
then p(t1, . . . , tn) is an atom. If an atom does not contain
any variable, it is called a ground atom. A set of atoms is
a conjunction and it is a ground conjunction if it contains
only ground atoms. The Herbrand base HBΣ is the set of
all possible ground atoms that can be formed with the nS

predicates and nC constants in a relational vocabulary Σ.

In our discussion each variable in a conjunction is implic-
itly assumed to be existentially quantified — this is indeed
very important for the semantics of abstract states, as noted
later.

An RMDP is defined as a tuple 〈Σ,B,S,A, T, R,G, b0〉,
where

• the finite relational vocabulary Σ is used to specify
states and actions as indicated below, and also to spec-
ify a knowledge base B of sentences in first-order logic
that represents the characteristics and constraints of
the problem;

• the set of (ground) states S is the set of all complete
truth assignments for conjunctions of atoms in the Her-
brand base HBPS∪C satisfying B;

• the set of actions A is a subset of HBPA∪C satisfying
B and As is the set of allowable actions in state s ∈ S;

• the transition function T : S × A × S → [0, 1] is such
that T (s, a, s′) = P(st+1 = s′|st = s, at = a) is the
probability of reaching state s′ at time t+ 1 when ex-
ecuting action a in state s at time t;

• R : S → R is a reward function, such that rt = R(s)
is the reward received when the agent is in state s at
time t;

• G ⊂ S is a set of goal states, and when the goal is
reached an episode ends and a new episode starts in
some initial state chosen according to b0. There are
no transitions from any goal state, i.e. T (s, a, s′) =
0, ∀s ∈ G, ∀a ∈ A, ∀s′ �= s ∈ S and T (s, a, s) = 1;

• b0 : S → [0, 1] is the initial state probability distribu-
tion, such that b0(s) is the probability of state s being
the initial state in an episode.

When S and A in an RMDP are ground sets, we call this
a concrete RMDP, and in this case an RMDP is an MDP
where the states and the actions are represented through a
relational language. We adopt a closed world assumption:
if a ground atom does not appear in a ground sentence, the
negated ground atom is assumed, as shown in Example 1:

Example 1 If PS = {p1/1, p2/1, p3/1} and C =
{a, b}, then p1(a) ∧ p2(b) denotes the state s1 =
p1(a)∧p2(b)∧¬p1(b)∧¬p2(a)∧¬p3(a)∧¬p3(b).

At this point this closed world assumption is merely a nota-
tional simplification to compactly express maximal clauses;
later the closed world assumption will be important during
abstraction.

Given an (R)MDP, one is interested in finding a policy.
An optimal policy π∗ is a policy that maximizes some func-
tion Rt of the future rewards rt, rt+1, rt+2, . . . A common
definition, which we use, is to maximize the sum of dis-
counted rewards over an infinite horizon: R =

∑∞
t=0 γ

tr,
where 0 ≤ γ < 1 is the discount factor. It is known that
in a concrete MDP, the set of deterministic and memoryless
policies π : S → A, contains an optimal policy [12, 18].

In RL the agent does not know the transition probabili-
ties T . Several RL algorithms can be used to find an optimal
deterministic memoryless policy π : S → A. In this paper
we apply, when dealing with an RMDP, the conventional
Sarsa(λ) algorithm to find π. The idea behind this algorithm

120



is as follows. The agent uses experience 〈st, at, rt, st+1, at+1〉
to learn estimates of optimal Q-value functions that map
(s, a) pairs to the optimal return on taking action a in state
s. At time step t the experience is used to update the el-
igibility trace function ηt and the Q-value estimate Qt, as
shown in Algorithm 1, where 0 ≤ λ ≤ 1 is the decay rate
of the eligibility trace, 0 ≤ γ < 1 is the discount factor,
and 0 ≤ μ ≤ 1 is the learning rate. The eligibility trace
function starts identically zero, and in episodic tasks it is
reinitialized to zero after every episode. The greedy policy
π(st) = argmaxa Qt(st, a) assigns the best action a to the
state st.

Algorithm 1 Sarsa(λ) algorithm.

Initialize Q(s, a), γ, λ, μ.
for each episode h do

(Re)initialize η0(s, a) with 0.
Observe s0.
Choose a0 following a ε-greedy strategy.
for each episode step t ∈ {0, 1, 2, . . .} do

Apply at.
Observe st+1, receive rt.
Choose at+1 following a ε-greedy strategy.

ηt+1(s, a) =

{
1 if (s, a) = (st, at),
γ λ ηt(s, a) otherwise.

Qt+1(s, a) = Qt(s, a) + μ δt ηt+1(s, a), with
δt = rt + γQt(st+1, at+1)−Qt(st, at).

The relational representation used to model the problem
as an RMDP allows us to aggregate states and actions by
keeping variables instead of substituting them by constants
in the predicate terms. We explore this fact to achieve
knowledge abstractions.

3. ABSTRACTION
This section defines abstract state and abstract actions,

and discusses how to use them. We start by defining the
semantics of formulas containing free variables through the
ground states they specify. Suppose we have a conjunction
F of (non-negated) predicates with free variables (only con-
junctions of predicates are allowed in this paper). The free
variables are considered implicitly existentially quantified.
Also, recall the vocabulary is finite. The grounding of F is a
DNF on ground predicates, containing a clause for each pos-
sible grounding of the predicates in F , plus negated ground-
ings for all predicates not in F . For instance, in Example 1,
the formula p1(X) is interpreted as

(p1(a) ∧ ¬p2(a) ∧ ¬p3(a) ∧ ¬p1(b) ∧ ¬p2(b) ∧ ¬p3(b))∨

(¬p1(a) ∧ ¬p2(a) ∧ ¬p3(a) ∧ p1(b) ∧ ¬p2(b) ∧ ¬p3(b)).
Note the importance of the closed world assumption: pred-
icates not in F appear negated in the grounding of F .

3.1 Abstract states and actions
We call abstract state σ (and similarly abstract action α)

a conjunction of a set of non-negated predicates that spec-
ify a nonempty set of ground states s (ground actions a).
An abstract state (action) is generated from a ground state
(action) when constants in the ground state (action) are re-
placed by variables. Replacing just one or more constants
with variables lets one vary the amount of abstraction in

a particular scenario. In this paper we focus on a single
kind of abstraction, where only non-negated ground atoms
are replaced by non-ground non-negated atoms. That is,
we only consider abstractions of the following form: given
a ground state containing non-negated atom p1(a), replace
this atom by p1(X) where X is a fresh logical variable (and
do it for all non-negated ground atoms of the ground state)
— the resulting expression represents an abstract state that
abstracts the ground state.

Example 2 Consider a state where a robot is
in a room a; that is, the state contains inRoom(a).
Another state contains inRoom(b). An abstract
state that abstracts both states contains inRoom(X),
meaning that there exists a room such that the
robot is in it.

We denote by Pσ the set of predicates that describes an
abstract state σ, and by Sσ the set of ground states that
are described using predicates of Pσ and that satisfies the
constraints in the knowledge base B. Note that an abstract
action is a single atom in our model. If pα is the action
predicate of α, then we denote by Aα the set of ground
actions that are encoded by α; that is, the set of actions
produced by grounding α. We also define Sab and Aab as the
set of all abstract states and abstract actions in an RMDP,
respectively. A substitution θ is a set {X1/t1, . . . , Xn/tn},
binding each variable Xi to a term ti.

Example 3 Consider the abstract state σ =
{p1(X1), p2(X2, X3)}; then Pσ = {p1/1, p2/2}.
Ground state s1 = {p1(t1), p2(t1, t2)} is gener-
ated from abstract state σ by the substitution
{X1/t1, X2/t1, X3/t2}. Likewise, ground state
s2 = {p1(t3), p2(t3, t4)} is generated from ab-
stract state σ by the substitution {X1/t3, X2/t3,
X3/t4}. In this case σ abstracts both s1 and s2;
both s1 and s2 belong to Sσ.

Hence each σ represents an aggregate of ground states,
and the abstract state space partitions the original concrete
state space S into a set of k subsets Sσ1 , . . . ,Sσk , where
k =| Sab |. That is, S = ∪k

i=1Sσi and Sσi ∩ Sσj = ∅, i �= j.

3.2 Abstract policy
An abstract policy specifies an abstract action for each

abstract state: πab : Sab → Aab. The challenge is to apply
an abstract policy in a concrete problem: we must provide
a way to translate from the concrete to the abstract level,
and vice-versa. We propose the following scheme.

Assume an abstract policy is given. For a ground state s
we find the corresponding abstract state σ so that s ∈ Sσ.
The current abstract policy πab defines the best abstract
action α to be applied in the abstract state σ. Note that
an abstract action may be mapped into a set of concrete
actions for the underlying concrete decision problem; thus
an abstract state is mapped into a set of ground actions.
To produce a particular ground action, we select randomly
(with uniform probability) a concrete action a from the set
of concrete actions Aα∩As, which combines Aα with the set
As of allowable actions in state s ∈ S. This whole process
yields the grounding of an abstract policy πab(σ), which cor-
responds to using a strategy (greedy or ε-greedy, depending
on the case) to define the abstract action α corresponding
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to the abstract state σ, and then to defining the concrete
action a that will be applied in the concrete state s. This is
denoted by a = grounding(α, s). Obviously, other schemes
may be used to produce a concrete action a, given s and
πab(σ).

3.3 Learning an abstract policy
Suppose one uses the Sarsa(λ) algorithm, given in Algo-

rithm 1, to learn an abstract policy. Clearly only ground
states are visited by the real system, and only ground ac-
tions can be actually applied. Learning must proceed by
processing, at time t, the experience 〈st, at, rt, st+1, at+1〉.
This concrete experience is obviously related to the tuple
〈σt, αt, rt, σt+1, αt+1〉 that is used in the Sarsa(λ) algorithm,
to update the eligibility trace function ηt

ab(σ, α) and the
Qab-value estimate Qt

ab(σ, α).
Now one may consider two distinct strategies. First, one

can observe the states st and st+1, and the actions at and
at+1, and translate them directly into σt, σt+1, αt, αt+1.
This is what we call active abstraction, and the resulting
reinforcement learning scheme is given by Algorithm 2. The
second strategy assumes the existence of a “concrete level”
reinforcement learning scheme that is learning a (concrete)
policy, say using Sarsa (λ). Now the “abstract level” learner
can observe the actions at and at+1 taken by the concrete
level learner, and translate then into αt and αt+1 (together
with σt and σt+1) so as to run Sarsa(λ). This is what we call
passive abstraction, and the resulting reinforcement learning
scheme is given by Algorithm 3.

Algorithm 2 Active Abstraction.

Initialize Qab(σ, α), γ, λ, μ.
for each episode h do

(Re)initialize η0
ab(σ, α) with 0.

Observe s0 and find the corresponding σ0.
Choose α0 following a ε-greedy strategy.
a0 = grounding(α0, s0).
for each episode step t ∈ {0, 1, 2, . . .} do

Apply at.
Observe st+1 and find the corresponding σt+1.
Receive rt.
Choose αt+1 following a ε-greedy strategy.
at+1 = grounding(αt+1, st+1).

ηt+1
ab (σ, α) =

{
1 if (σ, α) = (σt, αt).
γ λ ηt

ab(σ, α) otherwise.

Qt+1
ab (σ, α) = Qt

ab(σ, α) + μ δt ηt+1
ab (σ, α), with

δt = rt + γQt
ab(σt+1, αt+1)−Qt

ab(σt, αt).

Algorithm 3 Passive Abstraction.

Initialize Qab(σ, α), γ, λ, μ.
for each episode h do

(Re)initialize η0
ab(σ, α) with 0.

for each episode step t ∈ {0, 1, 2, . . .} do
Observe 〈st, at, rt, st+1, at+1〉.
Find corresponding 〈σt, αt, rt, σt+1, αt+1〉..
ηt+1
ab (σ, α) =

{
1 if (σ, α) = (σt, αt)
γ λ ηt

ab(σ, α) otherwise.

Qt+1
ab (σ, α) = Qt

ab(σ, α) + μ δt ηt+1
ab (σ, α), with

δt = rt + γQt
ab(σt+1, αt+1)−Qt

ab(σt, αt).

To summarize, active abstraction runs reinforcement learn-
ing and directly specifies the ground actions by translating
the abstract actions, while passive abstraction simply ob-
serves the experiences of interactions experienced by a con-
crete level learner. Passive abstraction does not actually
apply the abstract policy being learned in the task, but only
receives the experiences from the interactions conducted at
the concrete level of learning and uses these experiences to
update the Qab-values.

Recall that our purpose here is to use the abstracted
(smaller) state space to quickly guide the search for a policy
for the concrete problem. We now argue that passive ab-
straction is better than active abstraction for such purpose,
since the former is an abstraction of the learning process
conducted at the concrete level, while the latter seeks to di-
rectly extract the structure of the task as built by a concrete
learner, which is much more complex given the difficulties
derived from aggregations of state information made in the
abstract level.

An experimental comparison of the two strategies for learn-
ing abstract policies is shown in Figure 1, and in this figure
we can see that the results support our arguments. These
experiments were performed in the robotic navigation do-
main described in Section 5.1. In this experiment, the agent
runs 1000 episodes (with a maximum of 500 steps in each)
to complete the task to reach some goal location (5 differ-
ent goal locations are used) from random initial states. We
draw three curves: Concrete, Abs-active and Abs-passive.
The curve Concrete is the result of learning at the concrete
level using the standard Sarsa(λ) algorithm and an ε-greedy
strategy. The curves Abs-active and Abs-passive show the
result of applying Algorithms 2 and 3, respectively. Each
point in the curve represents the actual value of the policy
learned up to that episode. The value V π of a policy π is
the expected value of a policy, i.e.,

V π =
∑
s∈S

b0(s)

{
E

[ ∞∑
t=0

γtrt|π, s0 = s

]}
. (1)

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

# of episodes

Po
lic

y 
va

lu
e

 

 

Concrete
Abs−active
Abs−passive

Figure 1: Comparison between learning in the con-
crete level with the plain Sarsa(λ) algorithm, and
active and passive abstractions.
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Note that active abstraction is significantly worse than
passive abstraction, both failing to reach the optimal con-
crete policy. Also, note that both abstract schemes have
faster convergence than the concrete level learner. Besides,
note that both, passive and active abstractions, have a bet-
ter performance in the initial episodes than the concrete level
learner.

The challenge here is to conceive a scheme that can both
converge quickly and converge to an optimal performance
level. We now explain how learning in the abstract level can
be combined with learning in the concrete level to produce
such a result.

4. PROPOSED RL FRAMEWORK
As we have noted already, we are primarily interested in

the abstraction of knowledge generated during the learning
process, so that this abstraction can be used to speed up
the process. Furthermore, our interest is also the transfer of
learning results between tasks that have the same Sab and
Aab.
Recall that we have a given concrete decision problem for

which we should learn a policy. As will be clear, just ap-
plying reinforcement learning to the concrete problem is not
the best possible use of the available exploration data. The
idea here is to use reinforcement learning to learn simultane-
ously a concrete level and an abstract level policy. Because
the abstract policy is simpler (less states, less actions) than
the concrete policy, learning is faster in the abstract level
than in the concrete level, as we show in Figure 1. We thus
have a framework where the abstract level gives an initial
policy to the concrete level; then the abstract level is quickly
refined, and continues to provide guidance to the concrete
level; and then the concrete level is finely tuned to the target
problem, finally leaving the guidance of the abstract level.
The challenge is to create a framework where this process is
guaranteed to reach optimality in the concrete target prob-
lem.

The agent’s interaction with the environment clearly oc-
curs in the concrete level, however the experience 〈st, at, rt,
st+1, at+1〉 is used in both, abstract and concrete, so that
values can be updated in both levels.

We use Sarsa(λ) (given in Algorithm 1) in both, concrete
and abstract levels. In the abstract level, moreover, we use
the passive learning strategy (given in Algorithm 3). How-
ever, the two learning processes should be integrated, so that
the abstract policy πab that is being learned may suggest the
exploration on the concrete level, guiding the agent to more
promising spaces. We then balance the exploration of the en-
vironment and the exploitation of the concrete policy being
learned. In order to achieve this balance, we use an adapta-
tion of the PRQ-learning algorithm proposed elsewhere [6,
7].

In our framework, learning proceeds in multiple episodes.
Each episode positions the agent in an initial state according
to b0 and terminates when either the goal state sg is reached
or a maximum number of steps is achieved. Here we consider
that each task is defined by only one goal state, i.e. in each
task G = {sg}.
At the beginning of each episode, the agent selects among

possible policies to apply: the πc policy in the concrete level,
the πab policy in the abstract level, and the (if existing)
πpast policies learned previously in similar tasks. This policy
selection is guided by a probabilistic choice, according to

values Wπc , Wπab , and np values of Wπpast , and a softmax
selection, where np is the number of past abstract polices
considered.

The values Wπ
k at any episode k are the average reinforce-

ment received per episode after executing that policy, i.e.,

Wπ
k =

1∑k−1
i=1 1(πi = π)

k−1∑
i=1

H∑
h=1

1(πi = π)γhrk,h,

where the function 1(πi = π) indicates whether the policy π
was chosen in the episode i, and H is the maximum number
of steps in each episode. Whatever the policy πk selected, it
will be applied for an entire episode k following an ε-greedy
strategy, which at any time step t applies a random policy
πrandom in the concrete level with a probability ε, 0 ≤ ε ≤ 1
and a fully-greedy strategy otherwise.

If any abstract policy, whether πabs or πpast, was followed
in the episode, then only the values of Q(s, a) are updated,
since we use the passive approach for abstraction. Other-
wise, the values of Q(s, a) and Qab(σ, α) are updated after
the episode. Also, after each episode we update the value
W corresponding to the policy followed in the episode, i.e.,
we update Wπc , Wπab , or one of the past polices Wπpast .

This procedure, called S2L-RL, a Simultaneous Two-layer
Reinforcement Learning algorithm is described in Algorithm
4, where:

• ε, 0 ≤ ε ≤ 1, is the exploration probability for the
ε-greedy strategy;

• λ, 0 ≤ λ ≤ 1, is the decay rate of the eligibility trace;

• γ, 0 ≤ γ < 1, is the discount factor;

• μ, 0 ≤ μ ≤ 1, is the learning rate;

• τ is the temperature parameter for the Boltzmann
strategy;

• Δτ is an incremental size in τ ;

• W0 is the estimated value of the policy in the concrete
level, Wπc ;

• W1 is the estimated value of the policy in the abstract
level, Wπab ;

• Wi, i = 2 . . . (np + 1), is the estimated value of each
past policy Wπpast .

That is: learn by using policy πpast or πab to guide ex-
ploration and gradually replace it with the greedy policy in
the concrete level πc, while using πrandom less often, just to
guarantee exploration and convergence to optimality. The
choice is driven by the estimated value of each policy to the
learning task.

When the agent starts learning, πc is equal to πrandom,
since theQ function is usually initialized with the same value
to all state-action pairs. If we assume that πpast was learned
considering a similar task, the actions the agent will consider
have the property that they used to be good to solve a sim-
ilar problem before. Therefore the agent should obtain a
better initial performance, i.e. a higher value of Rt in the
first episodes.
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Algorithm 4 S2L-RL: Simultaneous Two-layer RL.

Given ε, λ, γ, μ, τ , Δτ .
Given np past policies (np = 0 means no past policy).
Initialize Q(s, a) and Qab(σ, α) with 0.
Initialize Wi with 0, i = 0 . . . np+ 1.
for each episode k = 1 to K do

(Re)initialize ηk(s, a) and ηk
ab(σ, α) with 0.

Select a policy πk, given that each policy πj ,
j = 0, . . . , np+1, is assigned the following probability:

eτWj∑np+1
p=0 eτWp

.

Execute the learning episode k using Sarsa(λ) in the
concrete and abstract levels.

if πk = πc then
Update both Q(s, a) and Qab(σ, α).

else
Update only the valuesQ(s, a) in the concrete level.

τ = τ +Δτ .

5. EXPERIMENTS
To show that our framework works in practice, we run

a series of experiments in a robot navigation environment.
We start by describing the navigation domain and then the
experimental results are presented.

5.1 Robot navigation environment
We modeled the robot navigation environment by dis-

cretized regions that are described by a set of predicates
and a set of objects. Regions are divided into rooms and cor-
ridors, and the predicates inRoom(ri) and inCorridor(ci)
indicate whether the agent is in the first or in the second.
With a range vision of two cells, the agent can also see:
adjacent rooms, adjacent corridors, doors, fiducial mark-
ers (far, near, or next to) and empty space; and the pred-
icates seeDoor(di), seeAdjRoom(ri), seeAdjCorridor(ci),
seeMarkerFar(mi), seeMakerNear(mi), seeMarkerNext(mi)
and seeEmptySpace indicates respectively what the agent
may see in a region. The agent observes adjacent rooms
or corridors only if the agent is next to the door. Finally,
the agent sense the direction and distance to the goal with
three predicates: nearGoal, appGoal(oi) and awayGoal(oi);
the first indicates the agent is a Manhattan distance of at
most 5 from the goal, the other ones indicates when the
agent sees an object oi, if the object is closer to the goal
( predappGoal(oi)) or farther from the goal (awayGoal(oi))
relatively to the agent. Objects can be: rooms (ri), corri-
dors (ci), doors (di) and fiducial markers (mi).

All the experiments use a map with 184 concrete states
and, depending on the goal position, tasks can be set with
the number of abstract states ranging from 23 to 32. Fig-
ure 2 shows the map used in all the experiments, where a
goal state sg can be chosen among any state in a room. For
example, the Figure 2 shows the task when the goal state is
set sg = 4; the abstract state σ1 = inRoom(X)∧seeDoor(Y)∧
appGoal(Y) ∧ nearGoal includes the set Sσ1 = {7}, whereas
the abstract state σ2 = inRoom(X)∧seeDoor(Y)∧appGoal(Y)
includes the set Sσ2 = {21, 27, 37, 77, 101, 105, 137, 143,
165, 166, 173, 177, 184}. Depending on the goal position,
the set of predicates describes differently each enumerated

state, giving rise to different abstractions. We ran experi-
ments in the following goal positions: 4, 12, 81, 95 and 181.

Actions are described by predicates:
PA = {goToDoorAppGoal(di), goToRoomAppGoal(ri),
goToCorridorAppGoal(ci), goToMarkerAppGoal(mi),
goToEmptyAppGoal, goToDoorAwayGoal(di),
goToRoomAwayGoal(ri), goToCorridorAwayGoal(ci),
goToMarkerAwayGoal(mi), goToEmptyAwayGoal}
and their names have clear meanings. If an agent chooses
an abstract action that cannot be instantiated (for example,
the agent chooses to move to door, but none is seen), the
agent tries to move randomly using one of the avaliable ac-
tions; in the example in Figure 2, if the agent is in state 11,
two actions can be instantiated: goToDoorAppGoal(di) and
goToDoorAwayGoal(di).

However, because the agent can only see empty space in-
side rooms and fiducial markers outside rooms, the agent
takes into consideration such restrictions and explore just 8
abstract actions for each abstract state. On the other hand,
because the set of concrete actions is too large, the agent
only tries actions that can be executed in a given concrete
state when learning in the concrete layer.

5.2 Results
To assess how efficient the proposed RL framework is,

we evaluated the performance of three types of RL agents.
The first is an agent using the classical Sarsa(λ) algorithm
to solve a task, used as a reference. The second uses the
S2L-RL framework, but without any previous knowledge,
whereas the third also uses S2L-RL to solve a target task,
but with the aid of some abstract policies of previously
solved source tasks.

We consider a set of 5 tasks for the experiments, always
with the goal inside a room. The initial state probability
distribution b0 is uniform for all states. The parameters
used for all agents are: ε = 0.2, μ = 0.05, γ = 0.95, λ = 0.9
and Δτ = 0.05. All these are constants and do not change
during the learning process. The initial value of τ is set to
τ = 0 for the agent without reuse and to τ = 10 for the
agent with reuse of previous knowledge. This is because the
former agent begins with two policies that are not ready
and both are to be built, πc and πab. Therefore an initial
value τ = 0 assigns equal probabilities to both of them. On
the other hand, the agent with reuse already starts with a
number of past policies, which are already built. The higher
initial value of τ ensures that in the beginning of the learning
process, these particular policies can be chosen more often.

For each task and agent, we run a total of 1000 episodes
with a maximum number of steps per episode of 500. An
episode starts in an initial state chosen following b0 and it
ends when the agent reaches the goal state or takes the maxi-
mum number of steps. Then a new episode is started and the
process continues. When solving a task, the agent with reuse
takes four abstract policies built previously with S2L-RL as
its past policies. These policies are the solutions to all tasks,
but the current one, in our set of 5 tasks. This process is re-
peated 30 times (totaling 150 executions per agent) and the
average accumulated reward, averaging all tasks is shown in
Figure 3.

We notice a significant improvement in performance, es-
pecially in the initial portion of the learning process, when
comparing S2L-RL to Sarsa. This is mainly due to the fact
that the abstract policy is built faster, as Section 3 shows.
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1 13 17 21 37 59 67 72 77 95 107 111 115 125 131 137 153 167 170 173

2 38 78 96 116 154

3 39 79 97 117 155

4 14 18 22 29 33 40 51 55 60 68 73 80 87 91 98 108 112 118 126 132 138 145 149 156 174

5 41 99 157 175

6 42 100 158 176

7 23 30 34 43 52 56 61 81 88 92 101 119 127 133 139 146 150 159 168 171 177

62 160

63 161

8 24 31 35 44 53 57 64 69 74 82 89 93 102 109 113 120 128 134 140 147 151 162 169 172 178

9 25 45 103 121 141 163 179

10 26 46 104 122 142 164 180

11 15 19 27 47 65 70 75 83 105 123 129 135 143 165 181

48 84 182

49 85 183

12 16 20 28 32 36 50 54 58 66 71 76 86 90 94 106 110 114 124 130 136 144 148 152 166 184

Figure 2: Robot navigation environment - thick lines represent walls; darker cells, rooms; and white cells,
corridors. As an example cell number 4 is the goal; the states considered near the goal are also marked in
darker colors.
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Figure 3: Comparison between Sarsa and S2L-RL.
S2L-RL simultaneously learns an abstract and a con-
crete policy and can also reuse past abstract policies
to accelerate learning.

The abstract policy reaches a maximum value that is lower
than the maximum of the optimal policy, but as it is reached
earlier, it can provide a good guidance to the agent. This
thus yields higher reward gains while the ground policy is
not ready. This means that not only does the agent learn
faster but also it accumulates in average more reward during
the whole learning process.

Furthermore, when the agent takes advantage of previous
knowledge, the performance is even better. As it is expected
that the chosen abstraction holds some properties across dif-
ferent tasks, the past policies can guide the agent in the very
beginning of the learning process, when almost no knowledge
is acquired yet.

However it is important not to overuse these policies. The
measure W , the average reinforcement received per episode,
gracefully controls the balance between all policies (the two
being learned - concrete and abstract - and the past ones),
cutting off the policy reuse when it is no longer necessary.
Along the 1000 episodes, the average use of the concrete
policy is around 86%, 10% for the past policies and the re-
maining 4% for the new abstract policy. The evolution of
the usage of each policy over the time is shown in Figure 4.
We can see that the contribution of past and abstract poli-
cies is concentrated in the first 200 episodes and thereafter
the concrete policy assumes the actions.

6. CONCLUSIONS
In this paper we have proposed a framework, referred to

as S2L-RL, for simultaneous reinforcement learning over ab-
stract and concrete levels. We have described experiments
that indicate that this framework does combine a speed up in
learning convergence and a convergence to optimality. More
precisely: while an abstract layer can be used to boost the
learning speed, a concrete layer guarantees convergence. But
beyond accelerating learning of an optimal policy, the exper-
iments showed the synergy of both levels working together,
as S2L-RL can improve over both levels. With regard to
transfer learning, experiments also showed that S2L-RL can
transfer effectively between similar tasks.
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Figure 4: Evolution of policy usage, showing the
average usage of each policy for 150 executions of
S2L-RL.

The results here presented offer a new approach to boost
learning speed in RL, giving us guidance on how to explore
coarse abstraction (even if such a coarse abstraction does
not guarantee Bellman’s principle of optimality). Any ad-
vance into better abstractions, abstract value function esti-
mation, or abstract policy search can be directly applied to
our framework.
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