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ABSTRACT

The adoption of Nash equilibrium (NE) in real–world set-
tings is often impractical due to its too restrictive assump-
tions. Game theory and artificial intelligence provide alter-
native solution concepts. When knowledge about opponents
utilities and types is not available, the appropriate solu-
tion concept for extensive–form games is the self–confirming
equilibrium (SCE), which relaxes NE allowing agents to have
incorrect beliefs off the equilibrium path. In this paper,
we extend SCEs to capture situations in which a two–agent
extensive–form game is played by heterogeneous populations
of individuals that repeatedly match (e.g., eBay).

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Multi–agent systems

General Terms

Algorithms, Economics

Keywords
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1. INTRODUCTION
The study of strategic interactions has recently deserved

a lot of attention in artificial intelligence. The design of ra-
tional agents is usually pursued by exploiting models from
microeconomics [6] and by algorithmic tools to find strate-
gies [6]. The central solution concept is Nash equilibrium
(NE). Although in principle NE can be applied to an enor-
mous range of situations to prescribe strategies to agents,
it presents two drawbacks that make its prescriptive power
non–satisfactory. The first drawback concerns its epistemic
requirements (e.g., common and complete information over
payoffs) that are rarely met in real–world situations. The
second drawback is the multiplicity of equilibria: with mul-
tiple equilibria, agents cannot coordinate on which equilib-
rium to play unless they are somehow correlated, but in
this case a correlated equilibrium should be played. Even
when NE is used as descriptive tool to study what are sta-
ble states of learning agents, some problems arise, learning
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agents having non–NE stable states, and therefore NE may
have a non–satisfactory descriptive power [3].

The aforementioned drawbacks of NE pushed researchers
to design alternative solution concepts taking also into ac-
count learning dynamics, e.g., the CURB set [1] is a non–
equilibrium concept defined as a set of strategies that con-
tains the best responses to any mixture over itself and any
best–response dynamics will stay within it [5]. With extensive–
form games, relaxing the epistemic requirements of NE, it
is possible to have stable states that are not NEs [3]. These
equilibria, called self–confirming equilibria (SCEs), require
that each agent plays best response strategies to her beliefs,
but the beliefs can be wrong off the equilibrium path (while
they are confirmed on). This concept is perfectly suitable
for learning agents: if agents can entirely explore the strat-
egy profile space, they would have correct beliefs everywhere
on the game tree and they would play a subgame perfect
equilibrium (SPE) or a sequential equilibrium (SE), but, in
practice, learning agents cannot explore the whole space and
therefore they can have wrong beliefs over some portion of
the tree and the strategy profile they play is an SCE [4].

2. EXTENSIVE–FORM GAMES WITH POP-

ULATIONS
We focus on two–agent extensive–form games that are re-

peatedly played by different individuals as described in [3].
More precisely, for each agent (representing a role), there
is a population of individuals and, at each repetition of the
game, one individual is drawn from each population and
the two drawn individuals are matched and then play the
game. At each repetition, different individuals may play. A
common example is a market in which bilateral negotiations
are carried out: there are two agents/roles (i.e., buyer and
seller), but different buyers and different sellers can match.
Other economic examples are given by auctions.

The game model proposed in [3] presents two main limita-
tions that we remove in this paper: infinite populations and
identical individuals. In our model, we allow populations
to be finite or infinite and to be heterogeneous including
individuals of different types, where types differentiate for
their preferences. We denote by Θ = (Θ1, . . . , Θ|N|) the
set of all the types (θ denotes a generic type), where Θi

is the set of types of agent i. We assume that the num-
ber of types is finite. We denote by Θ−i = ×j 6=iΘj the set
of all the possible profiles of types of all the agents except
agent i. Utility functions are defined also over types (in
addition to the strategies of the agents). When types are
non–interdependent, we have that utility function of agent i

is defined as ui = ui(θ, σi, σ−i) where θ ∈ Θi and σj is the
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strategy of agent j; instead when types are interdependent
we have ui = ui(θ, θ′, σi, σ−i) where θ ∈ Θi and θ′ ∈ Θ−i.
For each type θ ∈ Θi, there is a (possibly infinite) popula-
tion of individuals Λθ (we denote by λ a generic individual
and by Λi the set of all the individuals of agent i). Each
type θ ∈ Θi is associated with a probability ωi,θ with which
an individual of the pertinent population is drawn. Obvi-
ously,

P

θ∈Θi
ωi,θ = 1. Similarly, each individual λ ∈ Λθ is

associated with a probability ωi,θ,λ with which the individ-
ual is drawn such that

P

λ∈Λθ
ωi,θ,λ = ωi,θ. For the sake

of presentation, we assume that each individual has a dif-
ferent index λ and therefore we can refer to an individual
λ ∈ Λθ by using λ in place of 〈i, θ, λ〉. Similarly, we assume
each type has a different θ, therefore we can refer to a type
θ ∈ Θi by using θ in place of 〈i, θ〉.

Different individuals may adopt different strategies. σλ

denotes the strategy of individual λ. The aggregate strategy
of the individuals of type θ ∈ Θi is σθ =

P

λ∈Λθ
σλ ·ωλ, and

the one of agent i is σi =
P

θ∈Θi
σθ · ωθ.

As in [3], we assume that agents have no information
about the opponents. Specifically, we assume:

• each individual has no information about the utility
functions of the other agents;

• each individual has no information about the individ-
uals of the other agents;

• when utilities are interdependent, each individual knows
the types of the opponents, but she does not know the
pertinent probabilities and utilities;

• when utilities are not interdependent, no assumption
about the knowledge of the opponents’ types is made.
This is because it can be proved, with a simple exten-
sion of [2], that knowing or not the opponents’ types
(without knowing the utilities and probabilities) leads
to the same set of equilibria.

Customarily, a game with types is said Bayesian. Each
individual forms a belief over the opponents and adjusts it
during the play. More precisely, when utilities are not inter-
dependent, each individual λ of agent i has a (potentially
different) belief σ̂

j

λ over the aggregate strategy of agent j for
every j 6= i. This is because each individual λ does not know
the types and the individuals of the opponents and there-
fore she cannot form any belief over the single individual or
type of the opponents. When utilities are interdependent,
each individual λ of agent i has a (potentially different) be-
lief σ̂θ

λ over the aggregate strategy of type θ ∈ Θj for every
j 6= i and a (potentially different) belief ω̂θ

λ over the perti-
nent probability ωθ (also in this case individuals have not
beliefs over the single individuals of the opponents).

3. SOLUTION CONCEPTS
Different solution concepts extending the SCE can be pro-

vided according to each specific situation, see Tab. 1.

individuals per type

1 n ∞

types per agent
1 USCE FHSCE IHSCE

n BUSCE BFHSCE BIHSCE

Table 1: Extensions of the SCE concept.

The basic solution concept, introduced in [3], is the uni-
tary SCE (USCE) that captures situations with a unique
type per agent and a unique individual per type. A USCE
constrains the agent’s strategy to be best response to the

belief over opponent’s strategy and constrains beliefs to be
correct (w.r.t. the strategies) on the equilibrium path.

Definition 3.1. A USCE is a pair (σ, σ̂) such that:
• each agent i has single type θ and single individual λ;
• for every agent i, σλ is a best response to σ̂−i

λ , where
λ is the agent i’s individual;

• for every agent i, σ̂−i
λ is equal to σλ′ on the equilibrium

path, where λ and λ′ are the individuals of agent i and
agent −i, respectively.

Upon the USCE concept, we build the solution concepts
for other (more complex) situations. We consider the situa-
tion with one type per agent and multiple finite individuals:
the solution concept is finite heterogeneous SCE (FHSCE).

Definition 3.2. An FHSCE is a pair (σ, σ̂) such that:
• each agent i has a single type θ and a finite number of

individuals λ;
• for every agent i, σλ is a best response to σ̂−i

λ , where
λ is an agent i’s individual;

• for every agent i, σ̂−i
λ is equal to σ−i on the equilibrium

path identified by σλ and σ−i, where λ is an individual
of agent i;

• for every agent i, σi is the aggregate strategy of all the
agent i’s individuals.

Notice that the constraints over the beliefs of an indi-
vidual λ and the equilibrium path she observes depend on
σλ. Thus, different individuals may have different strate-
gies, each supported by different beliefs. The above solution
concepts extend to the case of infinite individuals (IHSCE),
and to the case of Bayesian information (BUSCE, BFHSCE,
BIHSCE).

4. FUTURE WORKS
In future, we will study three main problems associated

with SCEs:
• Solution concept characterization: we will characterize

the relationships between the different solutions con-
cepts.

• Equilibrium computation: we will study the problem
of computing an equilibrium given the agents’ utilities
and of enumerating all the equilibria.

• Learning dynamics: we will study the dynamics of
learning agents, analyzing how replicator dynamics with
mutation (simulating Q–learning) is affected (in terms
of attraction of repulsion) by the presence of SCEs.
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