


Figure 1: A comparison of AFC-CBJ and APO on 20 variable random and geometrically-structured DisCSPs.

values for p1 of 0.1, 0.4, and 0.7 and values for p2 that var-
ied from 0.1 to 0.9. We conducted experiments on both ran-
dom and geometrically-structured instances and collected 30
samples per data point. Both algorithms were given the ex-
act same problem instances with the same initial variable
assignments. We used a cycle based simulator where during
each cycle, messages were delivered to the agents, they were
allowed to process them, and then queue up messages for de-
livery at the beginning of the next cycle. During the runs,
we counted the number of messages sent and the number of
NCCCs used by each protocol.
The results of these experiments can be seen in Figure

1. We see that on low and high density problems, that dis-
tributed GS-CSPs on average are easier to solve than ran-
dom DisCSP instances. This trend reverses for the medium
density problems, where it is clear that for both APO and
AFC-CBJ that a shifted phase transition has a meaningful
effect. This has a particularly profound effect on AFC-CBJ.
Another interesting trend that is noteworthy is that the

most recent implementation of APO outperforms AFC-CBJ
on all instances for both metrics. In the best case, we found
that it used 20X fewer NCCCs than AFC-CBJ. We should
note that for time considerations, we were forced to stop
some of the runs for AFC-CBJ at 250,000 cycles. This only
affected the p1 = 0.4, p2 = 0.4 results by making them ap-
pear somewhat better than the actual values we would ob-
tain if they were allowed to run to completion.

4. CONCLUSIONS AND FUTURE WORK
This paper introduces an important subset of the classi-

cal CSP formulation: the geometrically-structured CSP. The
GS-CSP is based on the recognition that many real-world
problems occur in n-dimensional space and that constraints
in these domain are often based on distance. These prob-
lems can be represented as geometric graphs, which possess
a unique set of properties. By exploring these problems,
we have discovered that they are characteristically easier to
solve when the density of their constraints are either fairly
low or fairly high. However, for medium density problems,
they become more difficult to solve than their random coun-
terparts.
Many of these discoveries can be explained by examining

the clustering properties of geometric graphs as the edge
density increases. GS-CSPs form tightly coupled clusters at
low densities, yet remain fairly disconnected overall when
compared to random instances. There is considerable work
that still remains to be done to fully understand the impli-

cations of geometric structure on constraint networks. For
example, the experiments in this paper were done using a
small number of variables with large domains. This choice
was made in part to follow convention. However, we found
that using a larger numbers of variables was impractical due
to the run times of AFC-CBJ. We believe it is important to
look at larger problems, potentially sacrificing the size of the
variable’s domains, in order to truly understand the conse-
quences that structure has on problem solving complexity
and solution optimality.
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