
Embedding Agents in Business Applications using
Enterprise Integration Patterns

(Extended Abstract)
Stephen Cranefield

Department of Information Science
University of Otago, Dunedin, New Zealand
scranefield@infoscience.otago.ac.nz

Surangika Ranathunga
Department of Information Science

University of Otago, Dunedin, New Zealand
surangika@infoscience.otago.ac.nz

ABSTRACT
This paper addresses the integration of agents with external re-
sources and services in enterprise computing environments. We
propose an approach for interfacing agents and existing message
routing and mediation engines based on the endpoint concept from
the enterprise integration patterns of Hohpe and Woolf.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
multiagent systems

Keywords
Agent integration; Enterprise integration patterns

1. INTRODUCTION
Much of the research in multi-agent systems (MAS) is based

on a conceptual model in which the only entities are agents and
an abstracted external environment. This is in contrast to modern
enterprise computing environments, which may comprise hundreds
and possibly thousands of applications, using a variety of communi-
cation protocols and interface technologies [1].

The current solutions for integrating agents with external com-
puting infrastructure are: (a) to access these resources and services
directly from agent code (if using a conventional programming
language), (b) to implement user-defined agent actions or an en-
vironment model to encapsulate these interactions, (c) to provide
custom support in an agent platform for specific types of external
service, or (d) to provide a generic interface for calling external
resources and services, either using a platform-specific API [2] or
by encapsulating them as agents [3], artifacts [4] or active compo-
nents [5]. However, none of these approaches are a good solution
when agents need to be integrated with a range of technologies. They
either require agent developers to learn a variety of APIs, or they
assume that agent platform developers or their users will provide
wrapper templates for many commonly used technologies.

This paper proposes an alternative approach: the use of a direct
bridge between agents and the mainstream industry technology for
enterprise application integration: message routing and mediation
engines, and in particular, those that support the enterprise integra-
tion patterns (EIP) of Hohpe and Woolf [1]. We have implemented

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Minnesota,
USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

this approach by developing a “component”1 for the lightweight
Apache Camel2 enterprise integration framework, which acts as a
bridge between “agent endpoints” in Camel and agents running the
Jason BDI interpreter3. We illustrate this approach by means of a
business process use case requiring the integration of Jason agents
with a database management system, a mail server, a message broker
and the Apache ZooKeeper coordination server.

2. AN AGENT COMPONENT FOR CAMEL
Apache Camel is based on the EIP concepts of routes and end-

points. A Camel application comprises a set of route definitions.
Each route receives messages from a consumer endpoint, and per-
forms a sequence of processing steps on each message, such as
filtering and transforming messages, before sending the processed
messages to one or more producer endpoints. Camel has more than
130 components that implement endpoints for connecting routes to a
variety of external resources, services and protocols. To enable this
diversity, any data can be stored in a Camel message as the value of
a named header, within its body, or as an attachment. An important
feature of Camel is its built-in support for 65 “enterprise integration
patterns” (EIPs) that have been identified by Hohpe and Woolf [1].

Using our agent component, Camel routes can include agent con-
sumer and agent producer endpoints. The former allow messages
and action invocations from agents to be translated into Camel mes-
sages that are processed by routes. The latter allow Camel messages
to be translated into agent messages or percepts to be delivered
to agents. Agent endpoint URI parameters and Camel message
headers can be used to configure individual endpoints in a route.
This endpoint design (detailed in the full version of this paper4)
is not specific to Jason and Camel and can serve as a pattern for
interconnecting any types of agents and message-based middleware.

Each agent and endpoint runs in a separate thread, and agents
are run within an agent container. After receiving messages and
percepts from agent:message and agent:percept producer
endpoints in Camel routes, the container writes messages and per-
cepts to concurrently accessible queues for the appropriate agents.
Messages and actions initiated by agents in the container are passed
to the agent consumer endpoints for processing by routes.

3. A BUSINESS PROCESS USE CASE
To illustrate our approach we consider the problem of achieving

more targeted information flow within an organisation. Our solution,
shown in Figure 1, introduces a “to.share” email account, monitored
by agents acting on behalf of the users. Users with information
1 http://github.com/scranefield/camel-agent
2 http://camel.apache.org 3 http://jason.sourceforge.net
4 http://arxiv.org/abs/1302.1937

1223



Listing 1: Camel route for implementing an action as a database query

from("agent:action?exchangePattern=InOut&actionName=get_email_accounts&resultHeaderMap=result:1")
.setBody(constant("select email from users"))
.to("jdbc:dataSource")
.setHeader("result").groovy("exchange.in.body.collect{'\"'+it['email']+'\"'}")

Mail server

ZooKeeper
server cluster

Prefs.

Prefs.

Prefs.Prefs.

Prefs.

Prefs.

Application server

DBMS

Agent clusters

Message broker

Camel 
instances

Figure 1: Architecture of our use case

to share can mail it to this account and each agent evaluates the
message’s relevance to its assigned users, based on knowledge of
the users’ roles, the organisational structure, and any plans provided
by users to encode their goals for receiving information (entered
via a Web-based GUI). The agents then forward the message to
the relevant users’ email accounts. Our design for implementing
this business process involves coordinated use of Jason agents, a
mail server, a database management system, a message broker and
ZooKeeper, with the coordination performed by Camel routes.

One of the Camel routes needed is shown in Listing 1. This is
defined using Camel’s Java-based domain-specific language. The
from method creates a consumer endpoint and the to method cre-
ates a producer endpoint. Endpoints are specified using uniform re-
source identifiers (URIs), with the first part of the URI (the scheme)
identifying the type of the endpoint. The route maps the agent
action get_email_accounts(Accounts) to an SQL query.
The query result is converted to an AgentSpeak list of strings using
a Groovy expression, and this is stored in the message’s result
header. The agent endpoint URI has a resultHeaderMap pa-
rameter specifying that the endpoint should unify the value of the
result header with the first argument of the action literal.

Other routes, described in the full version of this paper4, encode
the agents’ interactions with ZooKeeper (to maintain the list of
running agents), a database management system (to retrieve user
and role information), a message broker (to receive notifications of
changes to user information), and an email server (to retrieve and
forward new email messages sent to the “to.share” account). These
routes use Camel’s existing components for connecting to these
types of system. They also use benefit from Camel’s built-in opera-
tors for enterprise integration patterns, such as Idempotent Receiver
(to filter out duplicate messages), Splitter (to split a message into
separate messages), and Aggregator (to combine several messages
into one, based on a correlation identifier), as well as its recipes
for using these to implement larger patterns such as Scatter-Gather
(sending a request and amalgamating the responses).

These routes have been tested using Jason stubs and the necessary
external services, but the full Jason code for this scenario has not
yet been developed. However, because the coordination logic is
located in the Camel routes, the agent code required will be much
simpler than would otherwise be needed without the use of our

approach. Most of the agents’ behaviour is to react to percepts sent
from Camel by performing actions (e.g. to fetch an updated list of
email accounts), and to use Jason’s internal action library to update
the plans used to evaluate the relevance of email messages to users.
In response to the goal to evaluate a message, the agents must call
the user plans, collect the users for whom these plans succeed, and
send these in a message to Camel. The agents must also recompute
the allocation of users to agents whenever the list of agents changes
or new users are added, which they detect via ‘new belief’ events.

4. CONCLUSION
In this paper we have proposed a novel approach for integrating

agents with external resources and services using the capabilities of
existing enterprise integration technology. By using a mainstream
technology we can benefit from the competitive market for robust
integration tools (or the larger user base for open source software),
and have access to a much larger range of pre-built components for
connecting to different resource and service types.

We have described an agent component for Camel and illustrated
its practical use in a hypothetical business process use case. This
demonstrates the benefits of using a specialist coordination tool such
as Camel for handling the coordination of distributed agents and
services, and leaving the agent code to provide the required core
functionality. This division of responsibilities also enables a division
of implementation effort: the coordination logic can be developed
by business process architects using a programming paradigm that
directly supports common enterprise integration patterns, and less
development time is needed from (currently scarce) agent program-
mers. An agent programmer using our framework does not need
to learn any APIs for client libraries or protocols—the agent code
can be based entirely on the traditional agent concepts of messages,
actions and plans. The developer of the message-routing logic does
not need to know much about agents except the basic concepts en-
coded in the agent endpoint design (message, illocutionary force,
action, percept, etc.) and the syntax of the agent messages to be sent
from and received by the routes.

5. REFERENCES
[1] Gregor Hohpe and Bobby Woolf. Enterprise Integration

Patterns: Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley, 2004.

[2] T. J. Rogers, Robert Ross, and V.S. Subrahmanian. IMPACT: A
system for building agent applications. Journal of Intelligent
Information Systems, 14:95–113, 2000.

[3] M. R. Genesereth and S. P. Ketchpel. Software agents.
Communications of the ACM, 37(7):48–53, 1994.

[4] Alessandro Ricci, Michele Piunti, and Mirko Viroli.
Environment programming in multi-agent systems: an
artifact-based perspective. Autonomous Agents and Multi-Agent
Systems, 23(2):158–192, 2011.

[5] Alexander Pokahr, Lars Braubach, and Kai Jander. Unifying
agent and component concepts. In Multiagent System
Technologies, volume 6251 of LNAI, pages 100–112. Springer,
2010.

1224




