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ABSTRACT
Adversarial patrolling games (APGs) can be modeled as
Stackelberg games where a patroller and an intruder com-
pete. The former moves with the aim of detecting an intru-
sion, while the latter tries to intrude without being detected.
In this paper, we introduce alarms in APGs, namely devices
that can remotely inform the patroller about the presence of
the intruder at some location. We introduce a basic model,
provide an extended formulation of the problem and show
how it can be cast as partially observable stochastic game.
We then introduce the general resolution approach.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multi–agent systems

General Terms
Algorithms, Economics

Keywords
Game Theory (cooperative and non-cooperative)

1. INTRODUCTION
Current works on Adversarial Patrolling Games (APGs)

assume that the intruder’s presence can only be detected by
the patroller [1, 2, 3]. Realistic security settings, however,
are usually populated by “alarms”, such as motion detec-
tors. Alarms can provide valuable information about the
intruder’s presence that can be exploited to improve the ef-
fectiveness of the patrolling strategies.

To address this limitation, we introduce the problem of
Adversarial Patrolling Games with Alarms (AP-alarms).
We show that an AP-alarms can be modeled as a partially
observable stochastic game (POSG) and we provide a re-
lated formulation. We address the resolution problem by
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formulating non–linear mathematical programs to compute
the optimal patrolling policy under different circumstances.

2. THE AP–ALARMS PROBLEM
An AP-alarms problem is defined by an undirected graph

G = (V,E, T, d,N, {ri,t}) to be patrolled where V and E are
sets of vertices and edges respectively; a set of targets T ⊆ V ,
i.e., the vertices that the patroller and intruder associate
with a value; a set of alarms A ⊆ T where each alarm a
is fixed and characterized by false negatives (fn) and false
false positives (fp) rates {δafn , δ

a
fp}a∈A. Alarms can only be

deactivated if the patroller enters the corresponding target.
The time needed for a successful attack is given by d : T →
N \ {0}. The set of players is denoted by N = {p,o} (p is
the patroller and o is the intruder). The players’ valuations
for a target t are ri,t ∈ R+ (for i ∈ N) while rco ∈ R+ is the
intruder’s capture penalty.

An AP-alarms problem proceeds in a (possibly infinite)
sequence of steps. At each step, the patroller moves to an
adjacent vertex. Simultaneously, the intruder either starts
an attack on a target t ∈ T , or waits, unless it is already
attacking a vertex, in which case it continues its attack.
Outcomes of the game are: intrusion: the attack on t ∈ T
is successful d(t) steps after starting it, with payoffs −rp,t

and ro,t; capture: the attack on t ∈ T is futile and the
intruder is captured with payoffs 0 and rco for the patroller
and the intruder, respectively; no attack : the intruder waits
indefinitely, resulting in a payoff of 0 for both players.

Following the standard approach for APGs [2], an AP-
alarms problem can be modelled as a Stackelberg game [4]
where the patroller (leader) commits to a strategy and the
intruder (follower) has full knowledge of the patroller’s strat-
egy and selects the attack that maximises its expected pay-
off. Thus, the objective of the patroller is to compute the
strategy that minimises the expected loss from the intruder’s
best–response attack.

POSG formulation. An AP-alarms can be defined as a
POSG by the tuple 〈N,S, s0, {Ai, ri}i∈N ,O,P〉, where: S
denotes the set of states and it is defined as S = V × 2A ×
{T∪ ⊥}; a state s ∈ S consists of the position of the patroller
on some vertex v ∈ V , the set A ⊆ A of activated alarms and
the position of the intruder over some target t ∈ T or outside
the environment (denoted by ⊥); the states are partially
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Figure 1: Example setting (a); state transitions for enter when(·, 1) when δfn > 0 (b) and δfp > 0 (c) (δ = 1− δ).

observable to the patroller; s0 = (v, ∅,⊥) is the initial state
indicating that, when the game starts, the patroller is at
some v ∈ V , every alarm is inactive, and the intruder is not
attacking; Ap(v) is the set of actions available to p at a given
vertex v ∈ V and it is defined as the set of vertices adjacent
to v in G; Ao is the set of actions available to the intruder
and it is defined as Ao = T ∪ {⊥}, where ⊥ is the ‘wait’
action, as long as the intruder does not play t ∈ T , and then
no action is available; O = V × 2A is the set of patroller’s
observations o, indicating the position of the patroller and
the set of activated alarms; the patroller cannot observe the
position of the intruder; P is the state transition function
and it is defined as P : S ×A → ∆(S), mapping states and
joint actions A = Ap×Ao to a probability distribution over
the future states; this function includes the strategies of both
players and it is the solution of the AP-alarms problem.

This POSG is partially observable due to the patroller’s
inability to observe the position of the intruder. Indeed, the
patroller will receive an observation o ∈ O with o = (v,A),
which includes the current vertex v of the patroller and the
subset A of the active alarms. The patroller moves following

its strategy π : O× V → [0, 1] where πA
v,v′ is the probability

of moving from v to v′ when alarms A are active.
As per the Stackelberg formulation, the intruder can ob-

serve the system’s true state s ∈ S and the patroller’s strat-
egy π. Thus, we can turn the POSG into a two–stage game
where the patroller commits to a strategy π and the intruder
plays the best response enter when(o, t) ∈ O×T or stay out
as in [2]. The former means that it will attack target t ∈ T
when the patroller’s observation is o, while the latter means
the intruder ‘waits’ indefinitely.

Solving AP-alarms problems. We compute expected util-
ities for players k ∈ N as:

Eπ [Uo(π, enter when((v,A), t))] = (1− CAv,t) · ro,t − CAv,t · rco
Eπ [Up(π, enter when((v,A), t))] = −(1− CAv,t) · rp,t

where function CA
v,t measures the probability of capturing

the intruder given that the patroller is in v and the set of
activated alarms is A and the intruder attacks t ∈ T , namely
for the intruder’s action enter when((v,A), t) . This is:

C
A
v,t :=

∑
x∈pathd(o,t)

∏
o′,o′′∈x

π
A′
v′,v′′ ·Nfn (o

′
, o

′′
) ·Nfp (o

′
, o

′′
)

where o = (v,A), o′ = (v′, A
′
), o′′ = (v′′, A

′′
), and function

pathd((v,A), t) returns every feasible path x that reaches
target t starting from observation o within d time steps,
and every path x is a vector of edges (o′, o′′) ∈ O × O
that describes the path. Function Ni : O × O → [0, 1], for
i ∈ {fn, fp} is the probability of transitioning from any two
connected states given the type of alarm. In Figs. 1(b)–1(c)
we report transition probabilities in a simple setting where
alarms are imperfect.

We can now pose constraints over π to enforce a given
intruder’s action to be a best response (BR). Similar to [4],
we write a program to find the best patroller’s strategy for
each possible BR. The most desirable, for the patroller, in-
truder’s BR is stay out and the following program detects
whether there exists a patrolling strategy π to enforce this.

π
A
v,v′ ≥ 0 ∀(v, v′) ∈ E, S ⊆ A (1)∑

v′∈A(v)

π
A
v,v′ = 1 ∀v ∈ V,A ⊆ A (2)

C
A
v,t · r

c
o + (1− CAv,t) · ro,t ≤ 0 ∀v ∈ V, t ∈ T,A ⊆ A (3)

In this non–linear feasibility problem constraints (1) and (2)
define probabilities, constraints (3) force stay out to be the
BR. This is done by checking that there is no pair (o, t) with
o ∈ O and t ∈ T so that enter when(o, t) gives a positive re-
ward to the intruder. This program returns a policy π if
stay out can be enforced. If it’s unfeasible then no π can
keep the intruder out and we need to find the intruder’s BR
such that the patroller’s expected utility is maximised. To
do this, for each enter when(o, t) we find the best patroller’s
strategy such that enter when(o, t) is the BR by solving a
program derived from the previous one by adding the objec-

tive function max −(1−CA
v,t)·rp,t and replacing constraints

(3) with the following:

C
A
v,t · r

c
o + (1− CAv,t) · ro,t ≥

C
A′
v,t′ · r

c
o + (1− CA

′
v,t′ ) · ro,t′ ∀t′ ∈ T,A′ ⊆ A (4)

Call π∗o,t the optimal strategy given (o, t). The patroller
chooses the policy that maximises its utility.

3. FUTURE WORKS
In future, we shall study how the characteristics of the

alarms (e.g., only false positives, only false negatives, perfect
alarms) affect the computation of the agents’ optimal strate-
gies. In addition, we shall explore heuristics, e.g., based on
rushing actions, to provide approximate solutions when find-
ing an exact solution is an intractable problem.
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