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ABSTRACT
In the US alone, weather hazards and airport congestion
cause thousands of hours of delay, costing billions of dollars
annually. The task of managing delay may be modeled as a
multiagent congestion problem with tightly coupled agents
who collectively impact the system. Reward shaping has
been effective at reducing noise caused by agent interaction
and improving learning in soft constraint problems. We ex-
tend those results to hard constraints that cannot be easily
learned, and must be algorithmically enforced. We present
an agent partitioning algorithm in conjunction with reward
shaping to simplify the learning domain. Our results show
that a partitioning of the agents using system features leads
to up to a 1000x speed up over the straight reward shaping
approach, as well as up to a 30% improvement in perfor-
mance over a greedy scheduling solution, corresponding to
hundreds of hours of delay saved in a single day.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems
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1. INTRODUCTION
A primary concern facing the aerospace industry today

is the efficient, safe and reliable management of our ever-
increasing air traffic. In 2011, weather, routing decisions
and airport conditions caused 330,063 delays, accounting for
266,999 hours of delay [1]. The rate of flights being scheduled
is much faster than that of airports being built, making effec-
tive traffic control algorithms essential. We refer to the task
of managing delay in the system by coordinating aircraft as
the Air Traffic Flow Management Problem (ATFMP).

The national airspace (NAS) has many connections from
one airport to another, therefore any congestion and asso-
ciated delay can propagate throughout the system. Delays
may be imposed to better coordinate aircraft and mitigate
the propagation of congestion and the associated delay, but

which aircraft should be delayed? The search space in such
a problem is huge, as there are tens of thousands of flights
every day within the United States.

We propose an a solution which blends multiagent co-
ordination, reward shaping, automated agent partitioning,
and hard constraint optimization. Multiagent coordination
and reward shaping give us the ability to perform an in-
telligent guided search over tens of thousands of aircraft
actions, while the hard constraint allows us to completely
remove congestion. In the ATFMP, multiagent coordination
with reward shaping becomes a computationally intractable
task, therefore we used automated agent partitioning to re-
duce the overhead associated with the hard constraint.

2. RELATED WORK
The ATFMP addresses the congestion in the NAS by con-

trolling ground delay, en route speed or changing separation
between aircraft. The NAS is divided into many sectors, each
with a restriction on the number of aircraft that may fly
through it at a given time. This number is formulated by
the FAA and is calculated from the number of air traffic
controllers in the sector, the weather, and the geographic lo-
cation. Additionally, each airport in the NAS has an arrival
and departure capacity that cannot be exceeded. Eliminat-
ing the congestion in the system while keeping the amount of
delay each aircraft small is the fundamental goal of ATFMP.

Difference rewards [3] function such that each agent’s re-
ward is related to the individual’s contribution to team per-
formance, leading to better policies at an accelerated con-
vergence rate. The difference reward is defined as: Di(z) =
G(z) −G(z − zi + c) , where z is the system state, zi is the
system state with agent i, and c is a counterfactual replacing
agent i. This counterfactual offsets the artificial impact of
removing an agent from the system.

3. HARD CONSTRAINT OPTIMIZATION
Our approach to traffic flow management involved three

main concepts: formulating a multiagent congestion prob-
lem by defining agents, formulating the appropriate system
rewards and reward shaping while blending the heuristic
greedy scheduler with the multiagent learning, and perform-
ing hard constraint optimization using agent partitions.

Agent Definition: Agents were assigned to cooperating
aircraft because they benefit from learning advantages. One
of which is that each aircraft has its own learned policy,
eliminating the need for a centralized controller. Another
is that agents can be easily partitioned into independent
groups, simplifying the learning problem. Agents have no
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Figure 1: The difference reward performance using
the smaller number of partitions shows a 30% im-
provement over the greedy scheduling solution.

state, and select a ground delay from 0 to 10 minutes. Agents
learned using Action-Value Learning.

Reward Structures: Learning algorithms will not sac-
rifice delay to optimize congestion. To solve this problem
we introduce a greedy scheduler. The greedy scheduler will
convert sector congestion into a hard constraint, causing any
amount of delay to achieve the goal. If any aircraft’s flight
plan violates the capacity constraint of any sector, it is forced
to ground delay for 1 additional minute. Using the greedy
scheduler forces congestion to become zero and therefore our
system-level reward is:G(z) =

∑
a∈A δa,g(z)+δa,s(z) , where

δa,g(z) is the ground delay incurred and δa,s(z) is the sched-
uler delay incurred.

The ATFMP has been previously analyzed using only
a small time window. We wanted to approach this prob-
lem with a 14-hour window. This dramatically increases
the number of agents from thousands to 35,844. Here it is
difficult to achieve high performance without ensuring the
agent’s reward fully encapsulates the impact it had on the
system. A difference reward reduces this noise, and is easily
derived from the global reward: D(z) = (−δ(z)) − (−δ(z −
zj + cj))) , where δ(z) is the cumulative delay in the system
and δ(z − zj + cj) is the cumulative delay of with agent j
replaced with counterfactual cj .

Although the greedy scheduler is useful in removing con-
gestion, it cannot optimize delay. Due to the congestion in
the system, a delay of 0 for each aircraft would be subop-
timal. The greedy scheduler will assign delay without tak-
ing into account agent coordination. Reinforcement Learning
discovers a good ground delay for each aircraft, preventing
the need to perform an exhaustive search.

This greedy scheduler can easily be combined with Re-
inforcement Learning. Agents can take an action, all agents
actions can be modified using the greedy scheduler, reducing
congestion to zero, and then agents will be rewarded based
on the system after the greedy scheduler. When combining
the difference reward with the greedy scheduler, there are
severe computational issues. The difference reward requires
an agent to be removed from the system, the greedy sched-
uler to reschedule all aircraft back into the system, and then
compute the difference in delays. Rescheduling all 35,000
aircraft during each difference calculation makes this a com-
putationally intractable solution.

Agent Partitioning: To reduce the computational over-
head while computing the difference reward we reduced the
number of aircraft the greedy scheduler had to reschedule

by partitioning the aircraft into independent groups. The
ATFMP has a clear partitioning of agents. Agents that do
not go through the same sectors do not impact each other
at all, and therefore can be treated as a smaller, more eas-
ily manageable, learning problem. We applied agglomera-
tive hierarchical clustering [2] to partition similar agents
together, resulting in a new reward for each partition i:
Di(z) = (−δi(z)) − (−δi(zi − zij + cj))) , where δi(z) is
the cumulative delay of partition i and δi(zi − zij + cj) is
the cumulative delay of partition i with agent j replaced
with counterfactual cj .

4. EXPERIMENTAL RESULTS
By adding the greedy scheduler we were able to eliminate

congestion by sacrificing delay. Although high, this delay is
required to guarantee a safe environment for all aircraft. As
mentioned earlier, the greedy scheduler gives a good, but not
optimal scheduling policy. This leads us to use the greedy
scheduling policy as a good place to start searching. Boot-
strapping each agent to choose 0 delay reduces the overall
amount of computation time needed to compute D by giv-
ing the agents a good policy from the start. Agents can then
explore other actions with a frequency based on ε and can
discover potentially better actions.

Figure 1 shows the magnitude of performance gain when
using the difference reward and partitioning. Since parti-
tions had some overlap, actions in one partition may affect
the agents in another partition, meaning that the higher the
number of partitions the less information the agents receive
in the difference reward. Smaller numbers of partitions end
up leading to better overall performance at the cost of com-
putation time.

5. DISCUSSION
The main contribution of this paper is to present a dis-

tributed adaptive air traffic flow management algorithm with
implementable results. The method introduced is based on
agents representing aircraft within the NAS choosing their
own ground delay with the intent of minimizing delay within
the system. It uses multiagent reinforcement learning in com-
bination with the difference reward and hard constraints on
congestion. This is typically an impossible problem, but we
introduce agent partitions to dramatically reduce the time
complexity by up to 1000x, leading to a 30% increase in per-
formance over the greedy solution. Different sized partitions
also allowed the implementation to be dynamic to the situa-
tion. The ease of adding ground delays in combination with
the increase in performance over currently used approaches
makes this approach easily deployable and effective.
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