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ABSTRACT

Both weighted and unweighted Borda manipulation prob-
lems have been proved NP-hard. However, there is no
exact combinatorial algorithm known for these problems.
In this paper, we initiate the study of exact combinatorial
algorithms for both weighted and unweighted Borda ma-
nipulation problems. More precisely, we propose O*((m -
2™)'1) _ time and O* (t*™) - time* combinatorial algorithms
for weighted and unweighted Borda manipulation problems,
respectively, where ¢ is the number of manipulators and m
is the number of candidates. Thus, for ¢ = 2 we solve one
of the open problems posted by Betzler et al. [[JCAI 2011].
As a byproduct of our results, we show that the unweighted
Borda manipulation problem admits an algorithm of running
time O (29’”2 l°e™) "hased on an integer linear programming
technique. Finally, we study the unweighted Borda manip-
ulation problem under single-peaked elections and present
polynomial-time algorithms for the problem in the case of
two manipulators, in contrast to the N"P-hardness of this
case in general settings.
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PRELIMINARIES

This paper studies combinatorial algorithms for Borda
manipulation problems.

In WEIGHTED BORDA MANIPULATION (WBM for short),
we are given a set C U {p} of candidates, a multiset IIy, =
{Ttwy s Ty -vs T, } Of votes casted by a corresponding set V =
{v1,v2,...,v,} of voters (m,, is casted by v;), a set V' of ¢
manipulators and weight functions fi : V — N and f> :
V' — N, and asked whether the manipulators can cast their
votes Il in such a way that p uniquely wins the weighted
election (C U {p}, Iy UII,,,, YUV’ f: VUV — N), where
f() = fi(v)ifv € Vand f(v) = f2(v) otherwise. Here, each
vote m, is defined as a bijection m, : C U {p} — [|C U {p}|]
and contributes f(v) - (pos(c) — 1) score to the candidate c,
where the position of ¢ in v is defined as pos(c) = my(c).
The unique winner is the candidate who has the most total
score.

UNWEIGHTED BORDA MANIPUALTION (UBM for short) is
a special case of WBM where all voters and manipulators
have the same unit weight, that is, f1 : V — {1} and f> :
V' — {1}.

For a candidate ¢ and a voter v, we use SCy(c) to denote
the score of ¢ which is contributed by v, that is, SCy(c) =
f(@) - (mo(c) — 1). Let SCy(c) denote the total score of ¢
contributed by voters in V, that is, SCv(c) =3 ., SCu(c).

1.

veEV

2. ALGORITHM FOR WEIGHTED CASE

Let ((C U {p}, Ty, V, f1), V', f2,t) be the given instance.
It is clear that any true-instance has a solution where every
manipulator places p in the highest position, that is, a so-
lution I,y with SCyuyr(p) = SCv(p) + > ey F() - [C].
Therefore, to make p the winner, SCy(c) < g(c) should be
satisfied for all ¢ € C, where g(c) = SCy(p) + >, v f(V') -
|IC| = SCv(c) — 1. The value of g(c) is called the capacity of
c. Meanwhile, if in the given instance there is a candidate
¢ with g(c) < 0, then the given instance must be a false-
instance. Therefore, we assume that there is no candidate c
with g(c) < 0. We reformulate WBM as follows:

Reformulation of WBM

Input: A set C of candidates associated with a capacity func-
tion g : C = N, and a multiset F' = {f1, f2,..., ft} of non-
negative integers.

Question: Is there a multiset IT = {1, m2,...,m} of bijec-

tions mapping from C to [|C|] such that >°¢_, f; - (mi(c) — 1) < g(c)

holds for all ¢ € C?



Our algorithm is based on a dynamic programming method
which is associated with a boolean dynamic table defined as
DT(C,Z1,Z2, ..., Zt), where C C C is a subset of candi-
dates, Z; C [|C|] and |C| = |Z;]| for all ¢ € [t]. Here, each Z;
encodes the positions that are occupied by the candidates
of C in the vote casted by the i-th manipulator. The en-
try DT(C, Z1, Za, ..., Z:) = 1 means that there is a multiset
IT = {m1, 72, ..., m } of bijections mapping from C to [|C|] such
that for each i € [t], U.co{mi(c)} = Z: and, for every can-
didate ¢ € C| c is “safe” under II. Here, we say a candidate
c is safe under I1, if 3°'_, f; - (mi(c) — 1) < g(c). Intuitively,
DT(C,Zy,Zs, ..., Z:) = 1 means that we can place all candi-
dates of C' in the positions encoded by Z; for all i € [t] with-
out exceeding the capacity of any ¢ € C. Clearly, a given
instance of WBM is a true-instance if and only if DT'(C, Z1 =
I, Z2 = [IC), ..., Z: = [|IC]]) = 1. We update the entries
DT(C, Zl,ZQ, ...,Zt) with |C| = |Z1| = |Z2| = ... = |Zt| =1
as follows: if ¢ € C and 3z; € Z; for all i € [t] such
that DT(C\ {c}, Z1 \ {z1}, Z2 \ {22}, ..., Z: \ {z:}) = 1 and
DT ({c},{z1}, {22}, ....,{2}) = 1, then DT(C, Z:, Zs, ...,
1, otherwise, DT (C, Z1, Za, ..., Z¢) =0

THEOREM 1. WBM is solvable in O* ((|C]-2/°)+1) time.

In [1], Betzler et al. posed as an open question whether
UBM in the case of two manipulators can be solved in less
than O*(|C|!) time. By Theorem 1, we can answer this ques-
tion affirmatively.

COROLLARY 2. WBM (UBM 1is a special case of WBM)

in the case of two manipulators can be solved in O* (8!
time.

Zt) ==

3. ALGORITHM FOR UNWEIGHTED CASE

Recall that UBM is a special case of WBM where all vot-
ers have the same unit weight. However, compared to the
weighted version, when we compute SCy (c) for a candidate
¢, it is irrelevant which manipulators placed c in the j-th po-
sitions. The decisive factor is the number of manipulators
placing ¢ in the j-th positions. This leads to the following
approach where we firstly reduce UBM to a matrix problem
and then solve this matrix problem by a dynamic program-
ming technique, resulting in a better running time than in
Corollary 2.

Filling Magic Matrix (FMM)
Input: A multiset g = {g,,9,, .-
gers and an integer ¢ > 0.

Question: Is there an m X m matrix M with non-negative
integers such that Vi € [m], >0, (j — 1) - M[i][j] < g: and

>y MIi][j] = t, and Vj € [m], 3312, MIi][j] = t?

,gm} of non-negative inte-

The algorithm for FMM is based on a dynamic program-

ming method associated with a boolean dynamic table DT'(I,T),

where | € [m] and T = {T; € N | j € [m],T; < t} is a
multiset. The entry DT'(I,T) = 1 means that there is an
m x m matrix M such that: (1) 3270, M[i][j] = t for al-
Li e [Il; (2) i, MIi[j] = T; for all j € [m]; and (3)
ST (1) M[i[j] < gi for all i € [I]. It is clear that
a given instance of FMM is a true-instance if and only if
DT(m,Tin)) = 1, where Tt is the multiset containing m
copies of t. We update DT(I,T) for 2 < | < t and all
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possible multiset 7' = {T; € N | j € [m],T; < t} as fol-
lows: if there is a multiset 7" = {T; € N | j € [m], T} <
T} such that DT(l - 1,7") = 1, 37", (T} T'):tand
Yo =1 (T - T’) < g,, then set DT(I,T) = 1; other-

wise, set DT'(I,T) =

LEMMA 3. FMM is solvable in O (t*™) time.
LEMMA 4. UBM can be reduced to FMM in polynomial
time.

THEOREM 5. UBM can be solved in O* (t*°!) time.

Next we show that FMM can be solved by an integer linear
programming (ILP) based algorithm. The ILP contains m?
variables z;; for ¢, € [m] and, subject to the following

four kinds of restrictions: (1) > z;; = ¢ for all j € [m]; (2)
=1

(j—1) -z <giforallie
= =1
m]; (4) zi; > 0 for all 4,5 6 [m]; where t € N and g =
{9,:95,---,9m} with g; € N for all ¢ € [m] are input.

> xi; =t for all i € [m]; (3)
-1

—_s,

LEMMA 6. [4] An ILP problem with ¢ variables can be
solved in O*(¢°°) time.

Due to Lemmas 4 and 6, we have the following theorem.

THEOREM 7. UBM admits an algorithm with running time
o* (29\(2\2 log \C|)

4. SINGLE-PEAKED ELECTIONS

It is known that UNWEIGHTED BORDA MANIPULATION is
polynomial-time solvable with one manipulator [3] but be-
comes N'P-hard with two manipulators [1, 2]. Here, we show
that this problem with two manipulators can be solved in
polynomial time in single-peaked elections.

Let £ be a linear order over the candidates C. We say
that a vote m, : C — [|C]] is coincident with L if and only if
for any three distinct candidates a,b,c € C witha L b L c or
cLbL a, m(c) > my(b) implies 7, (b) > m,(a). An election
is a single-peaked election if there exists a linear order L
over the candidates such that all votes of the election are
coincident with L.

THEOREM 8. UNWEIGHTED BORDA MANIPULATION with
two manipulators under single-peaked elections is polynomial-
time solvable.
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