
Self-checking Logical Agents

(Extended Abstract)
Stefania Costantini

Department of Computer Science and Engineering, and Mathematics
University of L’Aquila

Via Vetoio Loc. Coppito, I-67100 L’Aquila, Italy
stefania.costantini@univaq.it

ABSTRACT
This paper presents a comprehensive framework for run-time
self-checking of logical agents, by means of temporal axioms
to be dynamically checked. These axioms are specified via
an agent-oriented interval temporal logic defined to this pur-
pose, with fully defined syntax, semantics and pragmatics.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelli-
gence, Distributed Artificial Intelligence, Intelligent Agents

General Terms
Languages, Theory

Keywords
Agent development techniques, Tools and environments,
Logic-based approaches and methods, Reasoning (single and
multi-agent)

1. INTRODUCTION
Agent systems are more and more widely used in real-

world applications: therefore, the issue of verification is be-
coming increasingly important. This paper presents an ap-
proach to dynamic (run-time) verification of agent systems
(as opposed, or, better, as a complement to “static” verifica-
tion, i.e., verification performed prior to agent activation).
A crucial point of our proposal is that, in case of violation
of a wished-for property, agents should try to restore an
acceptable or desired state of affairs by means of run-time
self-repair. Even in case desired properties are fulfilled, by
examining relevant parameters of its own activities an agent
might apply forms of self-improvement so as to perform bet-
ter in the future. Self-repair and improvement should alle-
viate the problem of “brittleness”, that can be intended as
the propensity of an agent to perform poorly or fail in the
face of circumstances not fully or explicitly considered by
the agent’s designer.
We introduce meta-constraints to be added to agent pro-

grams and to be checked dynamically, at a certain (customiz-
able) frequency. They are based upon a simple interval tem-

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c⃝ 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

poral logic particularly tailored to the agent realm, A-ILTL
(Agent-oriented Interval Temporal Logic). Thus, properties
can be defined that should hold according to what has hap-
pened and to what is supposed to happen or not to happen
in the future, also considering partially specified event se-
quences.

Our approach is fairly general, and thus could be adopted
in several logic agent-oriented languages and formalisms. In
particular, one such language is DALI (cf. [2] for a list of ref-
erences about DALI and the DALI interpreter, which is pub-
licly available) where we have prototypically implemented
the approach.

The reader may refer to a preliminary longer version of
this paper [1] for the full formalization of the proposed ap-
proach, a complete example of application and a discussion
and comparison with related work. The author apologizes
for missing discussion and references, due to lack of space.

2. A-ILTL
For defining properties that are supposed to be respected

by an evolving system, a well-established approach is that
of Temporal Logic, and in particular of Linear-time Tem-
poral Logics (LTL). These logics are called ‘linear’ because
(in contrast to ‘branching time’ logics) they evaluate each
formula with respect to a vertex-labeled infinite path (or
“state sequence”) s0s1 . . . where each vertex si in the path
corresponds to a point in time (or “time instant” or “state”).
In what follows, we use the standard notation for the best-
known LTL operators.

Based upon our prior work, in [1] we formally introduced
an extension to the well-known linear temporal logic LTL
based on intervals, called A-ILTL for ‘Agent-Oriented Inter-
val LTL’. Though, as discussed in [1], several “metric” and
interval temporal logic exist, the introduction of A-ILTL is
useful in the agent realm because the underlying discrete
linear model of time and the complexity of the logic remains
unchanged with respect to LTL. This simple formulation
can thus be efficiently implemented, and is nevertheless suf-
ficient for expressing and checking a number of interesting
properties of agent systems.

3. A-ILTL IN AGENT PROGRAMS
A-ILTL operators can be introduced into logic agent-

oriented programming languages. A pragmatic form (that
namely we have adopted in DALI) can be OP(m,n; k)φ:
m,n define the time interval where (or since when, if n is
omitted) expression OP φ is required to hold, and k (op-
tional) is the frequency for checking whether the expression

1329

actually holds. For instance, EVENTUALLY (m,n; k)φ
states that φ should become true at some point between
time instants m and n.
In rule-based logic programming languages like DALI, we

restrict φ to be a conjunction of literals. In pragmatic
A-ILTL formulas, φ must be ground when the formula is
checked. However, we allow variables to occur in an A-ILTL
formula, to be instantiated via a context χ (we then talk
about contextual A-ILTL formulas). Notice that, for the
evaluation of φ and χ, we rely upon the procedural seman-
tics of the ‘host’ language.
In the following, a contextual A-ILTL formula τ will im-

plicitly stand for the ground A-ILTL formula obtained via
evaluating the context. In [1] we have specified how to op-
erationally check whether such a formula holds. This by
observing that for most A-ILTL operators there is a cru-
cial state where it is definitely possible to assess whether
a related formula holds or not in given state sequence, by
observing the sequence up to that point and ignoring the
rest.
The following formulation deals with agent run-time self-

modification.

Definition 3.1. An A-ILTL rule with re-
pair/improvement is of the form (where M,N,K can
be either variables or constants)

OP(M ,N ;K)φ :: χ÷ η ÷ ξ
where:(i) OP(M ,N ;K)φ :: χ is a contextual A-ILTL for-
mula, called the monitoring condition; (ii) η is called the
repair action of the rule, and it consists of an atom η; (iii)
ξ (optional) is called the improvement action of the rule,
and it consists of an atom η.

Whenever the monitoring condition (automatically
checked at frequency K) is violated, the repair action η is
attempted. If instead the monitoring condition succeeds, in
the sense that the specified interval is expired and the given
A-ILTL formula holds or, in case of the operator ‘eventu-
ally’, if φ holds within given interval, then the improvement
action, if specified, can be ‘executed’.
Take for instance the example of one who wants to lose

some weight by a certain date. If (s)he fails, then (s)he
should undertake a new diet, with less calories. But if
(s)he succeeds before the deadline, then a normocaloric diet
should be resumed. In the proposed approach, this can be
formalized as follows (where, as there are no variables, con-
text is omitted):

EVENTUALLY (May−15−2012 , June−10−2012)
lose five kilograms
÷ new stricter diet(June−10−2012 , June−30−2012)
÷ resume normal diet

4. EVOLUTIONARY EXPRESSIONS
It can be useful to define properties to be checked upon

arrival of event sequences, of which however only relevant
events (and their order) should be considered. To this aim
we introduce a new kind of A-ILTL rules, that we call Evo-
lutionary A-ILTL Expressions. To define partially known
sequences of any length, we admit for event sequences a syn-
tax inspired to that of regular expressions so as to specify
irrelevant/unknown events, and repetitions (cf. [1]).

Definition 4.1 (Evolutionary LTL Expressions).
Let SEvp be a sequence of past events, and SF and J J be

sequences of events. Let τ be a contextual A-ILTL formula
Op φ :: χ. An Evolutionary LTL Expression ϖ is of the
form SEvp : τ ::: SF :::: J J where: (i) SEvp denotes
the sequence of relevant events which are supposed to have
happened, and in which order, for the rule to be checked;
i.e., these events act as preconditions: whenever one or
more of them happen in given order, τ will be checked; (ii)
SF denotes the events that are expected to happen in the
future without affecting τ ; (iii) J J denotes the events that
are expected not to happen in the future; i.e., whenever any
of them should happen, φ is not required to hold any longer,
as these are “breaking events”.

An Evolutionary LTL Expression can be evaluated w.r.t.
a state si which includes among its components the history
of the agent, i.e., the list of past events perceived by the
agent. A history H satisfies an event sequence S whenever
all events in S occur in H, in the order specified by S itself.

Definition 4.2. An Evolutionary A-ILTL Expression ϖ,
of the form specified in Definition 4.1: (1) holds in state si
whenever (i) history Hi satisfies SEvp and SF and does not
include any event in J J , and τ holds or (ii) Hi includes
any event occurring in J J (the expression is broken); (2)
is violated in state si whenever Hi satisfies SEvp and SF

and does not include any event in J J , and τ does not hold.

Operationally, an Evolutionary A-ILTL Expression can be
finally deemed to hold if either the critical state has been
reached and τ holds, or an unwanted event has occurred.
Instead, an expression can be deemed not to hold (or, as
we say, to be violated as far as it expresses a wished-for
property) whenever τ is false at some point without the oc-
currence of breaking events.

The following is an example of Evolutionary A-ILTL Ex-
pression stating that, after submitting a car to a checkup, it
is guaranteed to work properly for six months, even in case
of (repeated) long trips, unless an accident occurs.

checkupP (Car) :T :
ALWAYS(T, T + 6months) work ok(Car)
::: long trip(Car)∗
:::: accident(Car)

Whenever an Evolutionary A-ILTL expression is either
violated or broken, a repair can be attempted aiming at
recovering a desirable or at least acceptable agent’s state.

Definition 4.3. An evolutionary LTL expression with
repair ϖr is of the form ϖ|η1||η2 where ϖ is an Evolution-
ary LTL Expression adopted in language L, and η1, η2 are
atoms of L. η1 will be executed (according to L’s procedural
semantics) whenever ϖ is violated, and η2 will be executed
whenever ϖ is broken.

In previous example, for restoring work ok(Car), η1 might
imply asking for a free car repair (under guarantee) and η2
might imply resorting to the insurance company.

5. REFERENCES
[1] S. Costantini. Self-checking logical agents. In Proc. of

LA-NMR 2012, Volume 911. CEUR Workshop
Proceedings (CEUR-WS.org), 2012. Invited paper.

[2] S. Costantini. The DALI agent-oriented logic
programming language: References, 2013. at URL
http://www.di.univaq.it/stefcost/info.htm.

1330

