
Volttron: An Agent Platform for the Smart Grid
(Demo)

Jereme Haack, Bora Akyol, Brandon Carpenter, Cody Tews, Lance Foglesong
Pacific Northwest National Laboratory

Richland, WA, USA 99352

{jereme, bora}@pnnl.gov

ABSTRACT

VOLLTRON™ platform enables the deployment of intelligent

sensors and controllers in the smart grid and provides a stable,

secure and flexible framework that expands the sensing and

control capabilities. VOLTTRON™ platform provides services

fulfilling the essential requirements of resource management and

security for agent operation in the power grid. The facilities

provided by the platform allow agent developers to focus on the

implementation of their agent system and not on the necessary

“plumbing” code. For example, a simple collaborative demand

response application was written in less than 200 lines of Python.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms

Design, Experimentation

Keywords

Agent platform, Smartgrid

1. INTRODUCTION
The future power grid will have many distributed assets including

distributed generation, responsive loads and automation at the

distribution system. The distributed nature of the future power

grid provides a natural fit for the application of agent based

systems. As sensors and controls spread throughout the smart

grid, new techniques and technologies must be brought to bear to

make effective use of them. VOLTTRON™ is a distributed agent

platform that is being developed at Pacific Northwest National

Laboratory of Richland, WA, USA as part of the Future Power

Grid Initiative. We discussed VOLTTRON™ features and

implementation in great detail in [1] and [2] and will summarize

them in Section 2. In this paper, we will discuss the demonstration

testbed we developed to show the capabilities of the platform in a

realistic environment. The VOLTTRON™ testbed is based on

commercial off the shelf equipment and (so far) emulates plug-in

electric vehicles and electric water heaters. The details of the

testbed will be covered in Section 3. We will conclude by

discussing the lessons we learned while building and using the

testbed.

2. VOLTTRON™ Platform
This section summarizes the architecture and design details of the

VOLLTRON agent execution platform as discussed in [2]. The

platform is illustrated in Figure 1. VOLTTRON™ exists between

the operating system and the agent execution environments

(AEE). As shown in the figure, VOLTTRON™ supports multiple

AEEs such as Java, Python, and platform-specific binary objects.

 The VOLTTRON platform consists of communications services

(CS); resource manager (RM); authentication and authorization

(AA); directory services (DS); agent instantiation and packaging

(AIP); and information exchange bus (IEB) modules. The AA

module includes a policy and trust store as well as an optional

policy manager function. The IEB module includes a local store

(LS) to provide non-volatile storage for agents. AIP is responsible

for packaging, instantiation, and coordination of agents’

movement. AA module provides validation of agent payloads,

authenticates peer platforms, and handles public and private

credentials. When an agent payload comes in from another

platform, it is handled by the Agent Instantiation and Packaging

(AIP) module. AIP sends the authentication information to the AA

module. The AIP sends the execution contract to the Resource

Manager that checks that the platform has the required resources.

If both checks pass, the AIP then passes the payload to the Agent

Execution Environment Manager that launches the agent. DS

module provides name, resource, and public credential to location

and network identity mappings. RM is the gatekeeper for the

platform and decides if the platform has sufficient resources

available to accept the execution of an agent. RM also manages

access controls for AEE “containers.” Finally, RM monitors use

of resources and either warns or terminates misbehaving agents.

The CN module is responsible for reliable and secure transfer of

packaged agents and peer-to-peer communication between

VOLTTRON platforms.

VOLTTRON is currently implemented in Python v2.7 and

leverages many existing Python modules developed by the open

source community.

Figure 1. Volttron platform components

Appears in: Proceedings of the 12th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Minnesota, USA.

Copyright © 2013, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

1367

Figure 2. Volttron Demonstration testbed

Figure 3. Volttron responsive asset control

3. Demonstration Hardware and Software
In order to test and improve VOLTTRON™ in a realistic

environment, we built a hardware demonstration. In an example,

as we will describe in Section 3.2, we demonstrate agents, running

in our platform, working with each other to control appliances and

keep the “neighborhood” under an energy goal.

3.1 Description of Hardware
We have four “homes” in our demonstration that consist of an

embedded computer connected to the physical world via digital

and analog IO cards. These IO cards provide TTL digital signals

to a level conversion board allowing the interface with a stand

Programmable Logic Controllers (PLC). Water heater and electric

vehicle state behavior is emulated by a PLC and based on a

thermal dynamic model of a water heater and real data collected

from a Nissan Leaf. The use of a PLC for load modeling

decouples this work from the development of the Volttron

platform and allows for standalone testing and validation. The

testbed is shown in Figure 2. The system shown in Figure 2 is

illustrated as a block diagram in Figure 3.

3.2 Demonstration Agents
The agent system implemented for the demonstration is based on

the system we described in [1,2]. This demonstration focuses on

keeping energy usage for the “neighborhood” below some

maximum threshold. To achieve the conservation goal, household

agents monitor the energy usage of appliances and broadcast

energy requirements and priorities to other participating agents.

The hardware portion of the demonstration is meant to reflect

current appliances and shares their limitations. The water heater

cannot report heat level, only whether a bottom or top element is

drawing power. The sole input into the water heater is a conserve

signal which prevents it from drawing power. However, it will

ignore this signal if the top element is running since that indicates

low energy in the tank and could lead to reduced quality of service

for the homeowner.

The outputs for the electric vehicle (EV) are whether it is

charging, completely charged, or driving. Similar to the conserve

signal on the water heater, the EV can be told not to charge.

Priorities were set for the different components based on

maintaining a reasonable quality of service for the homeowner to

prevent opt-out. The bottom element of the water heater has

lowest priority 1, the EV 3, and the top element of the water

heater 5. Due to the override, the top element will use power

regardless of a conserve signal and thus needs the highest priority

to prevent going over load.

Table 1. Example scenario details

In an example scenario, we start with all appliances fully charged

and not drawing power. Then residents begin taking morning

showers thus depleting hot water. This is simulated by a user

activity input switch on the hardware as shown in Figures 2 and 3.

When the water temperature falls below a preset point the bottom

elements turn on to reheat the water. The agents in charge of the

water heaters then broadcast their energy needs along with their

priority. Appliances with the same priority are assigned a random

tie breaker. In this case the water heater for household WH1 wins

the tie and therefore its bottom element may draw power. In the

demonstration this is indicated by a bulb in Figure 3. Next the car

for household Car1 returns and needs to charge. Since car

charging has priority 3 it takes precedence over WH1’s water

heater. While the car charges, both water heaters continue to lose

energy as their residents shower. Eventually, the energy drops low

enough that the top elements kick on at the highest priority

causing the car to now wait. Car2 then returns home and must also

wait for its chance to charge. Once the water heaters are recharged

to some minimum, their top elements turn off. Car1 then takes

priority with a higher tie breaker than Car2. Once Car1 finishes

charging, Car2 gets priority. When that finishes, the water heaters

then get a chance to run their bottom elements with WH1 running

to completion followed by WH2. The households are then back at

their fully charged states.

4. REFERENCES
[1] Akyol, B., Haack, J, Tews, C., Carpenter, B., Kulkarni, A.,

and Craig, P.. 2011. An Intelligent Sensor Framework for the

Power Grid. In ASME Conf. Proc. 2011, 1485 (2011),

DOI=10.1115/ES2011-54619

[2] Akyol, B., Haack, J., Ciraci, S., Carpenter, B., Vlachopoulou,

M. and Tews, C. 2012. VOLTTRON: An Agent Execution

Platform for the Electric Power System. In Proceedings of

the 3rd International Workshop on Agent Technologies for

Energy Systems (Valencia, Spain, June 5, 2012).

1368

