Solving Extensive-form Games with Double-oracle
Methods

(Doctoral Consortium)

Branislav BoSansky
Agent Technology Center, Dept. of Computer Science,
Faculty of Electrical Engineering, Czech Technical University in Prague
bosansky@agents.fel.cvut.cz

ABSTRACT

We investigate iterative algorithms for computing exact Nash equi-
libria in two-player zero-sum extensive-form games. The algo-
rithms use an algorithmic framework of double-oracle methods.
The main idea is to restrict the game by allowing the players to
play only some of the strategies, and then iteratively solve this re-
stricted game and exploit fast best-response algorithms to add ad-
ditional strategies to the restricted game for the next iteration. The
experimental evaluation on different games shows that the double-
oracle methods often provide significant improvement in running-
time, and can find exact solution of much larger games compared
to the existing approaches.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: [Multiagent systems]

Keywords

game theory, extensive-form games, algorithms, iterative approaches

1. INTRODUCTION

Non-cooperative game theory provides a mathematical frame-
work for describing the behavior of self-interested agents. Recent
results in the field of computational game theory led to a number
of applications of game-theoretic models, primarily in security do-
mains [10]. However, the existing game-theoretic security models
do not capture more complex strategies and tactics that arise in real-
world situations, such as using scouts, decoys, or intelligence to re-
trieve information. Moreover, most of the existing security models
focus on one-time interactions, when players do not gain signifi-
cant information about the actions of the other players during the
course of the game.

If we consider the opposite and allow the players to gain new in-
formation, the situations can be modeled as extensive-form games
(EFGs) with imperfect information. In general, the uncertainty
about the current state of the game and unknown moves of the
opponent makes the games very hard to solve. Even the easiest
subclass of zero-sum EFGs contains instances of pursuit-evasion
games as well as classical board games, such as Poker or Kriegspiel

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 610, 2013, Saint Paul, Min-
nesota, USA.

Copyright ©) 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1423

(blind chess), solving which is a challenging and ongoing task.
Therefore, it is of a great interest to study and design novel al-
gorithms that significantly reduce the computational requirements
and enable solving larger instances of EFGs. We focus on zero-sum
games and we exploit the iterative approach known in game theory
as the oracle methods [8] that can typically find a solution of the
game without considering all possible strategies.

2. TECHNICAL BACKGROUND AND
RELATED WORK

Extensive-form games (EFGs) are visually represented as game
trees. We study two-player games with Nature player capturing
the stochastic events. Each node in the game tree is assigned to a
player that acts in the situation represented by this node and a utility
function is defined for the terminal nodes (leafs of the game tree).
Player’s uncertainty is represented using the information sets that
form a partition over the nodes assigned to the player: every node in
the game tree belongs to exactly one information set. When playing
the game, the player knows the current information set, but has no
information about the exact node. We assume perfect recall, which
means that all nodes in any information set have the same history of
actions for player acting in this information set (i.e., players cannot
misremember their own actions).

2.1 Solving Extensive-form Games

A pure strategy of a player in an EFG is an assignment of an ac-
tion to play in each information set assigned to the player and mixed
strategies are probability distributions over pure strategies. Solving
a game involves computing a profile of strategies (a single mixed
strategy for each player) satisfying certain conditions defined by a
solution concept. The most common is the Nash equilibrium so-
lution concept, where each player plays the best response to the
mixed strategies of the other players.

The standard way of computing an exact Nash equilibrium in
EFGs is to use the compact sequence-form representation [6], where
the sequences represent ordered lists of actions of a single player.
With the sequence form, a Nash equilibrium can be found as a
solution of a linear program (LP). However, solving a full LP is
a very difficult computational task for problems of realistic size;
hence, approximation methods are commonly used to solve these
problems in practice. These methods include: regret minimization
techniques (e.g., CFR) [11], later improved with sampling methods
[7]; Nesterov’s Excessive Gap Technique (EGT) [5]; or variants of
Monte-Carlo tree search algorithms applied on imperfect informa-
tion games (e.g., in [9]). The first two classes of algorithms guaran-
tee convergence to approximate e-Nash equilibrium, while the third



method has no theoretical guarantees for imperfect-information ga-
mes, although it can produce good strategies in practice [9]. Iter-
ative double-oracle algorithms thus present an alternative that re-
duces the computational requirements of solving the full LP.

3. DOUBLE-ORACLE ALGORITHMS

Double-oracle algorithms are based on the research on decom-
position methods for solving large-scale optimization problems and
they have been successfully used to solve large normal-form games
[8, 10]. Our goal is to adapt these methods for extensive-form
games (EFGs) as well.

The generic structure of the double-oracle algorithm consists of
iterating through three main steps until convergence: (1) create a
restricted game by limiting the set of strategies that each player
is allowed to play; (2) compute a pair of Nash equilibrium strate-
gies in this restricted game; (3) for each player, compute a best
response against the equilibrium strategy of the opponent (the best
response may be any strategy in the complete game). The best-
response strategies found in step 3 are added to the restricted game
and allowed in the next iteration. The algorithm terminates if the
value of the best response against the equilibrium strategies does
not improve the game value of the restricted game. In the worst
case, this approach may need to enumerate all possible strategies,
but in typical cases a solution can be found by exploring a small
fraction of the strategy space.

3.1 Double-oracle Algorithms for EFGs

First of all, we applied the double-oracle method to solve generic
zero-sum EFGs with imperfect information. The main idea of works

[1, 2] is to combine the sequence-form representation with the double-

oracle method, and to iteratively expand the restricted game by al-
lowing the players to play only some of the sequences of actions
(instead of operating on the full strategy space). However, the naive
method of simply adding best-response sequences to the restricted
game does not work, because the game may get malformed due
to incompatibilities among the sequences resulting in incorrect so-
lutions (a combination of sequences may be incompatible if the
sequences of actions cannot be executed in full). Therefore, the al-
gorithm creates temporary leafs in the nodes of the restricted game
corresponding to the places of inconsistencies, and assigns tempo-
rary utility value corresponding to the lower bound on the utility
values for the player that acts in this node to solve this issue.

The experimental results on search games and simplified vari-
ants of Poker show a great potential — the double-oracle algorithm
requires significantly less memory compared to the full LP and in
games with small support (i.e., the number of sequences actually
used in the Nash equilibrium is low), the double-oracle algorithm
is faster than the full LP in order of magnitudes.

Secondly, we applied the double-oracle method in EFGs with
perfect information, but where the agents act in each state of the
game simultaneously [3] — i.e., each node in the game tree cor-
responds to a normal-form game and a combination of actions of
both players leads to a different normal-form game. The main idea
of our method is to (1) use the double-oracle algorithm in each
state of the game to iteratively construct and solve the correspond-
ing normal-form game and to (2) improve the performance of the
double-oracle algorithm using lower and upper bounds on the game
values of the successors in each state of the game. These bound are
effectively calculated by the classical alpha-beta search on serial-
ized variants of the game. Again, the experimental results on the
card game Goofspiel and pursuit-evasion games show great compu-
tational savings in orders of magnitude compared to the full search.

1424

4. CONCLUSIONS AND FUTURE WORK

The benefits of the double-oracle algorithm are twofold. First of
all, the algorithm can compute exact Nash equilibria for extensive-
form games (EFGs) before constructing the complete game by iden-
tifying the promising actions that the players should play without
any domain-specific knowledge. Secondly, this approach decom-
poses the problem of computing a Nash equilibrium into separate
sub-problems. Therefore, it can be seen as a framework, in which
the domain-independent methods can be replaced with the domain-
specific ones to further improve the performance.

Experimental results show a great potential when using the double-
oracle methods for solving EFGs. In future work, an adaptation
of the algorithm for computing different solution concepts (refine-
ments of Nash equilibria, Stackelberg equilibria) in EFGs is needed,
since the Nash equilibrium has known weaknesses in EFGs, such
as non-credible threats or prescription of irrational behavior in off-
equilibrium paths. Secondly, this iterative approach can be fur-
ther generalized to the games with even more complex space of
strategies and imperfect recall, such as patrolling games [4], where
Markov policies are typically used.

Acknowledgements

This research was supported by the Czech Science Foundation (grant
no. P202/12/2054).

5. REFERENCES
[1] B. Bosansky, C. Kiekintveld, V. Lisy, and M. Pechoucek.

Iterative Algorithm for Solving Two-player Zero-sum
Extensive-form Games with Imperfect Information. In Proc.
of ECAI 2012.

B. Bosansky, C. Kiekintveld, V. Lisy, J. Cermak, and

M. Pechoucek. Double-oracle Algorithm for Computing an
Exact Nash Equilibrium in Zero-sum Extensive-form Games.
In Proc. of AAMAS, 2013.

B. Bosansky, V. Lisy, J. Cermak, R. Vitek, and

M. Pechoucek. Using Double-oracle Method and Serialized
Alpha-Beta Search for Pruning in Simultaneous Moves
Games. Under review process. Unpublished., 2013.

B. Bosansky, V. Lisy, M. Jakob, and M. Pechoucek.
Computing Time-Dependent Policies for Patrolling Games
with Mobile Targets. In Proc. of AAMAS, 2011.

S. Hoda, A. Gilpin, J. Pefia, and T. Sandholm. Smoothing
techniques for computing nash equilibria of sequential
games. Math. Oper. Res., 35(2):494-512, May 2010.

D. Koller, N. Megiddo, and B. von Stengel. Efficient
computation of equilibria for extensive two-person games.
Games and Economic Behavior, 14(2), 1996.

M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling.
Monte carlo sampling for regret minimization in extensive
games. In Proc. of NIPS, pages 1078-1086, 2009.

H. B. McMahan, G. J. Gordon, and A. Blum. Planning in the
presence of cost functions controlled by an adversary. In
Proc. of ICML, pages 536-543, 2003.

M. J. V. Ponsen, S. de Jong, and M. Lanctot. Computing
approximate nash equilibria and robust best-responses using
sampling. J. Artif. Intell. Res. (JAIR), 42:575-605, 2011.

M. Tambe. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press, 2011.

M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione.
Regret minimization in games with incomplete information.
Proc. of NIPS, 20:1729-1736, 2008.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]





