
Optimal Interdiction of Attack Plans

Joshua Letchford∗

jcl@cs.duke.edu
Duke University

Durham, NC

Yevgeniy Vorobeychik
yvorobe@sandia.gov

Sandia National Laboratories†

Livermore, CA

ABSTRACT

We present a Stackelberg game model of security in which
the defender chooses a mitigation strategy that interdicts
potential attack actions, and the attacker responds by com-
puting an optimal attack plan that circumvents the deployed
mitigations. First, we offer a general formulation for de-
terministic plan interdiction as a mixed-integer program,
and use constraint generation to compute optimal solutions,
leveraging state-of-the-art partial satisfaction planning tech-
niques. We also present a greedy heuristic for this problem,
and compare its performance with the optimal MILP-based
approach. We then extend our framework to incorporate
uncertainty about attacker’s capabilities, costs, goals, and
action execution uncertainty, and show that these extensions
retain the basic structure of the deterministic plan interdic-
tion problem. Introduction of more general models of plan-
ning uncertainty require us to model the attacker’s problem
as a general MDP, and demonstrate that the MDP interdic-
tion problem can still be solved using the basic constraint
generation framework.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence – Multi-agent systems

General Terms

Economics, Security, Algorithms

Keywords

Game theory, security, planning, plan interdiction

1. INTRODUCTION
Interdiction seems by its very nature an adversarial act,

one perpetrated, if you will, by “bad guys”. For example, an

∗Partially supported by NSF award IIS-0953756
†Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

attacker may interdict the power flow on an electric power
grid, resulting in widespread blackouts [16], or interdict a
transportation or a supply network [9, 8]. Indeed, even when
the “good guys” engage in network interdiction, they do so
with the goal of preventing activities, such as drug smug-
gling, by the criminals or adversaries. Conceptually, there-
fore, we deviate from that model: we argue that the nature
of defense is fundamentally that of interdicting attack plans.
In congruence with this point, we view the attacker as a
planning agent that starts with a set of initial capabilities,
and plans towards a set of specific goals. The defender’s
goal is therefore to develop mitigation strategies that opti-
mally interdict an attacker who actively seeks to circumvent
deployed mitigations. In solving the interdiction problem,
the defender takes into account both the cost of mitigation
strategies, and their benefit in terms of preventing the at-
tacker from reaching a subset of goals. Crucially, our model
is general-sum: the attacker and defender may have different
priorities, and additionally, the attacker’s decision problem
involves planning costs, while the defender is concerned with
the cost of mitigations.

We formulate the optimal attack plan interdiction prob-
lem as a large-scale integer linear program, and offer several
oracle-based approaches for solving it. We then proceed to
generalize the model to capture two kinds of uncertainty:
first, uncertainty about the attacker’s capabilities, costs, and
goals, and second, uncertainty about whether a particular
planning action is executed or not. We show that both of
these aspects can be naturally folded into the interdiction
problem based on classical planning. Finally, we consider
an attacker model in which the attacker is solving an MDP,
and show how the corresponding interdiction problem can
be formulated and solved. The generality of MDPs comes
at a cost: we now have to explicitly enumerate the entire
problem state space, significantly reducing scalability.

2. RELATEDWORK
Not surprisingly, graph, planning, and game theoretic ap-

proaches to cyber security and attacker modeling have a long
history. Rather than tracing it in painstaking detail, we
highlight some of the most related themes. The first impor-
tant theme involves graph and planning-based approaches
to attacker modeling. Its oldest incarnation is in the form
of attack trees or graphs. The main limitation of the attack
graph representation is that the state space, and, thus, the
graph grow exponentially in the number of state variables.
While much work, and usual industry practice, is to con-
struct attack graphs by hand (by experts), there are a num-

199

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ber of efforts to automate their construction [18, 17]. Along
similar lines, many have recognized the scalability limita-
tion of constructing complete attack graphs, and focus only
on generating specific sequences of attack steps (e.g., attack
plans) that achieve a desired goal [21, 15, 1, 4, 10]. In most of
the literature on attack graph analysis, mitigation is rather
an afterthought; a few discuss heuristic approaches, such
as computing a minimum set of attacks that must be pre-
vented to ensure that the attacker fails to reach his goal [17,
1], as well as approximations to it. It is also a rarity to con-
sider uncertainty in this line of work, though Poolsappasit
et al. [14] is an important exception.
There are a number of explicit game-theoretic approaches

to attacker-defender interactions in the attack graph frame-
work [3, 22]. However, these approaches require a full spec-
ification of the attack graph, and do not scale beyond very
small instances. There are several lines of research in game
theoretic security games more broadly that have a bearing
on our work. The first is the literature on network inter-
diction [9, 8, 12, 16], in which the attacker typically plays
the role of the interdictor (or, the defender may wish to in-
terdict, say, drug traffic or border penetration). In most
cases, the problem is formulated as a zero-sum game, which
is then cast as a bi-level mathematical program at the core
of which is some variant of a network flow problem. One im-
portant exception closely connected to our effort is Brown
et al. [5], which offers a bi-level programming formulation
for a nuclear weapons project interdiction. This effort, how-
ever, ultimately retains the minimax flavor of other network
interdiction problems, is focused rather narrowly on maxi-
mally extending the project length, and assumes that task
dependencies are given; in our model, attack goals are much
more generic, the game admits arbitrary payoffs for the de-
fender and attacker, and task dependencies are computed
dynamically as a part of the attacker’s planning problem.
Finally, our effort is connected to the literature on com-

puting Strong Stackelberg equilibria in leader-follower secu-
rity games [11, 13]. Indeed, one view to take of our work is
that we offer an approach to model circumvention games [13]
by viewing an attacker as a planning agent, allowing us to
reason explicitly about attacker circumvention space, rather
than abstracting it into a single circumvention action.

3. INTEGERPROGRAMMINGFORCLAS-

SICAL PLANNING
Our end goal is to create a highly scalable mathemati-

cal programming approach for optimal interdiction of attack
plans. We begin from the ground up by reviewing an integer
programming approach for classical and partial satisfaction
planning, which ultimately forms the core of our own frame-
work. While our starting point is the model of an attacker as
a deterministic planner, we incrementally relax this assump-
tion later on, attempting to retain as much of the classical
planning structure (and relative tractability) in the process.
Formally, a classical planning problem is a tuple P =

{L,A, I,G}, where L is the set of literals which capture
all the information about the state of the world relevant for
the planning problem, A is the set of actions, I is the set of
literals which are initially true (i.e., the initial state of the
world), and G is the set of goals. A plan action a ∈ A is
characterized by a set of preconditions, that is, the set of
literals that must be true in the current state for the action

to be applicable, and a set of effects, which are comprised
of add effects, or literals that are added to the state if a
is executed, and delete effects, which are the literals that a
deletes (i.e., makes false) after execution. Our starting point
is actually an extension to the classical planning framework
termed partial satisfaction planning, which assigns each goal
literal a value, and each plan action a cost. Formally, we let
Vl denote the value of a goal literal l ∈ G, let Vl = 0 for all
l /∈ G, and let Ca ≥ 0 denote the cost of action a ∈ A.

The problem of finding an optimal plan given a fixed num-
ber of time-steps has a known integer programming (IP)
formulation [20, 19] which will provide the basis for our own
techniques. The objective of this IP is to find a plan which
maximizes utility (i.e., value of achieved goals less plan ex-
ecution costs):

max
∑

l∈L

Vlsl −
∑

a∈A

Ca

∑

t∈T

ya,t, (1)

where ya,t = 1 if and only if action a is executed at time t and
sl = 1 if and only if the literal l is satisfied by the computed
plan. For our purposes below, this will be the attacker’s
utility function. The planning IP introduces the following
set of meta-variables to capture how actions modify the state
of each literal l at every time step t:

• xpa
l,t : 1 iff an action is executed in timestep t that has

l as a precondition but does not delete it
• xpd

l,t : 1 iff an action is executed in timestep t that has
l as a precondition and deletes it

• xadd
l,t : 1 iff an action is executed in timestep t that

does not have l as a precondition and adds it
• xdel

l,t : 1 iff an action is executed in timestep t that does
not have l as a precondition but deletes it

• xm
l,t : 1 iff l is true at timestep t − 1 and no action in

timestep t deletes it, adds it or has it as a precondition
The importance of these meta-variables is that they allow
the set of constraints that enforce plan validity to be much
more concise than if we were to reason about plan actions
directly.

The constraints of the planning IP can be loosely cate-
gorized into three classes: constraints that build the above
meta-variables, constraints that use these meta-variables to
ensure that the computed plan is valid, and constraints that
capture the initial conditions and goals. As an example,
computing xpa requires the following constraints:

∀l,t

∑

a∈prel\dell

ya,t ≥ xpa
l,t (2)

∀l,t,a∈prel\dell ya,t ≤ xpa
l,t (3)

where prel represents the set of actions which have as l a
pre-condition and dell the set of actions where l is deleted
as a post-condition. Each of the other meta-variables is
computed with a similar set of constraints.

Enforcing plan validity amounts to ensuring that first, no
mutually exclusive actions (e.g., actions that both add and
delete a literal) are executed in the same time step, and
second, that the state of a literal only changes at time t if
there is an action executed at time t which either adds or
deletes it. Formally, these constraints are:

∀l,t x
pa
l,t + xm

l,t + xpd
l,t ≤ xadd

l,t−1 + xpa
l,t−1

+ xm
l,t−1 (4)

∀l,t x
pa
l,t + xm

l,t + xpd
l,t ≥ xadd

l,t−1 (5)

∀l,t x
pa
l,t + xm

l,t + xpd
l,t ≥ xpa

l,t−1
(6)

200

∀l,t x
pa
l,t + xm

l,t + xpd
l,t ≥ xm

l,t−1. (7)

The final set of constraints establish the initial conditions
and calculate which goal literals are satisfied by the plan:

∀l x
add
l,|T | + xpa

l,|T | + xm
l,|T | ≥ sl (8)

∀l x
add
l,|T | ≤ sl (9)

∀l x
pa

l,|T | ≤ sl (10)

∀l x
m
l,|T | ≤ sl (11)

∀l x
add
l,0 =

{

1 if l ∈ I
0 otherwise

(12)

To make the problem more concrete, consider the follow-
ing example of an attack planning problem.

Example 1. The initial state includes the initial attacker
capabilities, such as possession of a boot disk and port scan-
ning utilities. Actions include both physical actions (break-
ing and entering and booting a machine from disk) as well
as cyber actions, such as performing a port scan to find vul-
nerabilities.1 Figure 1 shows an attack graph (with attack
actions as nodes) for this scenario, with the actual attack
plan highlighted in red.

background
search

pwd recovery
exploitation

SSH

Access database Modify website

Database accessed

background
phishing

Website modified

scanning
utilities

WSDL Scanning
Infra. based
footprinting

Inject
malicious file

Authorization
bypass

magnetic
card

Manufacture
ID card

Breaking and
entering

Boot from
disc

boot
disc

mag strip
RW HW

Figure 1: Example attack graph. Boxes correspond
to initial attacker capabilities, ovals are attack ac-
tions, and diamonds are attacker goals. An optimal
attack plan is highlighted in red.

4. DETERMINISTIC PLAN INTERDICTION

4.1 The Plan Interdiction Problem
Our ultimate goal is not merely to compute an optimal

plan for the attacker, but rather to compute an optimal de-
fender interdiction strategy. To this end, we model the inter-
action between the defender and attacker as a Stackelberg
game in which the defender moves first, choosing to deploy
a set of mitigations, and the attacker responds to these by
constructing an optimal attack plan given the resulting en-
vironment. We formalize this game as a deterministic plan
interdiction problem (DPIP). DPIP is described by a tuple
{P,M, V D

l , V A
l , CD

m, CA
a }, where P is the planning problem

for the attack in the absense of any mitigations, as described
in Section 3, M is the set of mitigation strategies for the de-
fender, V D

l and V A
l are the utilities of the defender and at-

tacker respectively when the attacker achieves a goal literal

1The actions in our example are taken from the CAPEC
database (http://capec.mitre.org).

l ∈ G, CD
m is the cost of mitigation m ∈ M to the defender,

and CA
a is the cost of action a ∈ A to the attacker. A mitiga-

tion strategy m ∈ M has two effects: it can protect against
a subset of attack actions a (effectively removing them from
A), and it can remove literals from the initial state I. With-
out loss of generality, we assume that m only has an effect
on attacker actions (we can model removal of initial state
literals by having actions with no preconditions, zero cost,
and with l ∈ I as the only add effect). For each mitigation
m ∈ M , let Am,a = 1 iff mitigation m removes action a.
The defender’s goal is to maximize his utility:

max
∑

l∈L

V D
l sl −

∑

m∈M

DmCD
m, (13)

where Dm = 1 iff mitigation m is chosen by the defender.
The key complication is that, just as in general Stackelberg
games, the defender’s utility is a function of the attacker’s
best response, i.e., the optimal attack plan in response to
the choice of defense mitigations. This raises the technical
issue of tie breaking: if the attacker is indifferent between
multiple plans, which would he choose? A common solution
concept for Stackelberg security games is a Strong Stackel-
berg equilibrium, in which the attacker breaks ties in the
defender’s favor (we call this optimistic tie breaking). While
counterintuitive, this solution concept is reasonable when
the defender can commit to a randomized strategy, since he
can resolve the attacker’s indifference in his favor with an
infinitesimal change in strategy. As we restrict the defender
to choose mitigations deterministically, this justification be-
comes problematic, and it may be most reasonable to focus
on the Weak Stackelberg equilibrium, that is, having the
attacker break ties to minimize defender’s utility (we call
this pessimistic tie breaking). Below, we consider both vari-
ants and show empirically that in the context of determin-
istic commitment the difference between them is negligible
in practice.

Before we delve into algorithmics, we proceed to answer
the question of hardness of DPIP. First, we formulate this as
a decision problem (DPIP decision problem, or DPIPDP).

Definition 1 (DPIPDP). Given a DPIP, is there a
subset of mitigations M∗ ⊂ M that yields defender a utility
of at least k?

Theorem 1. DPIPDP is PSPACE-Complete under both
optimistic and pessimistic tie breaking, even when all miti-
gation strategies remove only a single action.

The proof can be found in the full version of this paper.

4.2 Integer Programming Formulation for
Optimal Plan Interdiction

Despite the hardness result above, we now proceed to show
how to compute optimal interdiction strategies in practice,
and later experimentally demonstrate that our approaches
are effective. For the moment, we ignore the issue of tie
breaking, and will return to it in Section 4.5.

Our first step is to formulate the DPIP as a (very large;
more on that later) integer program. The objective is, natu-
rally, to maximize the defender’s utility (Equation 13). The
complication is that we must capture the attacker’s best re-
sponse to the defender’s choice of mitigations. We do so
by constructing a special set of constraints that amounts to
ensuring that: a) the plan that the integer program chooses

201

for the attacker is feasible (with mitigations imposing appro-
priate feasibility constraints), and b) this plan has a payoff
to the attacker that is at least as high as any other feasible
plan. The way we approach this is to consider (for now)
the set of all possible attacker plans P. Clearly, the optimal
plan p∗ is in P. Moreover, we can use the set of constraints
described in Section 3 to compute a feasible plan p, as well
as its utility to the attacker. Thus, if we further ensure that
the utility of p computed in the constraints is at least that of
any feasible plan in P, subject to the additional constraints
imposed by the mitigations, we know that p is in fact the
attacker’s best response. To formalize this, let UA(p) be the
(precomputed) attacker utility of a plan p, and let δp = 1
if and only if plan p is interdicted (i.e., there is a deployed
mitigation m that removes at least one action from p). Let
Z be a large constant. The complete integer program for
DPIP, which we call DPIP IP, is given by

max
Da,Dm,ya,t,δp

∑

l∈L

V D
l sl −

∑

m∈M

DmCD
m (14)

s.t. :

∀a Da ≤
∑

m

DmAm,a (15)

∀m,a Da ≥ DmAm,a (16)

∀a,t ya,t ≤ (1−Da) (17)

∀p,a δp ≥ Da (18)

∀p δp ≤
∑

a∈p

Da (19)

∀p

∑

l∈L

V A
l sl −

∑

a,t

CA
a ya,t ≥ UA(p)− Zδp (20)

constraints on metavariables (Sec. 3)

constraints 4− 7, 8− 12.

(Note that we use p here both as a plan index and as a set
of actions that make up this plan). Constraints 15 and 16
compute a variable Da which is 1 iff there is a mitigation
that interdicts action a ∈ A. Constraint 17 ensures that only
actions which are not interdicted are used in the attack plan.
Constraints 18 and 19 compute δp. Finally, Constraints 20
ensure that the plan computed for the attacker is his best
response to the defender’s mitigations.

4.3 Scaling Up with Constraint Generation
The main problem with DPIP IP is that the number of

feasible plans and, consequently, the number of constraints,
is exponential in the number of actions. To manage this
problem in practice we develop several constraint generation
(Bender’s decomposition) approaches [2].
First, consider a relaxed version of DPIP IP with Con-

straints 15-20 corresponding to a subset, P̂, of all possible
plans. We call this master problem DPIP MASTER(P̂).
Now, suppose that we solve the master problem, obtaining
a set of mitigations M̂ ⊂ M and that DPIP MASTER(P̂)

identifies p̂ ∈ P̂ with a utility of Û as the attacker’s best
response from the plans restricted to P̂. There are now two
possibilities: either p̂ is the best response of the attacker to
M̂ , or the true attacker best response is not in P̂. To see
which it is, we need to compute the actual best response of
the attacker; fortunately, that is just the standard planning
problem, and we can use the integer program from Section 3
upon removing the actions a ∈ A that are blocked by mit-

igations M̂ . The plan that we thereby compute will either
have a utility to the attacker that is exactly Û , confirming
that M̂ is the optimal solution (since p̂ is a true best re-
sponse), or strictly higher. In the latter case, we add the
newly computed plan to the master program, and repeat.
This procedure is presented in Algorithm 1.

P̂ = ∅;

Û = 0;
U = ∞;

while Û < U do

(M̂,Da, Û) =DPIP MASTER(P̂);
AM̂ = ∅;
for a ∈ A do

if Da = 0 then
AM̂ = AM̂ ∪ a;

end

end
(p, U) =optimalPlan(AM̂);

if U > Û then

P̂ = P̂ ∪ p;
end

end
Algorithm 1: Constraint generation algorithm.

To see that Algorithm 1 converges to the optimal interdic-
tion strategy in finite time, consider what happens in any
given iteration: either a new plan is added to the master
program, or we prove that we have already computed an
optimal solution. Since the total number of plans is finite—
even if extremely large—the number of iterations must be
finite. Therefore, the algorithm is sound (since we are gen-
erating best responses in each iteration) and complete.

One more subtle but practically consequential point (as
we shall see in the experiments). While the initial incarna-
tion of the master program is missing the Constraints 15-20
altogether, the set of constraints is still non-trivial, as it en-
sures that the attacker’s response to mitigations is feasible
(and most favorable for the defender). Therefore, the initial
set of mitigations will in general be non-empty, and will al-
ready interdict some of the attack actions. In other words,
even this initial master program can be viewed as making
non-negligible progress towards the goal.

Example 2. We applied our method to the problem in
Example 1, allowing the defender to interdict each attack
action at a cost. The solution for a somewhat arbitrary as-
signment of parameters is shown in Figure 2.

4.4 Optimistic Constraint Generation
Generating constraints for the master problem using an

integer program from Section 3 clearly “works”, in the sense
that we will typically need to generate a relatively small
set of plans (as we show in the experiments below). How-
ever, observe that to make progress in each iteration of Al-
gorithm 1 we need only to generate a plan with a higher
utility than any in P̂, and not necessarily an optimal plan.
Doing so may, of course, result in more iterations, but if we
can sufficiently speed up each iteration, on balance we could
have a win.

There are two natural candidates for such optimistic con-
straint generation. The first is to still use the planning IP

202

background
search

pwd recovery
exploitation

SSH

Access database Modify website

Database accessed

background
phishing

Website modified

scanning
utilities

WSDL Scanning
Infra. based
footprinting

Inject
malicious file

Authorization
bypass

magnetic
card

Manufacture
ID card

Breaking and
entering

Boot from
disc

boot
disc

mag strip
RW HW

Figure 2: Example interdiction plan: actions that
are blocked are colored in blue, and the final attack
plan (circumvention) is highlighted in red.

from Section 3, but to cut off the solver after a fixed time
limit. The second is to leverage the extensive heuristic plan-
ning work in AI, and use an off-the-shelf state-of-the-art
heuristic planner, such as SGPLAN [6].
If we use optimistic constraint generation, Algorithm 1

is no longer sound, as we may generate a suboptimal plan
which would make a current result appear optimal, even
though it is not. To ensure soundness, we must therefore
check the final solution obtained using a planner which does
guarantee optimality, such as the planning IP from Sec-
tion 3. However, since this needs only to be done relatively
rarely (often only at the very end), most iterations will still
run much faster than they would otherwise.

4.5 Tie breaking
The approach above breaks ties somewhat arbitrarily, since

only a single best response is ever generated. Below we show
how to handle pessimistic tie breaking and, thus, compute a
Weak Stackelberg equilibrium; we can deal with optimistic
tie breaking analogously.
Our first step is to ensure that the defender’s utility is

at most that of any non-interdicted attack plan currently
generated. To that end we introduce binary variables αp,
and add the following set of constraints to set αp = 1 for all
attacker-optimal non-interdicted plans:

∀p

∑

l∈L

V A
l sl −

∑

a,t

CA
a ya,t ≥ UA(p)− Zδp − αp + ǫ, (21)

where ǫ ∈ (0, 1) is a sufficiently small number such that
the requirement can only be satisfied by an attacker-optimal
plan p if αp = 1. Then, for each plan p with αp = 1,
the following constraint will be effective, placing the desired
limit on the defender’s utility:

∀p

∑

l∈L

V D
l sl ≤ UD(p) + Z(1− αp), (22)

with UD(p) the (precomputed) defender utility of a plan
p. Since Constraints 20 ensure that the goals reached using
an attacker-optimal plan are represented by the variables
sl, Constraints 22, in combination with Constraints 21 will
ensure that the worst plan is chosen for the defender of those
that are optimal for the attacker from the set of plans that
have been generated thus far.
The problem with the approach above is that since we

only generate and add a single optimal plan for the attacker

at any given time, rather than all optimal attacker plans, we
may overestimate the worst-case utility for the defender. To
handle this, once Algorithm 1 finds no additional constraints
to add, we solve another integer program to check if the best
response is, indeed, defender pessimal. To do this we need to
modify the IP from Section 3 in two ways. First, we change
the objective to minimize the defender’s value (maximize his
losses) for goals achieved by the attacker:

min
∑

l

V D
l sl

Second, we add a constraint that forces the attacker utility
to equal the best response that we have computed in solving
DPIP IP, which we denote by Ū :

∑

l

V A
l sl −

∑

a

CA
a

∑

t

ya,t = Ū .

If the resulting objective value matches
∑

l∈L V D
l sl com-

puted by Constraints 22, we are done. If not, we have just
identified a plan that can be added to the master program,
at which point we restart Algorithm 1.

4.6 Heuristic Plan Interdiction
While we are the first to consider the problem of opti-

mal plan interdiction at this level of generality, there are a
number of informal ways in which attacker models, such as
attack graphs or attack plans, are used to guide the design
of mitigations in practice. In most cases, these actually re-
quire the specification of the entire attack graph, making it
both suboptimal and intractable for even a modest number
of state literals (for example, one would attempt to interdict
a shortest path to a goal).

Acur = A;
while true do

(p, U,G(p)) =optimalPlan(Acur);
U ′

best = U ;

Ãbest = ∅;
for g ∈ G(p) do

Ã =chooseCheapest(p, g);

(p′, U ′, G(p′)) =optimalPlan(Acur \ Ã);
if U ′ > U ′

best then
U ′

best = U ′;

Ãbest = Ã;

end

end

if U ′
best − U >

∑

a∈Ãbest
CD

a then

Acur = Acur \ Ãbest;
else

break;
end

end
Algorithm 2: Heuristic plan interdiction.

In this section, we propose a greedy heuristic, shown as
Algorithm 2, which relies only on the ability to generate
plans in response to specific mitigations. Our heuristic can
be viewed as a kind of formalization of the way attack mod-
els are actually used to obtain mitigation strategies: that is,
by iteratively interdicting attacker’s goals. Since different
goals have different value to the defender, but may also carry

203

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

S
e
c
o
n
d
s

Problem number

Baseline
Early termination of Att. IP
Heuristic planner(SGPlan)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

S
e
c
o
n
d
s

Problem number

Attacker IP
Optimal defense (SGPlan)

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

U
ti
lit

y

Problem number

Optimistic Tiebreaking
Pessimistic Tiebreaking

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

S
e
c
o
n
d
s

Problem number

Optimistic tiebreaking
Pessimistic tiebreaking

(a) (b) (c) (d)

Figure 3: (a) Runtime comparison for several variants of constraint generation. (b) DPIP runtime vs. optimal
planning runtime. (c) Runtime and (d) utility comparison of tie breaking approaches.

varying interdiction costs, in each iteration we choose a goal
to interdict to maximize the defender’s marginal utility. For
simplicity, we assume that each mitigation blocks exactly
one attack action, so that CD

m = CD
a for action a interdicted

by mitigation m. In Algorithm 2, the function chooseCheap-
est(p, g) chooses the cheapest set of actions from plan p such
that goal g is no longer satisfied, and G(p) represents the set
of goals satisfied by a plan p.
Notice that since Algorithm 2 still requires us to com-

pute optimal attacker plans, it is not a given that it will be
faster than DPIP IP. Below, we compare DPIP IP with the
greedy heuristic, demonstrating that in some cases it can be
quite effective.

5. EXPERIMENTSWITHDETERMINISTIC

PLAN INTERDICTION
For the experimental evaluation, we used the pathways

planning domain from the 2006 international planning com-
petition (IPC). To formulate these as interdiction problems,
we let the set of mitigations correspond to the set of plan
actions (thus, each mitigation m blocks exactly one attack
action). We let the defender losses equal attacker gains, that
is, V D

l = −V A
l for all l ∈ L; note that the game remains

non-zero-sum, since the costs are accounted for differently
by the defender and the attacker. Interdiction costs are fixed
at 1 for interdicting all actions a ∈ A, with the exception
of special actions generated to capture logical expressions or
combinations of goals, for which the interdiction costs are
set to infinity. The problems that we ran our experiments
on ranged in size from 46 possible attacker actions and one
potential goal (problem number 1) to 490 attacker actions
and 27 potential goals (problem number 20), with a general
trend of a larger index having a larger number of possible
attacker actions and goals. All computational experiments
were performed on a 64 bit Linux 2.6.18-164.el5 computer
with 96 GB of RAM and two quad-core hyperthreaded Intel
Xeon 2.93 GHz processors, unless otherwise specified. We
did not make use of any parallel or multi-threading capabil-
ities, restricting a solver to a single thread, when relevant.
Integer programs were solved using CPLEX version 12.4.
In the first set of experiments we compare the performance

of our proposed algorithms. (Note that comparing to alter-
natives such as DOBSS [11] is a non-starter, since there are
vastly more feasible plans than could be stored in memory.)
The results are shown in Figure 3 (a). The “Baseline” so-
lution in the figure uses Algorithm 1 as is, that is, with
constraints generated by solving the integer program in Sec-
tion 3. As we can see, even with constraint generation, this
approach scales rather poorly: indeed, on most problems it

is entirely infeasible. If we terminate the planning IP early,
the performance is now far more reasonable, and most IPC
problems can be solved. Finally, using SGPLAN to gener-
ate constraints yields another improvement (up to a factor
of 100 on some problem instances); indeed, the running time
of DPIP is now 10-100 seconds on all but one problem.

The second set of experiments compares the solution time
of DPIP to the time it takes to run the attack planning IP on
the same problem instance. The result, shown in Figure 3
(b), is quite surprising: DPIP with constraint generation
appears to be many orders of magnitude easier to solve, even
though it uses the same structure as the attack planning IP !
The reason is that even in the absence of generated plans,
the master IP still ensures that some feasible plan is chosen
by the attacker. The result is that the mitigations chosen in
the initial iteration already significantly restrict the planning
problem, making it much easier to solve.

Our third set of experiments compares optimistic and pes-
simistic tie breaking. As one would expect, there is no dis-
cernible difference in terms of defender utility (Figure 3 (c)).
What may be slightly more surprising is that there is essen-
tially no difference in running time either (Figure 3 (d)).

Our fourth set of experiments compares the greedy heuris-
tic for DPIP to our optimal plan interdiction algorithm (Fig-
ure 4). The results are mixed. On the one hand, the heuris-

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

U
ti
lit

y

Problem number

Exact (Optimistic)
Greedy

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

S
e
c
o
n
d
s

Problem number

Exact planner(SGPlan)
Greedy(SGPlan)

Figure 4: Comparison of the greedy heuristic (Al-
gorithm 2) to optimal in terms of defender utility
(left) and runtime (right).

tic is remarkably good at approximating the optimal inter-
diction strategy for the defender (Figure 4, left). Moreover,
for the smaller (lower numbered) problems, it is an order
of magnitude faster than Algorithm 1. On the other hand,
for many of the larger problems (except the largest), the
optimal interdiction algorithm is actually much faster than
the heuristic (Figure 4, right). Finally, while the runtime
comparison between the greedy heuristic and optimal DPIP
is ambiguous, greedy wins hands down in terms of memory
utilization: the memory footprint of greedy is about 10%
that for Algorithm 1 on the larger problems.

204

6. DEALINGWITH UNCERTAINTY
A crucial limiting feature of the approach we presented

thus far is that it assumes determinism in every facet of the
plan interdiction problem. In this section we incrementally
relax this assumption.

6.1 Uncertainty about Attacker’s Capabilities,
Costs, and Goals

It is, in general, a severe simplification to treat attacker’s
capabilities, goals, and action costs as known to the de-
fender. We relax this assumption in a relatively standard
way by using a Bayesian Stackelberg game model, and focus
here on uncertainty in attacker’s capabilities (uncertainty
about goals and costs can be handled similarly). Let Θ be
the set of attacker types, and let Iθ be the set of capabilities
(i.e., initial state) of type θ ∈ Θ. Additionally, let pθ be the
probability that the attacker has type θ, and index the vari-
ables s, V A, V D, and δ by the attacker’s type. The DPIP
objective function becomes

∑

θ

∑

l∈L

pθV
D
θ,lsθ,l −

∑

m∈M

DmCD
m,

while Constraints 17-20 now have to hold for each attacker
type θ. Finally, in the constraint generation algorithm we
solve a separate planning problem for each type, and add all
the corresponding plans to the master program.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9

S
e
c
o
n
d
s

Number of types

Runtime on problem 1
Runtime on problem 2
Runtime on problem 3
Runtime on problem 4

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9

U
ti
lit

y

Number of types

Pathway 1
Pathway 2
Pathway 3
Pathway 4

Figure 5: Runtime (left) and defender utility (right)
of Bayesian plan interdiction as a function of the
number of attacker types.

In Figure 5 (left) we show the runtime of the Bayesian
plan interdiction framework with the appropriate modifica-
tions to the master problem and constraint generation. For
this figure, we first generated 9 attacker types correspond-
ing to initial capabilities, and then incrementally abstracted
these to obtain smaller numbers of types. The good news
is that on the three of four problems the runtime trend is
subexponential. Another piece of good news is that it ap-
pears that type abstraction is rather effective, and the utility
of the defender reaches near optimal with the number of ab-
stracted types less than half of the number of actual types
(indeed, grouping all types into one seems to already yield
a near-optimal solution on three of the four problems). The
bad news is that the bottleneck of this approach seems to be
memory (we used a machine with 8GB of memory for this
set of experiments): we were unable to run larger problem
instances due to memory limitations.

6.2 Uncertain Attack Execution with Retry
Aside from Bayesian plan interdiction we had just consid-

ered, there is another type of uncertainty that we can handle
within the basic DPIP framework: uncertainty about execu-
tion of attack actions, when the attacker can retry an action

that fails an arbitrary number of times. The reason is that
if the action cost is CA

a , and the probability that the action
succeeds is Pa, we can reformulate the problem by assigning
a new action cost C̄A

a = CA
a /Pa, and then solve the corre-

sponding DPIP.

6.3 MDP Interdiction Problem
While certain special cases of uncertainty can be handled

within the basic DPIP framework we introduced, in general
we must move beyond it. In this section we explore one such
generalization, modeling the attacker’s problem as a Termi-
nating Markov Control Problem (TMCP). A TMCP is quite
similar to a MDP, but in every state σ there is a “cash out”
action that yields a reward based on which goals are satisfied
and moves the MDP into an absorbing state, and, in addi-
tion, every action in each state has a non-zero probability
of transitioning into the absorbing state. The convenience
of using such termination probabilities (which can represent
the probability of the attacker being caught) is that we can
equivalently formulate the problem as an MDP with a dis-
count factor that depends on current and next state, γσ,σ′ .
Let V A

a,σ be the attacker’s value (reward) in state σ if he takes
action a, and let I and G be the initial state, and the state
in which all of the attacker’s goals are satisfied, respectively.
Finally, define T a,σ

σ′ to be the probability of moving to state
σ′ from σ if the attacker takes action a. We formulate this
as an interdiction problem in precisely the same way as we
had done for DPIP, endowing the defender with the set of
mitigation strategies and associated costs, and assigning the
defender a utility function V D

a,σ for each state σ and attack
action a performed in that state.

As the first step we leverage a linear programming formu-
lation for computing the optimal policy of a TMCP [7]:

max
ya,σ

∑

a,σ

V A
a,σya,σ (23)

s.t. :

∀σ′ 6=I

∑

σ,a

(δσ,σ′ − T a,σ

σ′)ya,σ = 0 (24)

∑

a,σ

(γσ,I − T a,σ
I)ya,σ = 1 (25)

∑

a,σ

(γσ,G − T a,σ
G)ya,σ = −1, (26)

where ya,σ = 1 iff the attacker chooses action a in state σ.
The full MDP interdiction problem (MDPIP) can then be
formulated as the following integer program:

max
∑

a,σ

V D
a,σya,σ −

∑

m

CD
mDm

s.t. :

∀p

∑

a,σ

V A
a,σya,σ ≥ UA(p)− δpZ

constraints 15− 19, 24− 26.

We can then use Algorithm 1 as is, with constraints gener-
ated using standard methods for solving MDPs.

To study the difference between the runtime and memory
characteristics of MDPIP and DPIP, we use the planning
problem in Example 1, varying the number of actions avail-
able to the attacker between 13 and 16 (MDPIP runs out
of memory for larger problems, as well as for all problems

205

from IPC 2006). To introduce uncertainty, we added attack
step execution uncertainty with retry; as we noted in Sec-
tion 6.2, such uncertainty can also be captured in the DPIP
framework. Figure 6 shows what we would have expected:

 1

 10

 100

 1000

 10000

 13 14 15 16

S
e
c
o
n
d
s

Number of Literals

Determinstic IP
Nondeterminstic IP

Figure 6: Runtime comparison between MDPIP and
DPIP.

MDPIP, while much more general, is an order of magnitude
(and growing) slower than DPIP. Additionally, the memory
footprint of MDPIP is an even greater issue: for 16 literals,
solving MDPIP takes about a factor of 20 more memory.

7. CONCLUSION AND FUTUREWORK
We presented a Stackelberg game model of security in

which the defender chooses optimal mitigations that reduce
the capability of the attacker to achieve his goals. We offered
an integer programming formulation of this problem, and
presented several variants of constraint generation, leverag-
ing a state-of-the-art AI planning tool to dramatically in-
crease scalability. Additionally, we presented a heuristic
alternative, and showed that it uses far less memory than
the optimal plan interdiction algorithm, yields nearly opti-
mal solutions, and runs considerably faster than the optimal
algorithm on some, though not all, test problems. We ex-
tended the classical planning framework to incorporate un-
certainty about attacker’s capabilities, costs, goals, as well as
execution uncertainty, and showed that these extensions re-
tain the basic structure of the deterministic plan interdiction
problem and, therefore, its scalability. More generally, we
provided an integer programming formulation for comput-
ing optimal interdiction strategies for MDPs, but generality
here comes at a substantial cost to scalability.
Throughout, we tackled problems in which the defender

can only use deterministic mitigation strategies, somewhat
in contrast with much recent work that allows the defender
to randomize, achieving, in general much higher utility. As
mixed strategy commitment in our context presents a num-
ber of both conceptual and technical challenges, we leave it
for future work.

8. REFERENCES
[1] Paul Ammann, Duminda Wijesekera, and Saket Kaushik.

Scalable, graph-based network vulnerability analysis. In
ACM Conference on Computer and Communications
Security, pages 217–224, 2002.

[2] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to
Linear Optimization. Athena Scientific, 1997.

[3] Stefano Bistarelli, Marco Dall’Anglio, and Pamela Peretti.
Strategic games on defense trees. In Fourth International
Conference on Formal Aspects of Security and Trust, pages
1–15, 2006.

[4] Mark Boddy, Johnathan Gohde, Tom Haigh, and Steven
Harp. Course of action generation for cyber security using
classical planning. In International Conference on
Automated Planning and Scheduling, pages 12–21, 2005.

[5] Gerald G. Brown, W. Matthew Carlyle, Robert C. Harney,
Eric M. Skroch, and R. Kevin Wood. Interdicting a
nuclear-weapons project. Operations Research,
57(4):866–877, 2009.

[6] Yixin Chen, Benjamin W. Wah, and Chih wei Hsu.
Temporal planning using subgoal partitioning and
resolution in SGPlan. Journal of Artificial Intelligence
Research, 26:323–369, 2006.

[7] Jerzy Filar and Koos Vrieze. Competitive Markov Decision
Processes. Springer-Verlag, 1997.

[8] P.M. Ghare, D.C. Montgomery, and W.C. Turner. Optimal
interdiction policy for a flow network. Naval Research
Logistics Quarterly, 18(1):37–45, 1971.

[9] A.W. McMasters and T.M. Mustin. Optimal interdiction of
a supply network. Naval Research Logistics Quarterly,
17(3):261–268, 1970.

[10] Jorge Lucangeli Obes, Carlos Sarraute, and Gerardo
Richarte. Attack planning in the real world. In Second
Workshop on Intelligent Security, 2010.

[11] Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki,
Milind Tambe, Fernando Ordóñez, and Sarit Kraus.
Playing games with security: An efficient exact algorithm
for Bayesian Stackelberg games. In Proceedings of the
Seventh International Conference on Autonomous Agents
and Multiagent Systems, pages 895–902, 2008.

[12] Cynthia A. Phillips. The network inhibition problem. In
ACM Symposium on Theory of Computing, pages 776–785,
1993.

[13] James Pita, Milind Tambe, Chris Kiekintveld, Shane
Cullen, and Erin Steigerwald. Guards - game theoretic
security allocation on a national scale. In Tenth
International Conferenceon Autonomous Agents and
Multiagent Systems, pages 37–44, 2011.

[14] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray.
Dynamic security risk management using bayesian attack
graphs. IEEE Transactions on Dependable and Secure
Computing, 9:61–74, 2012.

[15] Ronald W. Ritchey and Paul Ammann. Using model
checking to analyze network vulnerabilities. In IEEE
Symposium on Security and Privacy, pages 156–165, 2000.

[16] J. Salmeron, K. Wood, and R. Baldrick. Worst-case
interdiction analysis of large-scale electric power grids.
IEEE Transactions on Power Systems, 24(1):96–104, 2009.

[17] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard
Lippmann, and Jeannette M. Wing. Automated generation
and analysis of attack graphs. In IEEE Symposium on
Security and Privacy, pages 273–284, 2002.

[18] Laura P. Swiler, Cynthia Phillips, David Ellis, and Stefan
Chakerian. Computer-attack graph generation tool. In
DARPA Information Survivability Conference and
Exposition II, 2001.

[19] Menkes van den Briel, Romeo Sanchez, Minh B. Do, and
Subbarao Kambhampati. Effective approaches for partial
satisfaction (over-subscription) planning. In Nineteenth
National Conference on Artifical Intelligence, pages
562–569, 2004.

[20] Thomas Vossen, Michael Ball, and Robert H. Smith. On
the use of integer programming models in ai planning. In
Sixteenth International Joint Conference on Artificial
Intelligence, pages 304–309, 1999.

[21] Dan Zerkle and Karl Levitt. NetKuang — A multi-host
configuration vulnerability checker. In USENIX Unix
Security Symposium, 1996.

[22] Saman A. Zonouz, Himanshu Khurana, William H.
Sanders, and Timothy M. Yardley. RRE: A game-theoretic
intrusion response and recovery engine. In International
Conference on Dependable Systems and Networks, pages
439–448, 2009.

206

