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ABSTRACT
In recent years there has been extensive research on game-theoretic
models for infrastructure security. In time-critical domains where
the security agency needs to execute complex patrols, execution
uncertainty (interruptions) affect the patroller’s ability to carry out
their planned schedules later. Indeed, experiments in this paper
show that in some real-world domains, small fractions of execution
uncertainty can have a dramatic impact. The contributions of this
paper are threefold. First, we present a general Bayesian Stackel-
berg game model for security patrolling in dynamic uncertain do-
mains, in which the uncertainty in the execution of patrols is rep-
resented using Markov Decision Processes. Second, we study the
problem of computing Stackelberg equilibrium for this game. We
show that when the utility functions have a certain separable struc-
ture, the defender’s strategy space can be compactly represented,
and we can reduce the problem to a polynomial-sized optimization
problem. Finally, we apply our approach to fare inspection in the
Los Angeles Metro Rail system. Numerical experiments show that
patrol schedules generated using our approach outperform sched-
ules generated using a previous algorithm that does not consider
execution uncertainty.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Security, Performance

Keywords
Game theory, Security games, Bayesian Stackelberg games, Opti-
mization

1. INTRODUCTION
In the last few years, game theory has been applied to patrolling

problems in infrastructure security domains, in which security agen-
cies deploy patrols and checkpoints to protect targets from terrorists
and criminals. For such domains, due to limited defense resources
it is not possible to cover all targets all the time. On the other

hand, because the attacker can observe the defender’s daily sched-
ules, any deterministic schedule by the defender can be exploited
by the attacker. One game-theoretic model that has been successful
for these problems is that of a Stackelberg game between a leader
(the defender) and a follower (the adversary): the leader commits
to a mixed strategy, which is a randomized schedule specified by a
probability distribution over deterministic schedules; the follower
then observes the distribution and plays a best response. Decision-
support systems based on this model have been successfully de-
ployed, including ARMOR, IRIS, GUARDS and PROTECT [9].

In many domains, timing is an integral part of what determines
the effectiveness of patrol schedules, in addition to the set of tar-
gets being covered. For example, trains, flights and ferries follow
specific schedules, and in order to protect them the patroller needs
to be at the right place at the right time. In such domains, execution
uncertainty (errors, emergencies, noise, etc) can affect the defender
units’ ability to carry out their planned schedules in later time steps.
One motivating example, which we will elaborate on throughout
this paper, is the problem of scheduling fare inspections in the
Los Angeles Metro Rail system. TRUSTS [13], currently being
evaluated at Los Angeles Sheriff’s Department (LASD), provides a
game-theoretic solution to scheduling randomized patrols for fare
inspections on trains and at stations. However, in real world trials
carried out by the LASD, a significant fraction of the executions
of pre-generated schedules got interrupted, for a variety of reasons
such as writing citations, felony arrests, and handling emergencies.
Such interruptions can cause the officers to miss the train that they
were supposed to take as part of the schedule. As a result the solu-
tion of TRUSTS may not provide instructions on what to do after an
interruption occurs. Furthermore, since the TRUSTS model does
not take into account such execution uncertainty in its optimiza-
tion formulation, the quality guarantee of its solution is no longer
valid in real world settings. Indeed, our experiments show that the
quality of solutions of TRUSTS degrade significantly even with a
small amount of execution uncertainty present. We thus need a new
system that can generate patrol schedules that contain contingency
plans for interruptions and are robust against execution uncertainty.

There has been previous research on execution uncertainty mod-
eling and robust strategy computation in Stackelberg games, in-
cluding [12, 14]. These works focused on one shot games in which
the defender’s pure strategy is a single action, and thus cannot be
applied to the problem considered in this paper, in which execution
uncertainty can change the availability of future actions. We give a
more thorough discussion of related work in Section 5.

The first contribution of this paper is a general Bayesian Stack-
elberg game model for security patrolling with execution uncer-
tainty, which we present in Section 2. The execution uncertainty
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is represented as Markov Decision Processes. In Section 3 we
study the problem of computing a Stackelberg equilibrium for this
game, which presents significant computational challenges due to
the exponential dimension in the defender’s strategy space. As our
second contribution, we show that when the utility functions have
a certain separable structure, the defender’s strategy space can be
compactly represented. As a result we can reduce the problem to
a polynomial-sized optimization problem, which can be solved by
existing approaches for solving Bayesian Stackelberg games with-
out execution uncertainty. Furthermore we show that from the
compactly represented solution we can generate randomized patrol
schedules with contingency plans. Such contingency plans can be
implemented as a smart-phone app carried by patrol units, or as a
communication protocol with a central operator. Finally, we apply
our approach to fare inspection in the Los Angeles Metro Rail sys-
tem. Results of numerical experiments reported in Section 4 show
that execution uncertainty has a significant impact on revenue, and
our approach significantly outperform the previous TRUSTS algo-
rithm in the presence of execution uncertainty.

2. PROBLEM STATEMENT

2.1 Motivating Example: LA Metro System
While our model is quite general for modeling time-sensitive pa-

trols in security domains with execution uncertainty, the study in
this paper is substantially motivated by TRUSTS, an application
for scheduling fare inspections in the Los Angeles Metro Rail sys-
tem [13]. The LA Metro Rail system, similar to other proof-of-
payment transit systems worldwide, is a barrier-free transit system
where passengers are legally required to purchase tickets before
boarding, but are not physically blocked by gates or turnstiles. In-
stead, security personnel are dynamically deployed throughout the
transit system, randomly inspecting passenger tickets. With ap-
proximately 300,000 daily riders, the revenue loss due to fare eva-
sion can be significant—this cost has been estimated at 5.6 mil-
lion [4]. The Los Angeles Sheriffs Department (LASD) deploys
uniformed patrols onboard trains and at stations for fare-checking
(and for other purposes such as crime suppression), in order to dis-
courage fare evasion. With limited resources to devote to patrols, it
is impossible to cover all locations at all times.

TRUSTS, currently being evaluated at LASD, provides a game-
theoretic solution to scheduling randomized patrols for fare evasion
deterrence. At a given day, TRUSTS generates one patrol schedule
for each fare inspection team according to a pre-computed proba-
bility distribution over a large set of possible patrol candidates. A
patrol schedule generated is a sequence of fare-check operations,
alternating between in-station and on-train operations. Each oper-
ation indicates specifically where and when a patrol unit should
check fares. Unfortunately, the security personnel may deviate
from the given schedule for a variety of reasons, such as writing
citations, felony arrests, handling emergencies, etc. Indeed, in real
world trials carried out by the LASD, a significant fraction of the
pre-generated schedules got interrupted. Often the entire schedule
got abandoned after the interruption if the operations specified af-
terwards became irrelevant. For example, an officer following a
pre-generated schedule may be accidentally called to another sta-
tion, preventing her from carrying out the rest of the schedule.

2.2 Formal Model
As the first contribution of this work, we present a formal game-

theoretic model for patrolling with dynamic execution uncertainty.
A patrolling game with execution uncertainty is a two-player Bayesian
Stackelberg game, between a leader (the defender) and a follower

(the adversary). The leader has γ patrol units, and commits to a
randomized daily patrol schedule for each unit. A (naive) patrol
schedule consists of a list of commands to be carried out in se-
quence. Each command is of the form: at time τ , the unit should
be at location l, and should execute patrol action a. The patrol ac-
tion a of the current command, if executed successfully, will take
the unit to the location and time of the next command. Each unit
faces uncertainty in the execution of each command: delays, or be-
ing called to deal with emergencies (possibly at another location).
As a result the unit may end up at a location and a time that is
different from the intended outcome of the action.

We use Markov Decision Processes (MDPs) as a compact rep-
resentation to model each individual defender unit’s execution of
patrols. We emphasize that these MDPs are not the whole game:
they only model the defender’s interactions with the environment
when executing patrols; we will later describe the interaction be-
tween the defender and the adversary. Formally, for each defender
unit i ∈ {1, . . . , γ} we define an MDP (Si, Ai, Ti, Ri), where

• Si is a finite set of states. Each state si ∈ Si is a tuple (l, τ ) of
the current location of the unit and the current discretized time. We
denote by l(si) and τ (si) the location and time of si, respectively.
• Ai is a finite set of actions. Let Ai(si) ⊆ Ai be the set of

actions available at state si.
• For each si ∈ Si and each action ai ∈ Ai(s), the default

next state n(si, ai) ∈ Si is the intended next state when executing
action ai at si. We call a transition (si, ai, s

′
i) a default transition

if s′i = n(si, ai) and a non-default transition otherwise.
• Ti(si, ai, s

′
i) is the probability of next state being s′i if the cur-

rent state is si and the action taken is ai.
• Ri(si, ai, s

′
i) is the immediate reward for the defender from

the transition (si, ai, s
′
i). For example, being available for emer-

gencies (such as helping a lost child) is an important function of
the police, and we can take this into account in our optimization
formulation by using Ri to give positive rewards for such events.

We assume that the MDP is acyclic: Ti(si, ai, s
′
i) is positive only

when τ (s′i) > τ (si), i.e., all transitions go forward in time. S+
i ⊆

Si is the subset of states where a patrol could start. A patrol could
end at any state. For convenience, we add a dummy source state
s+i ∈ Si that has actions with deterministic transitions going into
each of the states in S+

i , and analogously a dummy sink state s−i ∈
Si. Thus each patrol of defender i starts at s+i and ends at s−i . A
patrol execution of i is specified by its complete trajectory ti =
(s+i , a

+
i , s

1
i , a

1
i , s

2
i , . . . , s

−
i ), which records the sequence of states

visited and actions performed. A joint complete trajectory, denoted
by t = (t1, . . . , tγ), is a tuple of complete trajectories of all units.
Let X be the finite space of joint complete trajectories.

The immediate rewards Ri are not all the utility received by the
defender. The defender also receives rewards from interactions
with the adversary. The adversary can be of a set Λ of possible
types and has a finite set of actions A. The types are drawn from a
known distribution, with pλ the probability of type λ ∈ Λ. The de-
fender does not know the instantiated type of the adversary, while
the adversary does and can condition his decision on his type.

In this general game model, the utilities resulting from defender-
adversary interaction could depend arbitrarily on the complete tra-
jectories of the defender units. Formally, for a joint complete tra-
jectory t, the realized adversary type λ ∈ Λ, and an action of the
adversary α ∈ A, the defender receives utility ud(t, λ, α), while
the adversary receives ua(t, λ, α).

We are interested in finding the Strong Stackelberg Equilibrium
(SSE) of this game, in which the defender commits to a random-
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ized policy which we define next, and the adversary plays a best
response to this randomized policy. It is sufficient to consider only
pure strategies for the adversary [5]. Finding one SSE is equivalent
to the following optimization problem:

max
π

∑

λ∈Λ

pλEt∼π[u
d(t, λ, αλ) +

∑

i

Ri(ti)] (1)

s.t. αλ ∈ argmax
αλ

Et∼π[u
a(t, λ, αλ)], ∀λ ∈ Λ (2)

where Ri(ti) is the total immediate reward from the trajectory ti,
and Et∼π[·] denotes the expectation over joint complete trajecto-
ries induced by defender’s randomized policy π.

Whereas MDPs always have Markovian and deterministic op-
timal policies, in our game the defender’s optimal strategy may
be non-Markovian because the utilities depend on trajectories, and
may be randomized because of interactions with the adversary. We
consider two cases: coupled execution and decoupled execution.
In coupled execution, patrol units can coordinate with each other;
that is, the behavior of unit i at si could depend on the earlier joint
trajectory of all units. Formally, let Ti be the set of unit i’s par-
tial trajectories (s+i , a

+
i , s

1
i , a

1
i , . . . , s

′
i). A coupled randomized

policy is a function π :
∏

i Ti ×
∏

i Ai → R that specifies a prob-
ability distribution over joint actions of units for each joint partial
trajectory. Let ϕ(t;π) ∈ R be the probability that joint complete
trajectory t ∈ X is instantiated under policy π. In decoupled exe-
cution, patrol units do not communicate with each other. Formally,
a decoupled randomized policy π = (π1, . . . , πγ) where for each
unit i, πi : Ti × Ai → R specifies a probability distribution over
i’s actions given each partial trajectory of i. Thus a decoupled ran-
domized policy (π1, . . . , πγ) can be thought of as a coupled ran-
domized policy π′ where π′(t, (a1, . . . , aγ)) =

∏
i πi(ti, ai).

Coupled execution potentially yields higher expected utility than
decoupled execution. Suppose the defender wants to protect an
important target with at least one unit, and unit 1 is assigned that
task. Then if she knows unit 1 is dealing with an emergency and
unable to reach that target, she can reroute unit 2 to cover the target.
However, coordinating among units presents significant logistical
and (as we will see in this paper) computational burden.

3. APPROACH
Since the defender’s optimal strategy may be coupled and non-

Markovian, i.e., the policy at s could depend on the entire earlier
trajectories of all units rather than the current state s. This makes
solving the game computationally difficult—the dimension of the
space of mixed strategies is exponential in the number of states.

Nevertheless, in many domains, the utilities have additional struc-
ture. There has been extensive research on efficient computation
of SSE for massive games with structured utility functions [9], in-
cluding for the LA Metro domain [13], but these works cannot deal
with the type of execution uncertainty studied in this paper. In Sec-
tion 3.1 we show that under the assumption that the utilities have
separable structure, it is possible to efficiently compute an SSE of
patrolling games with execution uncertainty. In Section 3.2 we dis-
cuss generating patrol schedules from solutions described in Sec-
tion 3.1. In Section 3.3 we consider the a more general case with
partially separable utilities. In Section 3.4 we apply our proposed
techniques to the LA Metro domain.

3.1 Efficient computation via compact repre-
sentation of strategies

Consider a coupled strategy π. Denote by xi(si, ai, s
′
i) the marginal

probability of defender unit i reaching state si, executing action ai,

and ending up at next state s′i. Formally,

xi(si, ai, s
′
i) =

∑

t∈X
ϕ(t;π)θ(ti, si, ai, s

′
i), (3)

where the value of the membership function θ(ti, si, ai, s
′
i) is equal

to 1 if trajectory ti contains transition (si, ai, s
′
i) and is equal to 0

otherwise. Let x ∈ RM be the vector of these marginal probabil-
ities, where M =

∑
i |Si|2|Ai|. Similarly, let wi(si, ai) be the

marginal probability of unit i reaching si and taking action ai. Let
w ∈ R

∑
i|Si||Ai| be the vector of these marginal probabilities. We

show that w and x satisfy the linear constraints:

xi(si, ai, s
′
i) = wi(si, ai)Ti(si, ai, s

′
i),∀si, ai, s

′
i (4)

∑

s′i,a
′
i

xi(s
′
i, a

′
i, si) =

∑

ai

wi(si, ai),∀si (5)

∑

ai

wi(s
+
i , ai) =

∑

s′i,a
′
i

xi(s
′
i, a

′
i, s

−
i ) = 1, (6)

wi(si, ai) ≥ 0,∀si, ai (7)

LEMMA 1. For all coupled randomized policy π, the result-
ing marginal probabilities wi(si, ai) and xi(si, ai, s

′
i) satisfy con-

straints (4), (5), (6), (7).

PROOF SKETCH. Constraint (4) holds by the definition of tran-
sition probabilities of MDPs. Constraint (5) holds because both lhs
and rhs equal the marginal probability of reaching state s. Con-
straint (6) holds because by construction, the marginal probability
of reaching s+i is 1, and so is the marginal probability of reaching
s−i . Constraint (7) holds because wi(si, ai) is a probability.

Intuitively, if we can formulate utilities in terms of w and x,
which have dimensions polynomial in the sizes of the MDPs, this
will lead to a much more compact representation of the SSE prob-
lem compared to (1). It turns out this is possible if the game’s
utilities are separable, which intuitively means that given the ad-
versary’s strategy, the utilities of both players are sums of contribu-
tions from individual units’ individual transitions:

DEFINITION 1. A patrolling game with execution uncertainty
as defined in Section 2.2 has separable utilities if there exist util-
ities Ud

λ(si, ai, s
′
i, α) and Ua

λ (si, ai, s
′
i, α) for each unit i, transi-

tion (si, ai, s
′
i), λ ∈ Λ, α ∈ A, such that for all t ∈ X , λ ∈ Λ,

α ∈ A, the defender’s and the adversary’s utilities can be ex-
pressed as ud(t, λ, α) =

∑
i

∑
si,ai,s

′
i
θ(ti, si, ai, s

′
i)U

d
λ(si, ai, s

′
i, α)

and ua(t, λ, α) =
∑

i

∑
si,ai,s

′
i
θ(ti, si, ai, s

′
i)U

a
λ (si, ai, s

′
i, α),

respectively.

Let Ud
λ , U

a
λ ∈ RM×|A| be the corresponding matrices. Then Ud

λ , U
a
λ

completely specifies the utility functions ud and ua.

L1, τ0 Stay

L2, τ0

L1, τ1

To L2

L2, τ1Stay

To L1

Stay L1, τ2

To L2

L2, τ2Stay

To L1

L1

L2

τ0 τ1 τ2

1.0

0.1

0.9

1.0

0.9

0.1

1.0

0.1

0.9

1.0

0.9

0.1

Figure 1: Example game with separable utilities.
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EXAMPLE 1. Consider the following simple example game with
one defender unit, whose MDP is illustrated in Figure 1. There
are six states, shown as circles in the figure, over two locations
L1, L2 and three time points τ0, τ1, τ2. From states at τ0 and τ1,
the unit has two actions: to stay at the current location, which al-
ways succeeds, and to try to go to the other location, which with
probability 0.9 succeeds and with probability 0.1 fails (in which
case it stays at the current location). There are 12 transitions in
total, which is fewer than the number of complete trajectories (18).
There is a single type of adversary who chooses one location be-
tween L1 and L2 and one time point between τ1 and τ2 to attack
(τ0 cannot be chosen). If the defender is at that location at that
time, the attack fails and both players get zero utility. Otherwise,
the attack succeeds, and the adversary gets utility 1 while the de-
fender gets −1. In other words, the attack succeeds if and only if it
avoids the defender unit’s trajectory. It is straightforward to verify
that this game has separable utilities: for any transition (si, ai, s

′
i)

in the MDP, let Ua
λ (si, ai, s

′
i, α) be 1 if α coincides with s′i and

0 otherwise. For example, the utility expression for the adver-
sary given trajectory ((L1, τ0), To L2, (L1, τ1), To L2, (L2, τ2)) is
Ua

λ ((L1, τ0), To L2, (L1, τ1), α)+Ua
λ ((L1, τ1), To L2, (L2, τ2), α),

which gives the correct utility value for the adversary: 1 if α equals
(L1, τ1) or (L2, τ2) and 0 otherwise.

It is straightforward to show the following.

LEMMA 2. Consider a game with separable utilities. Suppose
x is the vector of marginal probabilities induced by the defender’s
randomized policy π. Let yλ ∈ R|A| be a vector describing the
mixed strategy of the adversary of type λ, with yλ(α) denoting the
probability of choosing action α. Then the defender’s and the ad-
versary’s expected utilities from their interactions are

∑
λ pλx

TUd
λyλ

and
∑

λ pλx
TUa

λyλ, respectively.

In other words, given the adversary’s strategy, the expected utilities
of both players are linear in the marginal probabilities xi(si, ai, s

′
i).

Lemma 2 also applies when (as in an SSE) the adversary is play-
ing a pure strategy, in which case yλ is a 0-1 integer vector with
yλ(α) = 1 if α is the action chosen. We can thus use this compact
representation of defender strategies to rewrite the formulation for
SSE (1) as a polynomial-sized optimization problem.

max
w,x,y

∑

λ∈Λ

pλx
TUd

λyλ +

γ∑

i=1

∑

si,ai,s
′
i

xi(si, ai, s
′
i)Ri(si, ai, s

′
i) (8)

s.t. constraints (4), (5), (6), (7)
∑

α

yλ(α) = 1, yλ(α) ∈ {0, 1} (9)

yλ ∈ argmax
y′
λ

xTUa
λy

′
λ (10)

As we will show in Section 3.2, given a solution w,x to (8), we
can calculate a decoupled policy that matches the marginals w,x.
Compared to (1), the optimization problem (8) has exponentially
fewer dimensions; in particular the numbers of variables and con-
straints are polynomial in the sizes of the MDPs. Furthermore,
existing methods for solving Bayesian Stackelberg games can be
directly applied to (8) such as mixed-integer linear program formu-
lation [8] or branch-and-bound [14].

For the special case of Ud
λ + Ua

λ = 0 for all λ, i.e., when the
interaction between defender and adversary is zero-sum, the above

SSE problem can be formulated as a linear program (LP)

max
w,x,u

∑

λ∈Λ

pλuλ +
∑

i

∑

si,ai,s
′
i

xi(si, ai, s
′
i)Ri(si, ai, s

′
i) (11)

s.t. constraints (4), (5), (6), (7)

uλ ≤ xTUd
λeα,∀λ ∈ Λ, α ∈ A, (12)

where eα is the basis vector corresponding to adversary action α.
This LP is similar to the maximin LP for a zero-sum game with
the utilities given by Ud

λ and Ua
λ , except that an additional term∑

i

∑
si,ai,s

′
i
xi(si, ai, s

′
i)Ri(si, ai, s

′
i) representing defender’s ex-

pected utilities from immediate rewards is added to the objective.
One potential issue arises: because of the extra defender utilities
from immediate rewards, the entire game is no longer zero-sum. Is
it still valid to use the above maximin LP formulation? It turns out
that the LP is indeed valid, as the immediate rewards do not depend
on the adversary’s strategy.

PROPOSITION 1. If the game has separable utilities and Ud
λ +

Ua
λ = 0 for all λ, then a solution of the LP (11) is an SSE.

PROOF SKETCH. We can transform this game to an equivalent
zero-sum Bayesian game whose LP formulation is equivalent to
(11). Specifically, given the non-zero-sum Bayesian game Γ speci-
fied above, consider the Bayesian game Γ′ with the following “meta”
type distribution for the second player: for all λ ∈ Λ of Γ there is
a corresponding type λ′ ∈ Λ′ in Γ′, with probability pλ′ = 0.5pλ,
with the familiar utility functions; and there is a special type φ ∈ Λ′

with probability pφ = 0.5, whose action does not affect either
player’s utility. Specifically the utilities under the special type φ
are ud(t, φ, α) =

∑
i

∑
si,ai,s

′
i
θ(ti, si, ai, s

′
i)Ri(si, ai, s

′
i) and

ua(t, φ, α) = −
∑

i

∑
si,ai,s

′
i
θ(ti, si, ai, s

′
i)Ri(si, ai, s

′
i). The

resulting game Γ′ is zero-sum, with the defender’s utility exactly
half the objective of (11). Since for zero-sum games maximin
strategies and SSE coincide, a solution of the LP (11) is an opti-
mal SSE marginal vector for the defender of Γ′. On the other hand,
if we compare the induced normal forms of Γ and Γ′, the only dif-
ference is that for the adversary the utility −0.5

∑
e∈E∗ Uexe is

added, which does not depend on the adversary’s strategy. There-
fore Γ and Γ′ have the same set of SSE, which implies that a solu-
tion of the LP is an SSE of Γ.

3.2 Generating Patrol Schedules
The solution of (8) does not yet provide a complete specifica-

tion of what to do. We ultimately want an explicit procedure for
generating the patrol schedules. We define a Markov strategy π to
be a decoupled strategy (π1, . . . , πγ), πi : Si × Ai → R, where
the distribution over next actions depends only on the current state.
Proposition 2 below shows that given w,x, there is a simple pro-
cedure to calculate a Markov strategy that matches the marginal
probabilities. This implies that if w,x is the optimal solution of
(8), then the corresponding Markov strategy π achieves the same
expected utility. We have thus shown that for games with separable
utilities it is sufficient to consider Markov strategies.

PROPOSITION 2. Given w,x satisfying constraints (4) to (7),
construct a Markov strategy π as follows: for each si ∈ Si, for
each ai ∈ Ai(si), πi(si, ai) = wi(si,ai)∑

a′
i
wi(si,a

′
i)

. Suppose the de-

fender plays π, then for all unit i and transition (si, ai, s
′
i), the

probability that (si, ai, s
′
i) is reached by i equals xi(si, ai, s

′
i).

PROOF SKETCH. Such a Markov strategy π induces a Markov
chain over the states Si for each unit i. It can be verified by induc-
tion that the resulting marginal probability vector matches x.
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In practice, directly implementing a Markov strategy requires the
unit to pick an action according to the randomized Markov strategy
at each time step. This is possible when units can consult a smart-
phone app that stores the strategy, or can communicate with a cen-
tral command. However, in certain domains such requirement on
computation or communication at each time step places additional
logistical burden on the patrol unit. To avoid unnecessary compu-
tation or communication at every time step, it is desirable to have a
deterministic schedule (i.e., a pure strategy) from the Markov strat-
egy. With no execution uncertainty, a pure strategy can be specified
by the a complete trajectory for each unit. However, this no longer
works in the case with execution uncertainty.

We thus begin by defining a Markov pure strategy, which speci-
fies a deterministic choice at each state.

DEFINITION 2. A Markov pure strategy q is a tuple (q1, . . . , qγ)
where for each unit i, qi : Si → Ai.

Given a Markov strategy π, we sample a Markov pure strategy q
as follows: for each unit i and state si ∈ Si, sample an action ai as
qi(si) according to πi. This procedure is correct since each state
in i’s MDP is visited at most once and thus qi exactly simulates a
walk from s+i on the Markov chain induced by πi.

To directly implement a Markov pure strategy, the unit needs to
remember the entire mapping q or receives the action from the cen-
tral command at each time step. A logistically more efficient way
is for the central command to send the unit a trajectory assuming
perfect execution, and only after a non-default transition happened
does the unit communicates with the central command to get a new
trajectory starting from the current state. Formally, given si ∈ Si

and qi, we define the optimistic trajectory from si induced by qi to
be (si, qi(si), n(si, qi(si)), . . . s

−), i.e, the trajectory assuming it
always reaches its default next state. Given a Markov pure strategy
q, the following procedure for each unit i exactly simulates q: (i)
central command gives unit i the optimistic trajectory from s+ in-
duced by qi; (ii) unit i follows the trajectory until the terminal state
s− is reached or some unexpected event happens and takes i to state
s′i; (iii) central command sends the new optimistic trajectory from
s′i induced by qi to unit i and repeat from step (ii).

3.3 Coupled Execution: Cartesian Product MDP
Without the assumption of separable utilities, it is no longer suf-

ficient to consider decoupled Markov strategies of individual units’
MDPs. We create a new MDP that captures the joint execution
of patrols by all units. For simplicity of exposition we look at
the case with two defender units. Then a state in the new MDP
corresponds to the tuple (location of unit 1, location of unit 2,
time). An action in the new MDP corresponds to a tuple (action
of unit 1, action of unit 2). Formally, if unit 1 has an action a1 at
state s1 = (l1, τ ) that takes her to s′1 = (l′1, τ

′) with probability
T1(s1, a1, s

′
1), and unit 2 has an action a2 at state s2 = (l2, τ )

that takes her to s′2 = (l′2, τ
′) with probability T2(s2, a2, s

′
2),

we create in the new MDP an action a× = (a1, a2) from state
s× = (l1, l2, τ ) that transitions to s′× = (l′1, l

′
2, τ

′) with probabil-
ity T×(s×, a×, s′×) = T1(s1, a1, s

′
1)T2(s2, a2, s

′
2). The immedi-

ate rewards R× of the MDP are defined analogously. We call the
resulting MDP (S×, A×, T×, R×) the Cartesian Product MDP.

An issue arises when at state s× the individual units have transi-
tions of different time durations. For example, unit 1 rides a train
that takes 2 time steps to reach the next station while unit 2 stays at
a station for 1 time step. During these intermediate time steps only
unit 2 has a “free choice”. How do we model this on the Cartesian
Product MDP? One approach is to create new states for the inter-
mediate time steps. For example, suppose at location LA at time

1 a non-default transition takes unit 1 to location LA at time 3.
We modify unit 1’s MDP so that this transition ends at a new state
(L1

A, 2) ∈ S1, where L1
A is a “special” location specifying that the

unit will become alive again at location LA in one more time step.
There is only one action from (L1

A, 2), with only one possible next
state (LA, 3). Once we have modified the individual units’ MDPs
so that all transitions take exactly one time step, we can create the
Cartesian Product MDP as described in the previous paragraph.

Like the units’ MDPs, the Cartesian Product MDP is also acyclic.
Therefore we can analogously define marginal probabilitiesw×(s×, a×)
and x×(s×, a×, s′×) on the Cartesian Product MDP. Let w× ∈
R|S×||A×| and x× ∈ R|S×|2|A×| be the corresponding vectors.
Utilities generally cannot be expressed in terms of w× and x×. We
consider a special case in which utilities are partially separable:

DEFINITION 3. A patrolling game with execution uncertainty
has partially separable utilities if there exist Ud

λ(s×, a×, s′×, α)
and Ua

λ (s×, a×, s′×, α) for each transition (s×, a×, s′×), λ ∈ Λ,
α ∈ A, such that for all t ∈ X , λ ∈ Λ, α ∈ A, the defender’s
and the adversary’s utilities can be expressed as ud(t, λ, α) =∑

s×,a×,s′×
θ×(t, s×, a×, s′×)U

d
λ(s×, a×, s′×, α) and ua(t, λ, α) =

∑
s×,a×,s′×

θ×(t, s×, a×, s′×)U
a
λ (s×, a×, s′×, α), respectively.

Partially separable utilities is a weaker condition than separable
utilities, as now the expected utilities may not be sums of contribu-
tions from individual units. When utilities are partially separable,
we can express expected utilities in terms of w× and x× and find
an SSE by solving an optimization problem analogous to (8). From
the optimal w∗

×, we can get a Markov strategy π∗
×(s×, a×) =

w∗
×(s×,a×)

∑
a′×

w∗
×(s,a′

×)
, which is provably the optimal coupled strategy.

This approach cannot scale up to a large number of defender
units, as the size of S× and A× grow exponentially in the number
of units. In particular the dimension of the Markov policy π× is al-
ready exponential in the number of units. To overcome this we will
need a more compact representation of defender strategies. One
approach is to use decoupled strategies. Although no longer opti-
mal in general, we will see in Section 3.4 that this approach gives a
good approximation in the LA Metro domain.

3.4 Application to LA Metro Domain
We now explain how our proposed techniques can be used in the

LA Metro domain. As we will see, although the utilities in this
domain are not separable, we are able to upper bound the defender
utilities by separable utilities, allowing efficient computation.

Similar to [13], a state here comprises the current station and
time of a unit, as well as necessary history information such as
starting time1. At any state, a unit may stay at her current station to
conduct an in-station operation for some time or she can ride a train
to conduct an on-train operation when her current time coincides
with the train schedule. Due to execution uncertainty, a unit may
end up at a state other than the intended outcome of the action. For
ease of analysis, we assume throughout a single type of unexpected
event which delays a patrol unit for some time beyond the intended
execution time. Specifically, we assume for any fare check opera-
tion taken, there is a probability η that the operation will be delayed,
i.e., staying at the same station (for in-station operations) or on the
same train (for on-train operations) involuntarily for some time.
Furthermore, we assume that units will be involved with events un-
related to fare enforcement and thus will not check fares during any
delayed period of an operation. Intuitively, a higher chance of delay
leads to less time spent on fare inspection.
1Interested readers are encouraged to read [13] for more details
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The adversary faced here are the riders in the system. There are
multiple types of riders, each is assumed to take a fixed route. A
rider observes the likelihood of being checked and makes a binary
decision between buying and not buying the ticket. If the rider of
type λ buys the ticket, he pays a fixed ticket price ρλ. Otherwise,
he rides the train for free but risks the chance of being caught and
paying a fine of �λ > ρλ. The LASD’s objective is set to maximize
the overall revenue of the whole system including ticket sales and
fine collected, essentially forming a zero-sum game.

Since the fare check operation performed is determined by the
actual transition rather than the action taken, we define the effec-
tiveness of a transition (s, a, s′) against a rider type λ, fλ(s, a, s′),
as the percentage of riders of type λ checked by transition (s, a, s′).
Following the same argument as in [13], we assume the probability
that a joint complete trajectory t detects evader λ as the sum of fλ
over all transitions in t = (t1, . . . , tγ) capped at one:

Pr(t, λ) = min{
γ∑

i=1

∑

si,ai,s
′
i

fλ(si, ai, s
′
i)θ(ti, si, ai, s

′
i), 1}. (13)

For type λ and joint trajectory t, the LASD receives ρλ if the
rider buys the ticket and �λ · Pr(t, λ) otherwise. The utilities in
this domain are indeed not separable — even though multiple units
(or even a single unit) may detect a fare evader multiple times, the
evader can only be fined once. As a result, neither players’ utilities
can be computed directly using marginal probabilities x and w.
Instead, we upper bound the defender utility by overestimating the
detection probability using marginals as the following:

̂Pr(x, λ) =

γ∑

i=1

∑

si,ai,s
′
i

fλ(si, ai, si)xi(si, ai, s
′
i). (14)

Equation (14) leads to the following upper bound LP for the LA
Metro problem:

max
x,w,u

∑

λ∈Λ

pλuλ +

γ∑

i=1

∑

si,ai,s
′
i

Ri(si, ai, s
′
i) (15)

s.t. constraints (4), (5), (6), (7)

uλ ≤ min{ρλ, �λ · ̂Pr(x, λ)}, for all λ ∈ Λ (16)

We prove the claims above by the following two propositions.

PROPOSITION 3. ̂Pr(x, λ) is an upper bound of the true detec-
tion probability of any coupled strategy with marginals x.

PROOF SKETCH. Consider a coupled strategy π. Recall that
ϕ(t; π) ∈ R is the probability that joint trajectory t ∈ X is instan-
tiated. For rider type λ, the true detection probability is Pr(π, λ) =∑

t∈X ϕ(t; π)Pr(t, λ). Applying Equations (13) and (3) we have,

Pr(π, λ) ≤
∑

t∈X
ϕ(t; π)

γ∑

i=1

∑

si,ai,s
′
i

fλ(si, ai, s
′
i)θ(ti, si, ai, s

′
i)

=

γ∑

i=1

∑

si,ai,s
′
i

fλ(si, ai, s
′
i)
∑

t∈X
ϕ(t; π)θ(ti, si, ai, s

′
i)

=

γ∑

i=1

∑

si,ai,s
′
i

fλ(si, ai, s
′
i)xi(si, ai, s

′
i) = ̂Pr(x, λ).

PROPOSITION 4. LP (15) provides an upper bound of the opti-
mal coupled strategy.

PROOF SKETCH. Let x∗ and w∗ be the marginal coverage and
u∗
λ be the value of the patroller against rider type λ in the optimal

coupled strategy π∗. It suffices to show that x∗, w∗, and u∗ is
a feasible point of the LP. From Lemma 1, we already know x∗

and w∗ must satisfy constraints (4) to (7). Furthermore, we have
u∗
λ ≤ ρλ since the rider pays at most the ticket price. Finally,

u∗
λ ≤ �λ · ̂Pr(x, λ) since ̂Pr(x, λ) is an overestimate of the true

detection probability.

Intuitively, LP (15) relaxes the utility functions by allowing an
evader to be fined multiple times during a single trip. The re-
laxed utilities are separable and thus the relaxed problem can be
efficiently solved. Since the solution returned x∗ and w∗ satisfy
constraints (4) to (7), we can construct a Markov strategy from w∗

as described in Section 3.2. The Markov strategy provides an ap-
proximate solution to the original problem, whose actual value can
be evaluated using Monte Carlo simulation.

4. EVALUATION
We present our evaluation based on real metro schedules and

rider traffic data provided by the LASD. We solved LP (15) using
CPLEX 12.2 with the barrier method on standard 2.8GHz machines
with 4GB memory. Each Markov strategy induced from the LP so-
lution was evaluated using Monte Carlo simulation with 100, 000
samples. Riders were assumed to choose a best response based on
the frequency of being checked over these samples. We first de-
scribe the data sets we used, followed by our experimental results.

4.1 Data Sets
We used the same four data sets as in [13], each based on a dif-

ferent Los Angeles Metro Rail line: Red (including Purple), Blue,
Gold, and Green. In these data sets, the train schedules were ob-
tained from http://www.metro.net and the ridership distri-
butions were estimated from hourly boarding and alighting counts
provided by the LASD. We allowed any on-train operations while
restricted in-station operations to be between half an hour and an
hour, as suggested by the LASD. The effectiveness of each fare
check operation was adjusted based on the volume of riders during
the period with an assumption that a unit can check three riders per
minute. Same as in [13], The ticket fare was set to $1.5 while the
fine was set to $100. The immediate rewards Ri are all set to zero.
Table 1 summarizes the detailed statistics for the four Metro lines.

Line Stops Trains Daily Riders Types

Red 16 433 149991.5 26033
Blue 22 287 76906.2 46630
Gold 19 280 30940.0 41910
Green 14 217 38442.6 19559

Table 1: Statistics of Los Angeles Metro lines.

4.2 Experimental Results
We studied the performance of our Markov strategies under a

variety of settings. Throughout the settings that we have tested, we
found that the Markov strategy was close to optimal with revenue
always above 99% of the LP upper bound. In the remainder of this
subsection we will report values of the Markov strategy without
mentioning the LP upper bound. Given space limits, in some cases,
we have only presented results for the Red line, but other lines were
also tested and showed similar results.
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Figure 2: Experimental results.

In the first set of experiments, we compared, under execution
uncertainty, the performance of our Markov strategy against pre-
generated schedules given by TRUSTS, a deterministic model as-
suming perfect execution. However, actions to take after devia-
tions from the original plan are not well-defined in TRUSTS sched-
ules, making a direct comparison inapplicable. Therefore, we aug-
mented these pre-generated schedules with two naive contingency
plans indicating the actions to follow after a unit deviates from the
original plan. The first plan, “Abort”, is to simply abandon the en-
tire schedule and return to the base. The second plan, “Arbitrary”,
is to pick an action uniformly randomly from all available actions
at any decision point after the deviation.

In this experiment, we fixed the number of units to 6 and the
patrol length to 3 hours, and presented the results on the Red line
(experiments on other lines showed similar results). We first fixed
the delay time to 10 minutes and varied the delay probability η from
0% to 25%. As we can see in Figure 2(a), both “Abort” and “Ar-
bitrary” performed poorly in the presence of execution uncertainty.
With increasing values of η, the revenue of “Abort” and “Arbitrary”
decayed much faster than the Markov strategy. For example, when
η was increased from 0% to 25%, the revenue of “Abort” and “Ar-
bitrary” decreased 75.4% and 37.0% respectively while that of the
Markov strategy only decreased 3.6%.

In addition to revenue, Figure 2(c) showed the fare evasion rate
of the three policies with increasing η. Following the same defini-
tion in [13], we considered a rider to prefer fare evasion if and only
if his expected penalty from fare evasion is $0.2 lower than $1.5,
the ticket price. As we can see, “Abort” and “Arbitrary” showed
extremely poor performance in evasion deterrence with even a tiny
probability of execution error. In particular, when η was increased
from 0% to 5%, the evasion rate of the Markov strategy barely
increased while that of “Abort” and “Arbitrary” increased from
11.2% both to 74.3% and 43.9% respectively.

Then we fixed η to 10% and varied the delay time from 5 to
25 minutes. Figure 2(b) showed that both “Abort” and “Arbitrary”
performed worse than the Markov strategy. With increasing delay
time, the revenue of “Abort” remained the same as the time of the

delay really did not matter if the unit was to abandon the sched-
ule after the first unexpected event. The revenue of “Arbitrary”,
however, decayed in a faster rate than the Markov strategy. When
the delay time was increased from 5 to 25 minutes, the revenue
of “Abort” remained the same while that of “Arbitrary” and the
Markov strategy decreased 14.4% and 3.6% respectively.

An important observation here is that the revenue of “Abort”, a
common practice in fielded operations, decayed extremely fast with
increasing η — even with a 5% probability of delay, the revenue
of “Abort” was only 73.5% of that of the Markov strategy. With a
conservative estimate of 6% potential fare evaders [4] and 300, 000
daily riders in the LA Metro Rail system, the 26.5% difference
implies a daily revenue loss of $6, 500 or $2.4 million annually.

In the second set of experiments, we showed that the Markov
strategy performed well consistently in all of the four lines with
increasing delay probability η. We fixed the number of units to 6
and the patrol length to 3 hours, but varied η from 0% to 25%.
Figure 2(d) and Figure 2(e) showed the revenue per rider and the
evasion rate of the four lines respectively2. As we can see, the
revenue decreased and the evasion rate increased with increasing
η. However, the Markov strategy was able to effectively allocate
resources to counter the effect of increasing η in terms of both rev-
enue maximization and evasion deterrence. For example, the ratio
of the revenue of η = 25% to that of η = 0% was 97.2%, 99.1%,
99.9%, 95.3% in the Blue, Gold, Green and Red line respectively.
Similarly, when η was increased from 0% to 25%, the evasion rate
of the Blue, Gold, Green and Red line was increased by 4.6, 1.9,
0.1, 5.2 percentage points respectively.

Our next experiment showed that the revenue decay of the Markov
strategy with respect to delay probability η could be affected by the
amount of resources devoted to fare enforcement. In Figure 2(f),
we presented the revenue per rider with increasing η on the Red
line only, but the same trends were found on the other three lines.

2The revenue of the Red line was significantly lower than the other
lines because fare check effectiveness fλ defined in Section 3.4 was
set inversely proportional to the ridership volume.
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In this experiment, we considered 3, 6 and 9 patrol units, repre-
senting three levels of fare enforcement: low, medium, and high
respectively. Intuitively, with more resources, the defender could
better afford the time spent on handling unexpected events without
sacrificing the overall revenue. Indeed, as we can see, the rate of
revenue decay with respect to η decreased as we increased the level
of fare enforcement from low to high. For example, when η was in-
creased from 0% to 25%, the revenue drop in the low, medium and
high enforcement setting was 13.2%, 4.7%, and 0.4% respectively.

Next, we demonstrate the usefulness of our Markov strategy in
distributing resources under different levels of uncertainty. We
showed results on the Red line with a fixed patrol length of 3 hours.
Three delay probabilities η = 0%, 10%, and 20% were considered,
representing increasing levels of uncertainty. Figure 2(g) showed
the revenue per rider with increasing number of units from 2 to 6.
As we increased the number of units, the revenue increased towards
the maximal achievable value of $1.5 (ticket price). For example,
when η = 10%, the revenue per rider was $0.65, $1.12, and $1.37
with 2, 4, and to 6 patrol units respectively.

Finally, Figure 2(h) plotted the worst-case runtime (over 10 runs)
of the LP with increasing η for the four metro lines. The number
of units was fixed to 3 and the patrol length per unit was fixed to
3 hours. As we can see, we were able to solve all of the problems
within an hour. The runtime varied among the four Metro lines and
correlated to their number of states and types. For example, when
η = 10%, the runtime for the Blue, Gold, Green, and Red line was
14.0, 24.3, 2.4, and 4.3 minutes respectively. Surprisingly, for all
of the four lines, stochastic models with η = 5% took less time to
solve than deterministic models (η = 0%). Overall we found no
direct correlation between the runtime and delay probability η.

5. CONCLUSION AND RELATED WORK
This paper addresses dynamic execution uncertainty in schedul-

ing security and law-enforcement patrols in time-critical domains.
We propose a general Stackelberg game model for security pa-
trolling with execution uncertainty, and show that efficient compu-
tation of SSE is possible when utilities have separable structure. We
apply our approach to fare inspection in the Los Angeles Metro Rail
system. Numerical experiments show that our approach outperform
schedules generated using the previous TRUSTS algorithm, which
does not consider execution uncertainty.

There has been significant research on uncertainty modeling and
robust strategy computation in leader-follower Stackelberg games,
including robust optimization [12], sample average approximation [14],
equilibrium refinement [1], and human adversary modeling [11].
These works focused on one shot games in which the defender’s
pure strategy is a single action.

Our model resembles the transition independent DEC-MDP [3],
where coupled and decoupled execution correspond to the case
with and without communication respectively. However, two ma-
jor distinctions exist, presenting unique computational challenges.
First, we consider the strategic interaction against adversaries and
focus on equilibrium computation. Second, utility functions in our
model are non-Markovian which depend on trajectories as opposed
to only state and action pairs in typical DEC-MDP models.

The game model in this paper can be considered as a special
case of extensive-form Stackelberg games with chance nodes, or as
a special case of stochastic Stackelberg games where the follower
can only choose one action in the initial state and stick to that action
in all future states. The general cases of both games were shown to
be NP-hard [6, 7]. Vorobeychik and Singh provided mixed integer
linear programs for finding optimal and approximate Markov sta-
tionary strategy in general-sum stochastic Stackelberg games [10].

However, their approach does not handle multiple adversary types
and their MILP formulation lacks the scalability to a large number
of states such as the LA Metro problems.

Another related line of research is on equilibrium refinement for
dynamic games, such as trembling hand perfect equilibrium [2],
which considers the possibility that a strategy can be imperfectly
executed. However such research is mainly interested in the limit
as uncertainty goes to zero, while in our real world settings the
probability of imperfect execution really is non-zero.
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