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ABSTRACT
Cake cutting is a fundamental model in fair division; it repre-
sents the problem of fairly allocating a heterogeneous divis-
ible good among agents with different preferences. The cen-
tral criteria of fairness are proportionality and envy-freeness,
and many of the existing protocols are designed to guarantee
proportional or envy-free allocations, when the participat-
ing agents follow the protocol. However, typically, all agents
following the protocol is not guaranteed to result in a Nash
equilibrium.

In this paper, we initiate the study of equilibria of classical
cake cutting protocols. We consider one of the simplest and
most elegant continuous algorithms – the Dubins-Spanier
procedure, which guarantees a proportional allocation of the
cake – and study its equilibria when the agents use simple
threshold strategies. We show that given a cake cutting in-
stance with strictly positive value density functions, every
envy-free allocation of the cake can be mapped to a pure
Nash equilibrium of the corresponding moving knife game.
Moreover, every pure Nash equilibrium of the moving knife
game induces an envy-free allocation of the cake. In addi-
tion, the moving knife game has an ε-equilibrium which is
ε-envy-free, allocates the entire cake, and is independent of
the tie-breaking rule.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics

Keywords
Cake Cutting, Fair Division, Game Theory

1. INTRODUCTION
Cake cutting is a fundamental model in fair division and it

represents the problem of allocating a heterogeneous divisi-
ble good, such as land, time, or computer memory, in a way
so that everyone believes they received a fair amount. The
problem has been formally introduced by Steinhaus during
the Second World War [15] and has been studied extensively

since then in a large body of literature in mathematics, eco-
nomics and political science (including two books by Brams
and Taylor [2], and Robertson and Webb [14]). The central
criteria used to determine the fairness of an allocation are
proportionality and envy-freeness. Proportionality requires
that each participant believes they received their fair share of
the cake, while envy-freeness stipulates that no participant
prefers someone else’s piece to their own. Envy-freeness is a
strong requirement which implies proportionality when the
entire cake is allocated.

There has been significant research interest in cake cutting
in the computer science community, as problems of resource
allocation (and fair division, in particular) are central to the
design of multiagent systems. Important directions include
the study of the complexity of computing envy-free allo-
cations [7], mechanism design [5], richer models inspired by
new applications [4] (such as advertising), and the computa-
tion of optimal allocations under simple valuation functions
[6]. In particular, a recent body of literature has investi-
gated the design of strategy proof mechanisms. The earliest
such work is by Brams [1], who considers a weak version of
strategy proofness. There, the agents are risk averse and
report their true valuations if there exists a choice of val-
uations of the other agents such that the outcome would
be worse by misreporting. Chen et al. [5] design strategy-
proof mechanisms to compute envy-free and proportional
allocations for restricted classes of valuation functions. The
main results include a polynomial-time deterministic mech-
anism which computes an envy-free and proportional allo-
cation for piecewise uniform valuations, and a polynomial-
time randomized mechanism which is truthful in expecta-
tion, universally proportional, and universally envy-free for
piecewise linear valuations. Mossel and Tamuz [13] design
an incentive-compatible, proportional, and Pareto-efficient
mechanism for general valuations. Maya and Nisan [12]
study incentive-compatibility and Pareto-efficiency for two
agents, and provide characterizations for mechanisms with
such properties.

Going back to the classical cake cutting protocols, it is
a standard assumption that the agents do not know each
other’s preferences. However, in many real-world settings,
the participants do know each other’s preferences. For ex-
ample, when countries divide land at the end of a war, it
is usually common knowledge which areas of land are pre-
ferred by which country. Thus, when a general protocol is
employed to produce an allocation of the cake, the agents
may be able to improve their utility by being strategic if they
know the others’ valuations during the execution of the al-
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gorithm. In this paper, we initiate the study of equilibria of
classical cake cutting protocols.

While the classical protocols are not necessarily strategy-
proof, they are often very simple, elegant, and designed so
that the agents can easily implement them by following a
sequence of natural steps. One of the most intuitive and
best-known procedures computes a proportional allocation
of the cake and was introduced by Dubins and Spanier [8].
It requires a moving knife and proceeds as follows.

A referee holds a knife and moves it slowly across the
cake, from the left to the right endpoint. When the knife
reaches a point such that one of the agents has valuation
exactly 1/n for the piece to the left of the knife, that agent
shouts Cut!. The first agent to do so receives the left piece
and exits. The remaining n − 1 agents repeat the procedure
on the leftover cake, except that now they call cut when the
perceived value of the piece to the left of the knife is 1/(n−1)
(of the remaining cake).

To make the protocol completely precise, a tie breaking
rule has to be specified for the case of two players calling
cut simultaneously. No matter how such tie breaking is de-
fined, it is easily verified that the allocation produced by
the Dubins-Spanier moving-knife procedure is proportional.
However, it is not necessarily envy-free.

In this paper, we consider the strategic version of Dubins-
Spanier, which we refer to as the moving knife game. The
agents know each other’s valuations and compete against
each other to maximize their allocations. In the moving
knife game, an agent would like to delay as much as possible
the moment of calling cut, since the longer they wait, the
better the piece to the left of the knife becomes. However,
if they wait for too long, someone else may call cut before
they do and take the piece instead. The moving knife game
is related to games of timing [11], such as war of attrition
models, in which the decision of each agent is when to quit
and victory belongs to the agent that held on longer, and
preemption games, in which the agents prefer to stop first.

It seems very challenging to characterize all the equilib-
ria of the moving knife game if it is modeled as a continu-
ous time extensive form game in the obvious way. Instead,
we analyze the game when the agents are restricted to use
threshold strategies, defined as follows. The moving knife
game proceeds in n rounds, corresponding to each of the
time intervals between consecutive cut points. Each agent
has n thresholds, one for every round. An agent calls cut
in a given round when the value of the piece to the left of
the knife is equal to the agent’s threshold for that round.
Note that threshold strategies is a simple generalization of
the prescribed behavior in the orginal Dubins-Spanier pro-
tocol – in particular, the classical Dubins-Spanier proce-
dure outlined above can be viewed as playing the moving
knife game with all agents using the sequence of thresholds(

1
n
, 1
n−1

, 1
n−2

, . . . , 1
)

.

Our main result is a direct correspondence between the
equilibria of the moving knife game and envy-free alloca-
tions of the cake with contiguous pieces, when players are
restricted to threshold strategies.

That is, every pure Nash equilibrium of the moving knife
game induces an envy-free allocation with contiguous pieces
which contains the entire cake. Moreover, every envy-free

allocation with contiguous pieces of the entire cake can be
mapped to a pure Nash equilibrium of the corresponding
moving knife game, when ties are broken in a particular
way. This result can be viewed as an affirmative answer to
the natural question: “Can fair allocations arise as equilibria
of simple and natural protocols?” The question of design-
ing a game such that its equilibria correspond to desirable
allocations of the cake was also considered by Ianovski [10].

2. MODEL
We make more precise the details of the cake cutting

model ([2, 14]). Let N = {1, . . . , n} be a set of agents.
The cake is modelled as the interval [0, 1]. Each agent i has
a measurable value density function vi : [0, 1] → R+ which
represents their preference for the cake. A piece of cake X is
a finite union of disjoint subintervals of [0, 1]. A contiguous
piece is a single subinterval. The valuation of agent i for a
piece X is given by:

Vi(X) =
∑
I∈X

∫
I

vi(x)dx

We assume the value density functions of the agents are
normalized, so that each agent has a utility of one when
they receive the entire cake:

Vi([0, 1]) =

∫ 1

0

vi(x)dx = 1

An allocation X = (X1, . . . , Xn) is an assignment of pieces
to agents such that each agent i receives piece Xi and all
the Xi are disjoint. The central criteria for determining
the fairness of an allocation are proportionality and envy-
freeness. An allocation X is proportional if

Vi(Xi) ≥ 1/n, ∀i ∈ N

and envy-free if

Vi(Xi) ≥ Vi(Xj), ∀i, j ∈ N.

Note that envy-freeness is a very strong notion, which im-
plies proportionality when the entire cake is allocated.

We now introduce the moving knife game. Given a cake
with the corresponding value density functions, a knife moves
continuously from the left to the right endpoint of the cake.
The game is divided in n rounds. Each agent i has a strategy
consisting of n thresholds, Ti = [ti,1, . . . , ti,n] ∈ [0, 1]n, one
threshold for each round. Agent i calls cut in round j when
the piece to the left of the knife is worth exactly ti,j accord-
ing to i’s valuation. The agent to call cut first receives the
piece to the left of the knife. When multiple agents call cut
simultaneously, the piece is given to the agent who comes
first in a tie-breaking rule π = (π1, . . . , πn), which is a fixed
permutation of N . Once an agent has received a piece, he
exits and the game continues from that point on with the
remaining agents and leftover cake.

Given a tuple (N, v, T, π), where N is a set of agents, v are
the value density functions, T are the strategies, and π is a
tie-breaking rule, the induced allocation X = (X1, . . . , Xn)
results from playing the moving knife game under the tie-
breaking rule π, such that each agent σi ∈ N receives the
piece Xi, for some ordering σ of the agents.

Finally, we say that an agent is active at a round if the
agent has not exited the game in the previous rounds.

We illustrate the game with the following example.
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Example 1. Let N = {1, 2}. Consider the following value
density functions:

• v1(x) = 1, ∀x ∈ [0, 1]

• v2(x) = 1
4
,∀x ∈

[
0, 1

3

]
and v2(x) = 11

8
, ∀x ∈

[
1
3
, 1
]

Let T = [T1, T2], where T1 =
[
1
2
, 2
3

]
and T2 =

[
1
12
, 2
3

]
. Then

in:

• Round 1: Agent 2 calls cut first at 1
3

, since V2

([
0, 1

3

])
=

t2,1 = 1
12

. Agent 1 does not get to call cut in this round,

since V1

([
0, 1

3

])
< t1,1 = 1

2
.

• Round 2: Agent 1 is the only one left, and the leftover
cake is

[
1
3
, 1
]
. Agent 1 calls cut at 1, since V1

([
1
3
, 1
])

=

t2,1 = 2
3

.

The induced allocation is X = (X1, X2), where agent 2 re-
ceives X1 =

[
0, 1

3

]
and agent 1 receives X2 =

[
1
3
, 1
]
.

A strategy profile T = [T1, . . . , Tn] ∈ [0, 1]n×n is a pure
Nash equilibrium under a tie-breaking rule π if no agent

i ∈ N can receive a better allocation by deviating to T
′
i 6= Ti.

That is, ui(T ) ≥ ui(T
′
i , T−i), ∀T

′
i ∈ [0, 1]n.

In the following example, we illustrate how the agents
can be strategic during the execution of the moving knife
game, i.e., we illustrate that it is not necessarily a Nash
equilibrium that all agents play the Dubins-Spanier strategy
[1/n, . . . , 1/2, 1]. Consider the scenario where agent 1 has a
uniform valuation over the cake and just wants as much of it
as possible, while agent 2 only likes a very thin slice at the
right end. Then agent 1 can delay the moment of calling
cut, since he knows that agent 2 is following the Dubins-
Spanier recommendation and will only call cut close to the
right endpoint. A precise version of this example follows:

Example 2. Let N = {1, 2}. Consider the following value
density functions:

• v1(x) = 1, ∀x ∈ [0, 1]

• v2(x) = 0, ∀x ∈
[
0, 3

4

]
and v2(x) = 4, ∀x ∈

[
3
4
, 1
]
.

Under the Dubins-Spanier protocol, agent 1 calls cut first at
1
2

. The resulting allocation is X = (X1, X2), with X1 =[
0, 1

2

]
and X2 =

[
1
2
, 1
]
, with utilities: V1(X1) = 1

2
and

V2(X2) = 1.
However, agent 1 can improve his utility by waiting and

calling cut at 3
4

instead. Then the allocation is X
′

= (X
′
1, X

′
2),

with X
′
1 =

[
0, 3

4

]
and X

′
2 =

[
3
4
, 1
]
. The new utilities are

V1(X
′
1) = 3

4
and V2(X

′
2) = 1.

3. EXACT EQUILIBRIA
In this section, we analyze the pure Nash equilibria of

the moving knife game, for any fixed strictly positive value
density functions (i.e. vi(x) > 0, ∀x ∈ [0, 1], ∀i ∈ N).

First, the original result of Dubins and Spanier immedi-
ately yields the following proposition.

Proposition 1. In any pure Nash equilibrium of the mov-
ing knife game, each agent’s utility is at least 1/n and the
entire cake is allocated to the agents.

Proof. Suppose a player gets a smaller utility in Nash
equilibrium. Then he can deviate by playing the strat-
egy prescribed in the original Dubins-Spanier protocol, i.e.,
[1/n, . . . , 1/2, 1], improving his utility to at least 1/n, and
contraditing that a Nash equilibrium is played. Also, if the
entire cake is not allocated, the last player’s last threshold is
strictly smaller than 1. He can therefore deviate to thresh-
old 1 and receive a larger utility, contradicting that a Nash
equilibrium is played.

Now we show that the existence of Nash equilibrium cru-
cially depends on the tie breaking rule used. That is, there
exist tie-breaking rules where the moving knife game does
not have a pure Nash equilibrium:

Proposition 2. There exist a tie breaking rules and value
density functions so that the corresponding moving knife game
does not have a pure Nash equilibrium.

Proof. Let N = {1, 2}, with tie-breaking order (1, 2),
and value density functions:

• v1(x) = 1
4
, ∀x ∈

[
0, 4

5

]
and v1(x) = 37.5x − 29.75,

∀x ∈
[
4
5
, 1
]

• v2(x) = 1, ∀x ∈ [0, 1].

Assume there exists a profile of threshold strategies in equi-
librium, T , such that the first cut is made at x ∈ (0, 1]. We
analyze the case where the cut at x is made in round 1; the
case where the cut is made in round 2 is similar.

First, T must be such that both agents call cut at x si-
multaneously. Otherwise, if t1,1 = V1([0, x]), while t2,1 <

V2([0, x]), then agent 1 can increase his threshold to t
′
1,1 =

t1,1 + ε, for small enough ε > 0, and receive a strictly better

piece, [0, x
′
], where x

′
> x.

Similarly, if t2,1 = V2([0, x]), while t1,1 > V1([0, x]), then
agent 2 can increase his threshold and get a strictly better

piece [0, x
′
]. Thus t1,1 = V1([0, x]) and t2,1 = V2([0, x]).

Since the tie-breaking rule is (1, 2), agents 1 and 2 receive
pieces [0, x] and [x, 1], respectively.

In addition, we have that:

V1([0, x]) ≥ V1([x, 1]), (1)

since otherwise agent 1 can deviate by setting t1,1 = 1 – the
deviation would ensure that agent 1 receives a better piece
in round 2. Similarly, it can be shown that:

V2([x, 1]) ≥ V2([0, x]). (2)

However, inequalities (1) and (2) cannot be met simultane-
ously for the given valuations. Thus the pure Nash equilib-
rium T cannot exist.

We show that in a pure Nash equilibrium, then in each of
the first n−1 rounds, the agent who is allocated a piece has
a competitor that calls cut simultaneously in that round.

Proposition 3. Let a moving knife game with strictly
positive value density functions be given. Let T be a profile of
threshold strategies in equilibrium under a deterministic tie-
breaking rule. Then, in every round except the last one, the
agent who is allocated the piece has an (active) competitor
that calls cut simultaneously.
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Proof. Let X = (X1, . . . , Xn) be the allocation induced
by T , such that agent σi receives the piece Xi = [xi−1, xi].
It follows by Proposition 1 that X contains the entire cake
and Xi 6= ∅, ∀i ∈ N . Assume by contradiction that there
exists a round i < n in which only agent σi calls cut at xi.
Then it must be the case that

tσj ,i > Vσj ([xi−1, xi]),∀σj ∈ N \ {σi}.

By the continuity of the valuation functions, there exists
ε > 0 such that by deviating to threshold:

t
′
σi,i = tσi,i + ε

in round i, agent σi is guaranteed a strictly better piece,

[xi−1, x
′
i], where x

′
i > xi. This is a contradiction with T

being in equilibrium. Thus every agent who receives a piece
in the first n − 1 rounds has a competitor that calls cut
simultaneously in that round.

Finally, every profile of threshold strategies in equilibrium
induces an envy-free allocation. We first show the following
proposition.

Proposition 4. Let a moving knife game with strictly
positive value density functions be given. Let T be a profile of
threshold strategies under a deterministic tie-breaking rule,
such that each agent σi receives a piece in round i and in
every round except the last, there exist two active agents who
call cut simultaneously. Then if some agent σi deviates to

T
′
σi 6= Tσi and receives a new piece in some round k under

T
′

= (T
′
σi , T−σi), then the set of cuts made in the first k− 1

rounds are the same under T and T
′
.

Proof. Let X = (X1, . . . , Xn) be the allocation induced
by T , where the piece Xi = [xi−1, xi] is given to agent σi.

Let T
′
σi be the new sequence of thresholds used by agent σi,

where

t
′
σi,k = 1,∀k ∈ {1, . . . , j}

Since agent σi did not receive a piece in the first i−1 rounds
under T , and does not call cut before other agents under

T
′

= (T
′
σi , T−i), it follows that the allocation X

′
(induced

by T
′
) is identical to X for the first i − 1 pieces. If j < i,

then the statement of the proposition follows immediately.
Otherwise, j ≥ i. By condition 3 of the proposition, there

exists an agent σr1 6= σi who also calls cut at xi in round
i, and is second after σi in the tie-breaking rule among the
agents that call cut at xi. That is,

tσr1 ,i = Vσr1 ([xi−1, xi]).

Then agent σr1 receives the piece [xi−1, xi] under T
′
.

The allocations made in rounds i+ 1, . . . , r1 − 1 are iden-

tical under T
′

and T , since the same agents that received
the pieces

Xi+1, . . . , Xr1−1

under T continue to call cut at the points:

xi+1, . . . , xr1−1,

respectively, and to win the ties (if any) under T
′
. The piece

Xr1 is taken by some agent σr2 , which was second in the tie
for receiving the piece Xr1 under T .

Iteratively, it can be shown that in the first j rounds,

the same cuts are made under T and T
′
, and this set is

{x1, . . . , xj}.

Theorem 1. Consider a moving knife game with strictly
positive value density functions and deterministic tie-breaking.
Then every pure Nash equilibrium of the game induces an
envy-free allocation.

Proof. Let T be a profile of threshold strategies in equi-
librium under tie-breaking rule π = (π1, . . . , πn). Let X =
(X1, . . . , Xn) be the induced allocation, such that pieceXi =
[xi−1, xi] is given to agent σi, ∀i ∈ N .

Assume by contradiction that X is not envy-free. Since
the empty allocation is envy-free, it follows by Proposition 1
that X contains the entire cake. Then there exists an agent
σi such that

Vσi([xj−1, xj ]) > Vσi([xi−1, xi]),

for some j ∈ N \ {i}. By continuity of the valuation func-
tions, there exists ε > 0 such that

Vσi([xj−1, xj − ε]) > Vσi([xi−1, xi]).

We consider two cases:

1. (j < i) : Then agent σi can deviate to strategy profile

T
′
σi , where

t
′
σi,k =

{
Vσi([xj−1, xj − ε]) if k = j
tσi,k otherwise

Under T
′

= (T
′
σi , T−σi), agent σi is guaranteed to re-

ceive the piece [xj−1, xj − ε], since no other agent calls
cut before xj in round j. This deviation improves σi’s
utility, contradiction with T being in equilibrium.

2. (j > i) : Then agent σi can deviate to strategy profile

T
′
σi , where

t
′
σi,k =

{
Vσi([xj−1, xj − ε]) if k = j
1 otherwise

By Proposition 4, the same cuts are made under T and

T
′

in the first j−1 rounds, and this set is {x1, . . . , xj−1}.
Then agent σi receives the piece [xj−1, xj−ε] in round
j, which strictly improves σi’s utility, since:

Vσi([xj−1, xj − ε]) > Vσi([xi−1, xi]).

This is a contradiction with T being in equilibrium.

From Case 1 and 2, it follows that the assumption must have
been false, and so the induced allocation is envy-free.

We can now characterize the set of pure Nash equilibria
as follows.

Theorem 2. Consider a moving knife game with strictly
positive value density functions. A strategy profile T is in
Nash equilibrium under a deterministic tie-breaking rule if
and only if the induced allocation contains the entire cake
and is envy-free and in every round except the last one, the
agent who is allocated the piece has an active competitor that
calls cut simultaneously.
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Proof. Let T be a profile of thresholds strategies.
(⇒): If T is a pure Nash equilibrium under some deter-

ministic tie-breaking rule, then by Proposition 1 and The-
orem 1, it follows that the induced allocation contains the
entire cake and is envy-free. Also, by Proposition 3, in every
round except the last, the agent who is allocated the piece
has an active competitor that calls cut simultaneously.

(⇐): If T verifies the conditions of the theorem, then we
claim it is a pure Nash equilibrium. Let X = (X1, . . . , Xn)
be the induced allocation, where piece Xi = [xi−1, xi] is
given to agent σi, ∀i ∈ N .

Assume by contradiction that there exists an agent σi who

can improve by deviating to T
′
σi 6= Tσi . Let k be the round

in which σi receives a piece when playing T
′
σi . Since σi does

not receive a piece in the first k − 1 rounds under T
′
σi , we

can assume without loss of generality that:

t
′
σi,l = 1,∀l ∈ {1, . . . , k − 1}.

By Proposition 4, the cut made in round k− 1 was at xk−1,
and one of the following conditions holds:

• xk = 1, or

• there exists an agent σj 6= σi who calls cut at xk (in

round k) when σi plays T
′
σi .

Thus the highest value that σi can receive in round k is
Vσi(Xk). By envy-freeness of X, we have that:

Vσi(Xi) ≥ Vσi(Xk),

thus the deviation does not improve σi’s utility. Thus, T
is an equilibrium, which concludes the proof of the theo-
rem.

Next, we show that for every moving knife game with
strictly positive value density functions, a pure Nash equi-
librium is guaranteed to exist for some deterministic tie-
breaking rule. In fact, we show that for any envy-free allo-
cation of the cake, there exists is a pure Nash equilibrium
that induces this allocation. This implies existence of a pure
Nash equilbrium, as an envy-free allocation of the cake with
n− 1 cuts is guaranteed to exist (see Stromquist [16]).

Theorem 3. Consisder a moving knife game with strictly
positive value density functions. Given any envy free alloca-
tion of the cake with n− 1 cuts, there exists a deterministic
tie-breaking rule π such that the game has a pure Nash equi-
librium inducing this allocation.

Proof. In an envy free allocation of the cake with n− 1
cuts, each agent gets a contigous pice. That is, there exists
a permutation π = (π1, . . . , πn) of N and numbers xi such
that agent πi receives the piece Xi = [xi−1, xi]. Now use
π as the tie-breaking rule for the moving knife game and
consider the strategy sets:

Ti = [ti,1, . . . , ti,n],

where

ti,k = Vi([xk−1, xk]), ∀i, j ∈ N.
It can be verified that the strategies in T verify the con-
ditions of Theorem 2. That is, the induced allocation is
envy-free, contains the entire cake, and in every round ex-
cept the last, the agent winning the piece has a competitor
who calls cut simultaneously. Thus the set of strategies T
are in equilibrium under π.

This completes the proof of our main result: Any pure
Nash equilibrium of the moving nice game induces an envy-
free allocation and any envy-free allocation is induced by
some pure Nash equilibrium.

4. ACHIEVING TIE BREAKING RULE IN-
DEPENDENCE

The dependence of the existence of Nash equilibrium on
the tie breaking rule is an annoying (but unavoidable) flaw of
our main result: The tie-breaking rule requires information
about the valuation functions of the agents in order for a
non-trivial pure Nash equilibrium to exist. Clearly, in many
natural settings, the tie-breaking rule is given exogenously.
For example, when countries divide land at the end of a war,
some countries may have higher priority than others due to
prior bilateral agreements that have been signed.

It is interesting to understand the special cases where a
pure Nash equilibrium is guaranteed to exist, no matter
which tie breaking rule is used. We have first the follow-
ing simple observation.

Proposition 5. Consider a moving knife game with agents
with identical positive value density functions. Then the
game has a pure Nash equilibrium under every deterministic
tie-breaking rule.

Proof. Consider an envy-free division of the cake with
n − 1 cuts, [x0, . . . , xn]. The agents have identical value
density functions, and so

Vi([xj−1, xj ]) =
1

n
, ∀i, j ∈ N.

For any tie-breaking rule π, construct an allocation X =
(X1, . . . , Xn), such that agent πi receives the piece Xi =
[xi−1, xi]. By applying Theorem 3 to the envy-free allocation
X, it follows that the game has a pure Nash equilibrium
under π.

Next, we show that for arbitrary strictly positive value
density functions and every possible tie-breaking rule, in-
cluding, for example, randomized or round-dependent rules,
there exists an approximate equilibrium in pure strategies
such that the induced allocation is approximately envy-free
and contains the entire cake.

We say that a set of strategies T = [T1, . . . , Tn] ∈ [0, 1]n×n

is an ε-equilibrium if for every i ∈ N , agent i cannot improve

his utility by more than ε by deviating to T
′
i 6= Ti. That is,

ui(T
′
i , T−i) ≤ ui(T ) + ε.

Theorem 4. Consider a moving knife game with strictly
positive value density functions. Then for every tie-breaking
rule, the game has an ε-equilibrium in pure strategies such
that the induced allocation is ε-envy-free and contains the
entire cake.

Proof. Let ε > 0 and X = (X1, . . . , Xn) an envy-free
allocation of the entire cake, where agent πi receives the
piece Xi = [xi−1, xi], ∀i ∈ N .

Starting from X, we construct an allocation Z = (Z1,
. . .,Zn), where agent πi receives the piece Zi = [zi−1, zi],
∀i ∈ N , such that Z is induced by an ε-equilibrium T , con-
tains the entire cake, and is ε-envy-free. The idea of the
proof is similar to that of Theorem 3. To avoid tie-breaking,
we construct the thresholds such that for every round, the
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active agents would call cut immediately after the agent who
is supposed to receive an allocation in that round. Thus, if

an agent πi deviates to a new sequence of thresholds T
′
πi

and receives a new piece in round k 6= i, then the set of cuts
made in rounds {1, . . . , k − 1} are approximately the same

under T and T
′

= (T
′
πi
, T−πi). That is, the following hold

for the allocation induced by T
′
:

• If πi still receives a piece in round i, then the improve-
ment cannot be larger than ε, since another active
agent will call cut immediately after πi’s expected cut
point in T .

• If πi receives a piece in round k < i, then πi’s new piece
is a subset of Zk, and so the improvement cannot be
greater than ε by ε-envy-freeness of Z.

• If πi receives a piece in round k > i, then the set of
cuts made in rounds {1, . . . , k − 1} are approximately

the same under T and T
′
, and so πi’s new piece is

approximately a subset of Zk. Again the improvement
cannot be better than ε by ε-envy-freeness of Z.

Formally, the profile of threshold strategies T is defined
as follows. Let zn = xn. The valuation functions are con-
tinuous and bounded, thus there exists zn−1 ∈ (xn−2, xn−1)
such that:

Vj([zn−1, xn−1]) <
ε

2
, ∀j ∈ N.

We construct a set of points:

y1,k, . . . , yn,k, zk

for all rounds k, such that the threshold of each agent j
is set to call cut at yj,k ∈ [zk−1, xk−1) in round k. Define
yj,n = zn, ∀j ∈ N .

Consider round n− 1, and let

yj,n−1 =

{
zn−1 if j = πn−1
zn−1+xn−1

2
otherwise

We now construct zn−2. For each j ∈ N , there exists

zj,n−2 ∈ (xn−3, xn−2)

such that

Vj ([zj,n−2, xn−2]) < Vj([yj,n−1, xn−1])

Define zn−2 = maxj∈N zj,n−2. For all j ∈ N , we have:

Vj([zn−2, xn−2]) < Vj([yj,n−1, xn−1])

< Vj([zn−1, xn−1]) <
ε

2

Iteratively, for all rounds k from n− 2 to 1, we construct
points

y1,k, . . . , yn,k, zk−1

in a manner similar to the construction for round n−1, such
that the following conditions are met:

• zk−1 < xk−1, if k ∈ {2, . . . , n − 1}, and zk−1 = xk−1,
if k = 1

• xk−1 < zk ≤ y1,k, . . . , yn,k < xk

• Vj([zk−1, xk−1]) < Vj([yj,k, xk]), ∀j ∈ N .

Consider the profile of threshold strategies T , given by:

tj,k = Vj([zk−1, yj,k]),∀j, k ∈ N

Let Z be the allocation induced by T , where agent πi receives
the piece Zi = [zi−1, zi], ∀i ∈ N . We claim that T is an ε-
equilibrium and Z is ε-envy-free.

First, we show that T is an ε-equilibrium. Assume by
contradiction that there exists agent πi who can improve his

utility more than ε by deviating to T
′
πi

. Let k be the round

in which agent πi is allocated a piece under T
′

= (T
′
πi
, T−πi).

We show by induction that in each previous round l < k, a
cut is made in the interval [zl, xl). For l = 1 the statement
trivially holds, since:

0 < tj,1 = Vj([0, yj,1]) < Vj([0, x1]),∀j ∈ N

Assume the property holds for all rounds 1, . . . , l − 1. By
the induction hypothesis, a cut was made in round l − 1 in
the interval [zl−1, xl−1). For each agent j, the threshold in
round l is such that:

tj,l = Vj([zl−1, yj,l])

= Vj([zl−1, xl−1]) + Vj([xl−1, xl])− Vj([yj,l, xl])
< Vj([xl−1, xl])

Note that the inequality:

Vj([zl−1, xl−1]) < Vj([yj,l, xl])

holds by Condition 3. Thus, in round l, every remaining
agent j will call cut

• no earlier than yj,l if in the previous round the cut was
made at zl−1

• strictly before xl if in the previous round the cut was
made at xl−1

Thus the statement also holds for round l. It follows that
the cut in round k−1 was made in the interval [zk−1, xk−1).
Moreover, all the remaining agents will call cut before xk in
round k. Then, using the envy-freeness of allocation X, we
can bound the utility of πi as follows:

ui(T
′
) < Vπi([zk−1, xk])

= Vπi([zk−1, xk−1]) + Vπi([xk−1, xk])

≤ ε

2
+ Vπi([xi−1, xi])

≤ ε

2
+ Vπi([xi−1, xi]) +

+
(
Vπi([zi−1, xi−1])− Vπi([zi, xi]) +

ε

2

)
= Vπi([zi−1, zi]) + ε

= ui(T ) + ε

Thus agent i cannot improve by more than ε by deviating.
Finally, we show that the induced allocation is ε-envy-free.

For every two agents πi and πj the following hold:

Vπi(Zi) = Vπi([zi−1, zi])

= Vπi([xi−1, xi])+Vπi([zi−1, xi−1])−Vπi([zi, xi])

≥ Vπi([xj−1, xj ])−
ε

2

≥ Vπi([zj−1, zj ])+Vπi([zj , xj ])−Vπi([zj−1, xj−1])− ε
2

≥ Vπi([zj−1, zj ])−ε
= Vπi(Zj)−ε
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where the inequality:

Vπi([xi−1, xi]) ≥ Vπi([xj−1, xj ])

holds by envy-freeness of X. Thus the induced allocation,
Z, is ε-envy-free and contains the entire cake.

5. THE GENERALIZED GAME
In this section we introduce and briefly discuss a natu-

ral generalization of the moving knife game, in which the
agents can receive multiple pieces of cake. This generaliza-
tion is motivated by several other moving knife procedures
[14] in which the agents can receive more than one piece of
cake (see, e.g., the moving knife scheme of Brams et al. [3],
which can use as many as eleven cuts to produce an envy-free
allocation for four agents).

Informally, a generalized moving knife game is a mov-
ing knife game where each agent i ∈ N can receive up to
mi ∈ N∗ pieces, and the game has M ∈ N∗ rounds. In the
generalized game, a strategy of agent i consists of a sequence
of M thresholds:

Ti = [ti,1, . . . , ti,M ] ∈ [0, 1]M ,

such that agent i calls cut in round k when the piece to the
left of the knife is worth ti,k according to i’s valuation. The
moving knife game introduction in Section 2 is an instance
of the generalized game where the budget of each agent is
one and the number of rounds is n. A particularly relevant
instance of the generalized moving knife game is the one-
round moving knife game (with M = 1 and mi = 1,∀i ∈ N),
which is related to war of attrition models (see, e.g., the war
of attrition in continuous time analyzed by Hendricks et al
[9]).

In the case of one-round moving knife games with strictly
positive value density functions, this is the unique pure Nash
equilibrium.

Proposition 6. In a one-round moving knife game with
strictly positive value density functions, every pure Nash
equilibrium of the game induces the empty allocation.

Proof. Assume by contradiction that there exists a one-
round game with strictly positive value density functions,
continuous valuations, and deterministic tie-breaking such
that the game has a non-trivial pure Nash equilibrium. With-
out loss of generality, let us assume that the tie-breaking rule
is (1, . . . , n).

Let T be a profile of threshold strategies in equilibrium.
Then there exists x ∈ [0, 1] such that Vi([0, x]) = ti for some
agent i ∈ N , and the following hold:

• Vj([0, x]) < tj , ∀j ∈ {1, . . . , i− 1}

• Vj([0, x]) ≤ tj , ∀j ∈ {i+ 1, . . . , n}.

The utilities under T are:

ui(T ) = ti

and

uj(T ) = 0,∀j ∈ N \ {i}.

Then any agent j ∈ N \{i}, can strictly improve their utility
by deviating to threshold:

t
′
j =

Vj([0, x/2])

2
,

since

uj(T
′
, T−j) = t

′
j > 0,

where T
′

= (T
′
j , T−j).

More generally, the result holds for all moving knife games
with strictly positive value density functions where the num-
ber of rounds is small enough (i.e. M <

∑n
i=1mi).

Finally, when the agents have symmetric value density
functions, i.e. vi(x) = vj(x), ∀i, j ∈ N , and the number of
rounds is large enough to allow all the agents to receive the
number of pieces they are entitled to, then the generalized
moving knife game has a non-trivial pure Nash equilibrium
for every deterministic tie-breaking rule.

Proposition 7. Consider a generalized moving knife game
with symmetric and strictly positive value density functions,
where the number of rounds is equal to the total number of
pieces that the agents are entitled to. Then the game has
a pure Nash equilibrium for every deterministic tie-breaking
rule.

Proof. Let M be the number of rounds and mi the max-
imum number of pieces that agent i is entitled to receive.
Then we have that M =

∑n
i=1mi.

Let π = (π1, . . . , πn) be the tie-breaking rule. Since the
agents have identical value density functions, there exists a
partition of the cake in M contiguous pieces, X = (X1 , . . .
, XM ), such that

Vi(Xj) =
1

M
, ∀i ∈ N.

Define the following thresholds:

ti,k =
1

M
, ∀i ∈ N, k ∈ {1, . . . ,M}.

It can be easily verified that the strategies are in equilibrium,
and the utility of each agent under T is:

ui(T ) =
mi

M
,∀i ∈ N.

Note that the equilibrium allocation of each agent is directly
influenced by their budget, i.e. agents with higher budget
receive proportionally larger pieces.

6. DISCUSSION AND FUTURE WORK
We studied the strategic version of the Dubins-Spanier

protocol when the agents have simple threshold strategies.
Our main technical result is the existence of a direct cor-
respondence between the non-trivial pure Nash equilibria
of the moving knife game and the envy-free allocations of
the cake with contiguous pieces. A characterization of the
equilibria in the generalized moving knife game is left open.
If one requires that the induced allocations have desirable
properties, related to proportionality and envy-freeness, then
the existence of such equilibria depends on whether envy-free
allocations with a given number of cuts and ordering of the
agents exist. In particular, we are interested in the exis-
tence of mixed-strategy equilibria with uncountably infinite
support, such that the entire cake is allocated with positive
probability.

It would also be interesting to understand the outcomes
of the game under richer strategy spaces. We note that
generalizations in which each agent has n! thresholds (to
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account not only for the round number, but also for the
players that have been allocated in the previous rounds)
do not necessarily have envy-free equilibria. However, this
does not preclude the existence of envy-free equilibria in the
corresponding continuous time extensive form game.

In addition, this work initiates the direction of under-
standing the consequences of strategic behaviour in classical
cake cutting protocols. For example, it would be interesting
to understand whether protocols that compute fair alloca-
tions in the classical model (such as Brams-Talor) have fair
equilibria under complete information.
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