
Empirical Analysis of Plurality Election Equilibria

David R. M. Thompson
University of British Columbia

daveth@cs.ubc.ca

Omer Lev
The Hebrew University of

Jerusalem
omer.lev@mail.huji.ac.il

Kevin Leyton-Brown
University of British Columbia

kevinlb@cs.ubc.ca

Jeffrey Rosenschein
The Hebrew University of

Jerusalem
jeff@cs.huji.ac.il

ABSTRACT
Voting is widely used to aggregate the different preferences
of agents, even though these agents are often able to manip-
ulate the outcome through strategic voting. Most research
on manipulation of voting methods studies (1) limited solu-
tion concepts, (2) limited preferences, or (3) scenarios with
a few manipulators that have a common goal. In contrast,
we study voting in plurality elections through the lens of
Nash equilibrium, which allows for the possibility that any
number of agents, with arbitrary different goals, could all be
manipulators. This is possible thanks to recent advances in
(Bayes-)Nash equilibrium computation for large games. Al-
though plurality has numerous pure-strategy Nash equilib-
ria, we demonstrate how a simple equilibrium refinement—
assuming that agents only deviate from truthfulness when it
will change the outcome—dramatically reduces this set. We
also use symmetric Bayes-Nash equilibria to investigate the
case where voters are uncertain of each others’ preferences.
This refinement does not completely eliminate the problem
of multiple equilibria. However, it does show that even when
agents manipulate, plurality still tends to lead to good out-
comes (e.g., Condorcet winners, candidates that would win
if voters were truthful, outcomes with high social welfare).

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Economics, Experimentation, Theory

Keywords
Social choice theory, voting protocols, game theory

1. INTRODUCTION
When multiple agents have differing preferences, voting

mechanisms are often used to decide among the alternatives.
One desirable property for a voting mechanism would be

strategy-proofness, i.e., that it would be optimal for agents
to truthfully report their preferences. However, the Gibbard-
Satterthwaite theorem [12, 27] shows that no non-dictatorial
strategy-proof mechanism can exist. Whatever other desir-
able properties a voting mechanism may have, there will
always be the possibility that some participant can gain by
voting strategically.

Since voters may vote strategically (i.e., manipulate or
counter-manipulate) to influence an election’s results, ac-
cording to their knowledge or perceptions of others’ prefer-
ences, much research has considered ways of limiting manip-
ulation. This can be done by exploiting the computability
limits of manipulations (e.g., finding voting mechanisms for
which computing a beneficial manipulation is NP-hard [2,
1, 30]), by limiting the range of preferences (e.g., if prefer-
ences are single-peaked, there exist non-manipulable mech-
anisms [10]), randomization [13, 25], etc.

When studying the problem of vote manipulation, nearly
all research falls into two categories: coalitional manipu-
lation and equilibrium analysis. Much research into coali-
tional manipulation considers models in which a group of
truthful voters faces a group of manipulators who share a
common goal. Less attention has been given to Nash equi-
librium analysis which models the (arguably more realistic)
situation where all voters are potential manipulators. One
reason is that it is difficult to make crisp statements about
this problem: strategic voting scenarios give rise to a multi-
tude of Nash equilibria, many of which involve implausible
outcomes. For example, even a candidate who is ranked
last by all voters can be unanimously elected in a Nash
equilibrium—observe that when facing this strategy profile,
no voter gains from changing his vote. Another problem is
that finding even a single Nash equilibrium of a game can
be computationally expensive, and plurality votes can have
exponentially many equilibria (in the number of voters).

Despite these difficulties, this paper considers the Nash
(and subsequently, Bayes-Nash) equilibria of voting games.
We focus on plurality, as it is by far the most common voting
mechanism used in practice. We refine the set of equilibria
by adding a small additional assumption: that agents realize
a very small gain in utility from voting truthfully; we call
this restriction a truthfulness incentive. We ensure that this
incentive is small enough that it is always overwhelmed by
the opportunity to be pivotal between any two candidates:
that is, a voter always has a greater preference for swinging
an election in the direction of his preference than for voting
truthfully. All the same, this restriction is powerful enough
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to rule out the bad equilibrium described above, as well as
being, in our view, a good model of reality, as voters might
reasonably have a preference for voting truthfully.

We take a computational approach to the problem of char-
acterizing the Nash equilibria of voting games. This has not
previously been done in the literature, because the resulting
normal-form games are enormous. For example, represent-
ing our games (e.g., 10 players and 5 candidates) in the
normal form would require about a hundred million payoffs
(10× 510 ' 9.77× 107). Unsurprisingly, these games are in-
tractable for current equilibrium-finding algorithms, which
have worst-case runtimes exponential in the size of their in-
puts. We overcame this obstacle by leveraging recent ad-
vances in compact game representations and efficient algo-
rithms for computing equilibria of such games, specifically
action-graph games [15, 14] and the support-enumeration
method [28].

Our first contribution is an equilibrium analysis of full-
information models of plurality elections. We analyze the
number of Nash equilibria that exist when truthfulness in-
centives are present. We also examine the winners, asking
questions like how often they also win the election in which
all voters vote truthfully, or how often they are also Con-
dorcet winners. We also investigate the social welfare of
equilibria; for example, we find that it is very uncommon
for the worst-case result to occur in equilibrium. Our ap-
proach can be generalized to richer mechanisms where agents
vote for multiple candidates (i.e., approval, k-approval, and
veto).

Our second contribution involves the possibly more real-
istic scenario in which the information available to voters is
incomplete. We assume that voters know only a probability
distribution over the preference orders of others, and hence
identify Bayes-Nash equilibria. We found that although the
truthfulness incentive eliminates the most implausible equi-
libria (i.e., where the vote is unanimous and completely in-
dependent of the voters preferences), many other equilibria
remain. Similarly to Duverger’s law (which claims that plu-
rality election systems favor a two-party result [9], but does
not directly apply to our setting), we found that a close
race between almost any pair of candidates was possible in
equilibrium. Equilibria supporting three or more candidates
were possible, but less common.

1.1 Related Work
Analyzing equilibria in voting scenarios has been the sub-

ject of much work, with many researchers proposing vari-
ous frameworks with limits and presumptions to deal with
both the sheer number of equilibria, and to deal with more
real-life situations, where there is limited information. Early
work in this area, by McKelvey and Wendell [20], allowed for
abstention, and defined an equilibrium as one with a Con-
dorcet winner. As this is a very strong requirement, such an
equilibrium does not always exist, but they established some
criteria for this equilibrium that depends on voters’ utilities.

Myerson and Weber [23] wrote an influential article deal-
ing with the Nash equilibria of voting games. Their model
assumes that players only know the probability of a tie oc-
curring between each pair of players, and that players may
abstain (for which they have a slight preference). They
show that multiple equilibria exist, and note problems with
Nash equilibrium as a solution concept in this setting. The
model was further studied and expanded in subsequent re-

search [4, 16]. Assuming a slightly different model, Messner
and Polborn [22], dealing with perturbations (i.e., the possi-
bility that the recorded vote will be different than intended),
showed that equilibria only includes two candidates (Du-
verger’s law). Our results, using a different model of partial
information (Bayes-Nash), show that with the truthfulness
incentive, there is a certain predilection towards such equi-
libria, but it is far from universal.

Looking at iterative processes makes handling the com-
plexity of considering all players as manipulators simpler.
Dhillon and Lockwood [6] dealt with the large number of
equilibria by using an iterative process that eliminates weakly
dominated strategies (a requirement also in Feddersen and
Pesendorfer’s definition of equilibrium [11]), and showed cri-
teria for an election to result in a single winner via this pro-
cess. Using a different process, Meir et al. [21] and Lev and
Rosenschein [19] used an iterative process to reach a Nash
equilibrium, allowing players to change their strategies after
an initial vote with the aim of myopically maximizing utility
at each stage.

Dealing more specifically with the case of abstentions,
Desmedt and Elkind [5] examined both a Nash equilibrium
(with complete information of others’ preferences) and an
iterative voting protocol, in which every voter is aware of
the behavior of previous voters (a model somewhat similar
to that considered by Xia and Contizer [29]). Their model
assumes that voting has a positive cost, which encourages
voters to abstain; this is similar in spirit to our model’s in-
centive for voting truthfully, although in this case voters are
driven to withdraw from the mechanism rather than to par-
ticipate. However, their results in the simultaneous vote are
sensitive to their specific model’s properties.

Rewarding truthfulness with a small utility has been used
in some research, though not in our settings. Laslier and
Weibull [18] encouraged truthfulness by inserting a small
amount of randomness to jury-type games, resulting in a
unique truthful equilibrium. A more general result has been
shown in Dutta and Sen [8], where they included a subset of
participants which, as in our model, would vote truthfully if
it would not change the result. They show that in such cases,
many social choice functions (those that satisfy the No Veto
Power) are Nash-implementable, i.e., there exists a mecha-
nism in which Nash equilibria correspond to the voting rule.
However, as they acknowledge, the mechanism is highly syn-
thetic, and, in general, implementability does not help us un-
derstand voting and elections, as we have a predetermined
mechanism. The work of Dutta and Laslier [7] is more sim-
ilar to our approach. They use a model where voters have
a lexicographic preference for truthfulness, and study more
realistic mechanisms. They demonstrated that in plural-
ity elections with odd numbers of voters, this preference for
truthfulness can eliminate all pure-strategy Nash equilibria.
They also studied a mechanism strategically equivalent to
approval voting (though they used an unusual naming con-
vention), and found that when a Condorcet winner exists,
there is always a pure-strategy Nash equilibrium where the
Condorcet winner is elected.

2. DEFINITIONS
Elections are made up of candidates, voters, and a mech-

anism to decide upon a winner:

Definition 1. Let C be a set of m candidates, and let A
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be the set of all possible preference orders over C. Let V be
a set of n voters, and every voter vi ∈ V has some element
in A which is his true, “real” value (which we shall mark as
ai), and some element of A that he announces as his value,
which we shall denote as ãi.
The voting mechanism itself is a function f : An → C.

Note that our definition of a voter incorporates the possi-
bility of him announcing a value different than his true value
(strategic voting).

In this paper, we restrict our attention to scoring rules, in
which each voter assigns a certain number of points to each
candidate, and specifically, to scoring rules in which each
candidate can get at most 1 point from each voter. Mainly,
we will deal with plurality, but we will touch on some more:

• Plurality: A point is only given to a single candidate.

• Veto: A point is given to everyone except one candi-
date.

• k-approval: A point is given to exactly k candidates.

• Approval: A point is given to as many candidates as
each voter chooses.

Another important concept is that of a Condorcet winner.

Definition 2. A Condorcet winner is a candidate c ∈ C
such that for every other candidate d ∈ C (d 6= c) the number
of voters that rank c over d is at least bn

2
c+ 1.

Condorcet winners do not exist in every voting scenario, and
many voting rules—including plurality—are not Condorcet-
consistent (i.e., even when there is a Condorcet winner, that
candidate may lose).

To reason about the equilibria of voting systems, we need
to formally describe them as games, and hence to map agents’
preference relations to utility functions. More formally, each
agent i must have a utility function ui : An 7→ R, where
ui(aV ) > ui(a

′
V ) indicates that i prefers the outcome where

all the agents have voted aV over the outcome where the
agents vote a′V . Representing preferences as utilities rather
than explicit rankings allows for the case where i is uncer-
tain what outcome will occur. This can arise either because
he is uncertain about the outcome given the agents’ actions
(because of random tie-breaking rules), or because he is un-
certain about the actions the other agents will take (e.g.,
agents behaving randomly; agents play strategies that con-
dition on information i does not observe). Here we assume
that an agent’s utility only depends on the candidate that
gets elected and on his own actions (e.g., an agent can get
some utility for voting truthfully). Thus, we obtain simpler
utility functions ui : C×A 7→ R, with an agent i’s preference
for outcome aV denoted ui(f(aV ), ãi).

In this paper, we consider two models of games, full-
information games and symmetric Bayesian games. In both
models, each agent must choose an action ãi without condi-
tioning on any information revealed by the voting method
or by the other agents. In a full-information game, each
agent has a fixed utility function which is common knowl-
edge to all the others. In a symmetric Bayesian game, each
agent’s utility function (or “type”) is an independent, identi-
cally distributed draw from a commonly known distribution
of the space of possible utility functions, and each agent

must choose an action without knowing the types of the
other agents, while seeking to maximize his expected utility.

We consider a plurality voting setting with voters’ pref-
erences chosen randomly. We show detailed results for the
case of 10 voters and 5 candidates (numbers chosen to give
a setting both computable and with a range of candidates),
but we also show that changing these numbers results in
similar characteristics of equilibria.

Suppose voter i has a preference order of a5 � a4 � . . . �
a1, and the winner when voters voted aV is aj . We then
define i’s utility function as

ui(f(aV ), ãi) = ui(a
j , ãi) =

{
j ai 6= ãi
j + ε ai = ãi,

with ε = 10−6.
Note that we use utilities because we need, when comput-

ing an agent’s best response, to be able to compare nearly
arbitrary distributions over outcomes (e.g., for mixed strate-
gies or Bayesian games). This is not meant to imply that
utilities are transferable in this setting. Most of our equi-
libria would be unchanged if we moved to a different util-
ity model, provided that the preferences were still strict,
and the utility differences between outcomes were large rel-
ative to ε. The one key distinction is that agents are more
likely to be indifferent to lotteries (e.g., an agent that prefers
A � B � C is indifferent between {A,B,C} and {B}; under
a different utility model, the agent might strictly prefer one
or the other).

As with perfect information games, we consider Bayesian
games with a fixed number of candidates (m) and voters
(n). The key difference is that the agents’ preferences are
not ex ante common knowledge. Instead, each agent’s pref-
erences are drawn from a distribution pi : A 7→ R. Here
we consider the case of symmetric Bayesian games, where
every agent’s preferences are drawn independently from the
same distribution, p. Due to computational limits, we can-
not study games where p has full support; each agent would
have 55! ' 7.5 × 1083 pure strategies. Instead, we consider
distributions where only a small subset of preference orders
are in the support of p. We generate distributions by choos-
ing six preference orderings, uniformly at random (this gives
a more reasonable 56 = 15625 pure strategies). For each of
these orderings a, we draw p(a) from a uniform [0, 1] dis-
tribution. These probabilities are then normalized to sum
to one. This restricted support only affects what preference
orders the agents can have; agents’ action sets are not re-
stricted in any way.

Note that formally the ε truthfulness incentive represents
a change to a game, rather than a change in solution con-
cept. However, there is an equivalence between the two ap-
proaches: for any sufficiently small ε, the set of pure-strategy
Nash equilibria in the game with ε truthfulness incentives is
identical to the set of pure-strategy Nash equilibria (of the
game without truthfulness incentives) that also satisfy that
only the pivotal agents (i.e., agents who, were their vote
to change, the outcome would change) deviate from truth-
fulness. The meaning of sufficiently small depends on the
agents’ utility functions, and on the tie-breaking rule. If u
is the difference in utility between two outcomes, and t is
the minimum probability of any type profile (in a Bayesian
game), then ε must be less than ct/|C| (the 1/|C| factor
comes from the fact that uniform tie-breaking can select
some candidate with that probability).
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Figure 1: An action graph game encoding of a simple two-
candidate plurality vote. Each round node represents an action a
voter can choose. Dashed-line boxes define which actions are open
to a voter given his preferences; in a Bayesian AGG, an agent’s
type determines the box from which he is allowed to choose his
actions. Each square node is an adder, tallying the number of
votes a candidate received.

3. METHOD
Before we can use any Nash-equilibrium-finding algorithm,

we need to represent our games in a form that the algorithm
can use. Because normal form games require space exponen-
tial in the number of players, they are not practical for games
with more than a few players. The literature contains many
“compact” game representations that require exponentially
less space to store games of interest, such as congestion [26],
graphical [17], and action-graph games [15]. Action-graph
games (AGGs) are the most useful for our purposes, be-
cause they are very compactly expressive (i.e., if the other
representations can encode a game in polynomial-space then
AGGs can as well), and fast tools have been implemented
for working with them.

Action-graph games achieve compactness by exploiting
two kinds of structure in a game’s payoffs: anonymity and
context-specific independence. Anonymity means that an
agent’s payoff depends only on his own action and the num-
ber of agents who played each action. Context-specific in-
dependence means that an agent’s payoff depends only on a
simple sufficient statistic that summarizes the joint actions
of the other players. Both properties apply to our games:
plurality treats voters anonymously, and selects candidates
based on simple ballot counts.

Encoding plurality games as action-graph games is rela-
tively straightforward. For each set of voters with identi-
cal preferences, we create one action node for each possi-
ble way of voting. For each candidate, we create an adder
node that counts how many votes the candidate receives.
Directed edges encode which vote actions contribute to a
candidate’s score, and that every action’s payoff can depend
on the scores of all the candidates (see Figure 1). The same
approach generalizes to approval-based mechanisms; if an
action involves approving more than one candidate, then
there must be an edge from that action node to each ap-
proved candidate’s adder node. Similarly, positional scoring
rules (e.g., Borda) can be encoded by using weighted adders.

A variety of Nash-equilibrium-finding algorithms exist for
action-graph games [15, 3]. In this work, we used the sup-
port enumeration method [24, 28] exclusively because it al-
lows Nash equilibrium enumeration. This algorithm works
by iterating over possible supports, testing each for the ex-
istence of a Nash equilibrium. In the worst case, this re-
quires exponential time, but in practice SEM’s heuristics
(exploiting symmetry and conditional dominance) enable it
to find all the pure-strategy Nash equilibria (PSNEs) of a
game quickly.

Figure 2: Even with the truthfulness incentive, many different
outcomes are still possible in equilibrium.

We represented our symmetric Bayesian games using a
Bayesian game extension to action-graph games [14]. Be-
cause we were concerned only with symmetric pure Bayes-
Nash equilibria, it remained feasible to search for every equi-
librium with SEM.

4. PURE-STRATEGY NASH EQUILIBRIUM
RESULTS

To examine pure strategies, we ran 1000 voting experi-
ments using plurality with 10 voters and 5 candidates.

4.1 Selectiveness of the truthfulness incentive
The logical first question to ask about our truthfulness in-

centive is whether or not it is effective as a way of reducing
the set of Nash equilibria to manageable sizes. As a base-
line, each plurality game had over a million PSNEs, when we
did not use any equilibrium selection method. A stronger
baseline is the number of PSNEs that survive removal of
weakly dominated strategies (RDS). RDS reduces the set by
an order of magnitude, but still allows over 100,000 PSNEs
per game to survive. In contrast, the truthfulness incen-
tive reduced the number of PSNEs down to 30 or less, with
the median game having only 3. Interestingly, a handful
of games (1.1%) had no PSNEs. Laslier and Dutta [7] had
shown that PSNEs were not guaranteed to exist, but only
when the number of voters is odd (and at least 5). Our
results show that the same phenomenon can occur, albeit
infrequently, when the number of voters is even.

One of the problems with unrestricted Nash equilibria is
that there are so many of them; the other problem is that
they are compatible with any outcome. Given that the TI is
so effective at reducing the set of PSNEs, one could wonder
whether or not TI is helpful for the second problem. Un-
fortunately, TI has only limited effectiveness in ruling out
some outcomes as impossible (only 4.4% of games support
exactly one outcome in equilibrium). However, nearly al-
ways (> 99% of the time) some outcomes occur more fre-
quently than others. See Figures 2 and 3.

4.2 Equilibrium outcomes
With a workable equilibrium selection method, we can

now consider the question of what kinds of outcomes occur
in plurality. We shall examine two aspects of the results:
the preponderance of equilibria with victors being the voting
method’s winners, and Condorcet winners. Then, moving to
the wider concept of social welfare of the equilibria (which
we can consider since we work with utility functions), we
examine both the social welfare of the truthful voting rule
vs. best and worse possible Nash equilibria and the average
rank of the winners in the various equilibria.
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Figure 3: With the truthfulness incentive, some outcomes occur
much more frequently than others.

Figure 3: Empirical CDF of social welfare

3 Social Welfare Results

Without the ✏ preference for truthful voting, every outcome is always possible
in some PSNE. (This implies that the price of anarchy is unbounded, while
the price of stability is one.) With it, the worst case-outcome is almost always
impossible in PSNE (92.8%). Sometimes (29.7%) the best case outcome is also
impossible (29.7%). The gap between best and worst PSNEs can be very large,
though both can lead to the worst-case outcome. (Thus, the price of anarchy and
price of stability are unbounded if I normalize social welfare from worst to best
outcome. I think I need a new way of normalizing.) In the majority of games
(59%), truthful voting will lead to the best possible outcome. Nevertheless, the
best-case PSNE still stochastically dominates truthful voting.

In games where truthfulness is a PSNE, truthfulness is closer to the best-
case PSNE, but still stochastically dominated. In games where truthfulness is
not a PSNE, the equilibrium outcomes and truthful outcomes tend to be worst
than went it is.

Note: for welfare results I omit the games with no PSNEs.

4 Condorcet Winners

Of the 1000 games tested, 931 games had a Condorcet winner. In fact, 204
games had multiple Condorcet winners. (See Figure 5.) As with social welfare,
when comparing the relative probability of having a Condorcet winner win the

3

Figure 4: CDF of social welfare.

The first issues to consider are to what extent truthful vot-
ing is an equilibrium, and to what extent the agents cancel
out each other’s manipulations (i.e., when there are non-
truthful Nash equilibria that lead to the same outcome as
truthful voting). We call a candidate the “truthful winner”
iff that candidate wins when voters vote truthfully. For 63%
of the games, the truthful preferences were a Nash equilib-
rium, but more interestingly, many of the Nash equilibria
reached the same result as the truthful preferences: 80%
of the games had at least one equilibrium where the truth-
ful winner wins, and looking at the multitudes of equilibria,
42% elected the truthful winner (out of games with a truth-
ful result as an equilibrium, the share was 52%). Without
the truthfulness incentive, the truthful winner only wins in
22% of equilibria.

Next, we turn to the question of whether or not strategic
voting leads to the election of good candidates, starting with
Condorcet winners. 55% of games had Condorcet winners,
which would be elected by truthful voting in 49% of the
games (not a surprising result; plurality is known not to be
Condorcet consistent). However, the combination of truthful
voting both being an equilibrium and electing a Condorcet
winner only occurred in 42% of games. In contrast, a Con-
dorcet winner could win in some Nash equilibrium in 51% of
games (though only 36% of games would elect a Condorcet
winner in every equilibrium).

Turning to look at the social welfare of equilibria, once
again, the existence of the truthfulness incentive enables us
to reach “better” equilibria. In 93% of the cases, the worst-
case outcome was not possible at all (recall that without
the truthfulness incentive, every result is possible in some
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Figure 5: The average proportion of equilibria won by candidates
with average rank of 0–1, 1–2, etc.

Figure 6: Percentage of games with a Nash equilibrium of a given
type with 3 candidates and varying number of voters.

Nash equilibrium), while only in 30% of cases, the best out-
come was not possible. While truthful voting led to the best
possible outcome in 59% of cases, it is still stochastically
dominated by best-case Nash equilibrium (see Figure 4).

When looking at the distribution of welfare throughout
the multitudes of equilibria, one can see that the concentra-
tion of the equilibria is around high-ranking candidates, as
the average share of equilibria by candidates with an average
ranking (across all voters in the election) of less than 1 was
56%. (See Figure refaverageRankWinner.) Fully 72%, on
average, of the winners in every experiment had above (or
equal) the median rank, and in more than half the experi-
ments (52%) all equilibria winners had a larger score than
the median. As a comparison, the numbers from experi-
ments without the truthfulness incentive, are quite different:
candidates—whatever their average rank—won, with minor
fluctuations, about the same number of equilibria (57% of
winners, were, on average, above or equal to the median
rank).

4.3 Scaling behavior and stability
We next varied the number of voters and candidates. Our

main finding was that when voter number was odd, the prob-
ability of having no equilibria at all increased dramatically,
as the truthfulness incentive causes many such situations to
be unstable (see Figure 6). Less surprisingly, as the number
of candidates increased PSNEs were less likely to exist.

Nevertheless, these equilibria equilibria retained the prop-
erties we have seen—a concentration of equilibria around
“quality” candidates, such as truthful and Condorcet win-
ners, as can be seen in Figure 7a, for truthful winners (it
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Figure 7: Varying the number of voters and candidates.

is never below 40%) and in Figure 7b for Condorcet win-
ners. These effects were even more pronounced with an odd
number of voters, as the number of equilibria was so small.

4.4 Richer Mechanisms
Approval (and variants such as k-approval and veto) are

straightforward extensions of plurality, so it is natural to
consider whether our approach will work similarly well for
these mechanisms. Also, Laslier and Dutta [7] were able
to resolve the existence problem for plurality and approval,
but noted that the existence of PSNEs for k-approval was
an open problem.

Thus, we started by investigating k-approval and veto. As
was the case with plurality, the truthfulness incentive kept
the number of equilibria manageable. As can be seen from
Figure 8, in all cases more than 75% of games had 35 equi-
libria or fewer, and it seems that the number of equilibria
roughly increases with the number of candidates. Our data
also allowed us to resolve the open problem of equilibrium
existence: for every value of k and m there was at least one
instance without any PSNE.

We also considered approval voting. Laslier and Dutta
had already shown that a Condorcet consistent equilibria is
always guaranteed to exist. However, this raises an inter-
esting question: are there other Nash equilibria? In our ex-
periments, we found that approval voting had an extremely
large number of equilibria (over 200,000 per game), so it
seems that the addition of another dimension (allowing each
voter to decide how many candidates to vote for), results in
a large enough flexibility, reducing the effect of the truthful-
ness incentive.

Looking at the equilibria, we found that it maintains some
of the qualities that we discussed: truthful winners won, on
average, in over 30% of the equilibria in every setting, and
sometimes more (e.g., 2-approval with 4 candidates resulted

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1	   14
	  

27
	  

40
	  

53
	  

66
	  

79
	  

92
	  

10
5	  

11
8	  

13
1	  

14
4	  

15
7	  

17
0	  

18
3	  

19
6	  

20
9	  

22
2	  

23
5	  

24
8	  

26
1	  

27
4	  

28
7	  

30
0	  

31
3	  

32
6	  

33
9	  

35
2	  

36
5	  

37
8	  

Veto	  (5	  candidates)	  

Veto	  (4	  candidates)	  

3-‐approval	  (5	  candidates)	  

Veto	  (3	  candidates)	  

2-‐approval	  (4	  candidates)	  

2-‐approval	  (5	  candidates)	  

Figure 8: Proportion of games with certain number of equi-
libria (accumulative).

in almost 50% of equilibria, on average, electing truthful
winners). However, Condorcet winners did not show simi-
lar strength, and it seems that as the number of candidates
grows, and as the number of candidates for which voters al-
lot points to increases, the percent of equilibria with a Con-
dorcet winner drops (so 2-approval has fairly high percent-
ages, 3-approval somewhat less, and 4-approval even less).
It will be interesting, in our view, to see how other voting
rules compare to plurality in this case, as it seems to trump
k-acceptance in this regard.

5. BAYES-NASH EQUILIBRIA RESULTS
Moving beyond the full-information assumption, we con-

sidered plurality votes where the agents have incomplete in-
formation about each other’s preferences. In particular, we
assumed that the agents have independent, identically dis-
tributed (but not necessarily uniformly distributed) prefer-
ences, and that each agent knows only his own preferences
and the commonly-known prior distribution. Again, we con-
sidered the case of 10 voters and 5 candidates, but now
also introduced 6 possible types for each voter. For each
of 50 games, we computed the set of all symmetric pure-
strategy Bayes-Nash equilibria, both with and without the
ε-truthfulness incentive.1

Our first concern was studying how many equilibria each
game had and how the truthfulness incentive affected the
number of equilibria. The set of equilibria was small (< 28
in every game) when the truthfulness incentive was present.
Surprisingly, only a few equilibria were added when the in-
centive was relaxed. In fact, in the majority of games (76%),
there were exactly five new equilibria: one for each strategy
profile where all types vote for a single candidate. Looking
into the structure of these equilibria, we found two inter-
esting, and seemingly contradictory, properties. First, most
equilibria (95%) only involved two or three candidates (i.e.,
voters only voted for a limited set of candidates). Second,
every candidate was involved in some equilibrium. Thus, we
can identify an equilibrium by the number of candidates it
involves (see Figure 9). Notably, most equilibria involved
only two candidates, with each type voting for their most
preferred candidate of the pair. Further, most games had
10 such equilibria, one for every possible pair. There were

1We omitted two games from our results. The omitted games
each have a type with very low probability. For some profiles, the
probability of agents with these types being pivotal was less than
machine-ε. This led to SEM finding “Bayes-Nash equilibria” that
were actually only ε-Bayes-Nash.
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Figure 9: Every instance had many equilibria, most of which
only involved a few candidates.

two reasons why some pairs of candidates did not have cor-
responding equilibria in some games. First, sometimes one
candidate Pareto-dominated the other (i.e., was preferred
by every type). Second, sometimes the types that liked one
candidate were so unlikely to be sampled that close races
occurred with extremely low probability (relative to ε); in
such cases, agents preferred to be deterministically truthful
than pivotal with very small probability. This observation
allowed us to derive a theoretical result about when a 2-
candidate equilibrium will exist.

Theorem 3. In any symmetric Bayesian plurality elec-
tion game (with n ≥ 2), for any pair of candidates c1, c2,
one of the following conditions is true:

• With some positive ε truthfulness incentive, there exists
a Bayes-Nash equilibrium where each voter votes for
his most preferred of c1, c2.

• One of the candidates Pareto dominates the other ex
ante (i.e., the probability that a voter prefers the second
candidate to the first is zero).

We provide only a proof sketch due to space constraints.

Proof Sketch. If c1 Pareto dominates c2, then every
agent would vote for c1 and no agent could influence the
outcome. For any non-zero ε, voters would deviate to honest
voting instead of c1.

So as long as there is non-zero probability of some agent
preferring c2 to c1, every agent has a non-zero probability of
being pivotal between those two outcomes (and a zero prob-
ability of being pivotal between any two other outcomes).
For a sufficiently small ε, the value of influencing the out-
come overwhelms the value of truthful voting.

These two-candidate equilibria have some interesting prop-
erties. Because they can include any two candidates where
one does not Pareto-dominate the other, they can exist even
when a third candidate Pareto-dominates both. Thus, it is
possible for two-candidate equilibria to fail to elect a Con-
dorcet winner. However, because every two-candidate equi-
librium is effectively a pairwise runoff, it is impossible for a
two-candidate equilibrium to elect a Condorcet loser.

Equilibria supporting three or more candidates are less
straightforward. Which 3-candidate combinations are pos-
sible in equilibrium (even without ε-truthful incentives) can
depend on the specific type distribution and the agents’ par-
ticular utilities. Also, in these equilibria, agents do not al-
ways vote for their most preferred of the three alternatives
(again, depending on relative probabilities and utilities). Fi-
nally, 3-candidate equilibria can elect a Condorcet loser with
non-zero probability.

6. DISCUSSION AND FUTURE WORK
Our work approaches issues of voting manipulation by

combining two less-common approaches: assuming all voters
are manipulators, rather than a subset with a shared goal,
and looking at the set of Nash equilibria as a whole, rather
than searching for other solution concepts or a specific equi-
librium. We leveraged a small and realistic assumption—
that users attach a small value to voting their truthful pref-
erences. Using the AGG framework to analyze the Nash
equilibria and symmetric Bayes-Nash equilibria of plurality,
we can extrapolate from the data and reveal properties of
such voting games.

We saw several interesting results, beyond a reduction in
the number of equilibria due to our truthfulness incentive.
One of the most significant was the “clustering” of many
equilibria around candidates, which can be viewed as re-
sembling the voters’ intention. A very large share of each
game’s equilibria resulted in winners that were either truth-
ful winners (according to plurality) or Condorcet winners.
Truthful winners were selected in a larger fraction of equi-
libria when the total number of equilibria was fairly small
(as was the case in a large majority of our experiments), and
their share decreased as the number of equilibria increased
(where we saw, in cases where there were Condorcet win-
ners, that those equilibria took a fairly large share of the
total). Furthermore, these results held up even when vary-
ing the number of candidates and voters, and many of them
appear to also hold with other voting systems, such as veto
and k-approval.

Looking at social welfare enabled us to compare equilib-
rium outcomes to all other possible outcomes. We observed
that plurality achieved nearly the best social welfare possi-
ble (a result that did not rely on our truthfulness incentive).
While another metric showed the same“clustering”we noted
above, most equilibrium results concentrated around candi-
dates that were ranked, on average, very highly (on average,
more than 50% of winners in every experiment had a rank
less than 1). This suggests that one should question whether
it is even important to minimize the amount of manipula-
tion, as we found that manipulation by all voters very often
results in socially beneficial results.

In the Bayes-Nash results, we saw that lack of information
often pushed equilibria to be a “battle” between a subset of
the candidates—usually two candidates (as Duverger’s law
would indicate), but occasionally more.

There is much more work to be done in the vein we intro-
duced in this paper. This includes examining the effects of
changing utility functions, as well as looking at more voting
rules and determining properties of their equilibria. Voting
rules can be ranked according to their level of clustering,
how good, socially, their truthful results are, and similar
criteria. Furthermore, it would be worthwhile to examine
other distributions of preferences and preference rules, such
as single-peaked preferences. Computational tools can also
be used to assess effectiveness of various strategies avail-
able to candidates (e.g., it might be more productive for
a candidate to attack another weak candidate to alter the
distribution).
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